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A solution of the problem of stability of a thin-walled bar with a variable
section for any boundary conditions has been presented in the paper. The
algorithm of calculations makes use of a method of a transfer matrix and
of the Laplace operational calculus. The solutions relate to thin-walled bars
with open sections under assumptions of Vlasov.

1. Introduction

The problem of stability of thin-walled bars with a variable cross section is in
general case involved in a solution of a system of ordinary differential equations
with functional coefficients. It is possible to obtain such a solution due to the
application of one of the numerical methods (cf Szmelter, 1980; Mottersheat, 1988;
Grunder and Witt, 1989). As a rule the calculations are laborious and burdened
with a numerical error. In view of the above it has been decided to solve the above
problem using the method of a transfer matrix.

The method enables to determine eigenvalues of a bar consisting of sections
having constant cross-section. It is also possible to find lower and upper limit
of every eigenvalue for a bar which cross-section varies (continually) along the
length. The essence of the method lies in determining the matrix called a transfer
matrix which is obtained as a result of a product of a span matrix and a section
(node) matrix. The transfer matrix determines the relationship between values
of a displacement function and their derivatives at the beginning and at the end
of a bar, respectively. A form of the span matrix is determined on the basis of a
solution of a given problem in general for a bar with a constant cross section. A
section matrix is calculated from the conditions of equilibrium and inseparability
ol displacements in the given cross-section.
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2. Determination of a span matrix

Differential equations describing the problem of stability of a thin-walled bar
with an open section and constant cross section under a central force have the
form (Vlasov, 1959)

EJZ"}””"' Pn” + Pza(p” — 0
EJ,&" + PE" = Pyayd = 0 (2.1)
EJW(P””+ Pzan” _ Pyaf” + (T2P _ GJI)(P” =0

The following variables have been introduced to these equations

1,€, ¢ — displacements of the shear centre and the torsion angle of
the beam
z,Y,2 — principal central axes of inertia of cross section
Yos 2o — coordinates of a shear centre towards axes y and z
E,G ~  Young’s modulus and shear modulus
JysJzyJo — moments of inertia of the cross section in relation to axes y
and z as well as sectorial moment of inertia
o_Jo 2., 2
T :Z+y"+z" Jo=Jz+ Jy
Je — moment of inertia at pure torsion.

Eq (2.1) have been derived on the assumption of the so called technical theory
of thin-walled bars developed by Kappus and generalized by Vlasov. The solu-
tion of the system of equations (2.2) has been obtained under the application of
the Laplace transform (Doetsch, 1964). Let us denote the Laplace transform of
particular functions as follows

n(z)e”**dz = 7(s)

£(z)e™""dz = E(s) (2.2)

p(z)e™"dz = B(s)

0\8 0\8 0\8

where
s=a+1if - parameter of the transform
7,6, @ — transforms of the functions.
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When introducing a symbolic notation in a form L[n] = 7, L[¢] = £ and
L[p] = B, to the expression (2.2), then on the basis of the theorem of Laplace
transform of a derivative of function 7, £ and ¢ we shall write down the following
relationships

L[n"] = s*5 — sno — 776

Lin" = s*n— s®no — —sm6 — Mo’
L[€"] = $*€ — st — 56
L[E"™] = s — 3¢ — s2&) — s& — & (2.3)

L[¢"] = s*% — so — ¢}
L[¢"™) = *% — s%p0 — 52 — sy — 9’
In the relationships (2.3) values ng,...,n8", €o,-.-,&8"s ¥o,---, 90 get the corre-
sponding values of the functions 7, { and ¢ and their derivatlves for z = 0.
Through introducing the relationships (2.3) into Eqs (2.1) the system of dif-
ferential equations is converted into a system of three non-homogeneous algebraic
equations considering the transforms 7, £, and .
Algebraic equations will take the form

"

EJ,(s*7 — s®no — s*ng ~ sng — nb’) + P(s*% — smo — mp) +
+Pza(s*® — spo — ) =0

EJ ('€ — s°60 — $Ep ~ s&g — £0") + P(s*€ — s&o — &) +
+Pya (s’ ~ spo — ) = 0 (2.4)

EJ.(s'P0 — %00 — s°00 — spg — @) + (5°% — spo — o) (r?P = GUJx) +
+Pzo (8% — sn0 = m0) ~ Pya(s?€ — 60 — &) =0

When solving the system of equations (2.4) considering the transforms 7,£,% we
obtain the following equations

- _ 1 ,'1 1 4 2 "
n = 770—+770_2+ (a36+b34+032+d)[(as +es +f)(770+770 )+

+ oo &) (i) (e + o]

z 1 ,L 1 "
&= 503+£0.92+s(a36+bs4+c32+d)[k(n°+n° )+
(2.5)
1

+(ast + 15+ 0) (8 +€85) + (ms? 4 m) (g + o )]
_ 1 , 1 1 2 1"

- 2 — : P
P Yo+ ozt a1 b5t T oot 1 d) [(vs + )(no + 7o )] +
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+ (¢s*+ y)(EE{ + Eé"%) + (as® +ts? + w)(soa’ + 996”%)]

The following denotations have been used in these relationships

a

b

o

a,

_ TN, T a e

NQQ.@GSSQ

g

E3J,J.J.,
D(E*JoJ, + E*%J,J,) — E*GJ,J.J,
PY(EJ, + Er®Jo— EztJ, — Ey2J,) — PEGJ.Jo

P3% - PGJ,

P(r*EJ,J, + E*J.J.) — E*GJ.J.J,
—P*y2EJ, + P(r*EJ, — EGJ,J,)
—P?’yazaEJy

—PE%J,J, 24

~P*EJ, 24

—P?y,z,EJ,

P(r*E%J,J, + E*J,J,) — E*GJ.J,J,
PY(r*EJ, - 2 EJ,) - PEGJ,J,
Dy, EJ,

P*y EJ,

~P2,E%J,J,

—P?2,EJ,

Py, E%J,J,

Py, EJ,

P(E%*J,J, + E*J,J.,)

P:EJ,

Functions of displacements n(z), £(z) and of the angle of rotation ¢(z) will
be determined due to an inverse Laplace transform according to the relationship

a+ico

w@) =5 [ A)emds
ey

(@)= 5= [ Eseds (2:6)
e

pla) =5 [ lseds

a—ioo
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Let us denote the inverse Laplace transform of particular functions as follows

-1 [ 1 ] = 5
s2(as + bs“ + ¢s2 + d)
1 — .
[s asb + bs“ + cs?2 + d)] =7
L~ -1 = 5
[a +bs4+c32+dJ %6
L} [ =35
6 1 hst 2
asb + bst + ¢cs2 +d (2.7)
-1 [ =%,
asb + bs“ + cs? + dl
-1 -
[a bs4+cs2+d =%
1
-1 _ =
[3—2] =%
1 L]
L' =| =
HEE
Then the relationships for the functions 7(z), é(z) and ¢(z) take the form
n(z) = noS1+ mS2 + 7o(aSs + €35 + f37) + 15 (asq + ese + fsg) +
+ £0957 +&5'95s + ¢o(hSs + [57) + o' (h36 + 38)
E(x) = mnoks7 + ng'kss + 031 + €032 + & (ass + Lss + Ts7) +
+ &'(ass + 156 + 738) + w5(m3s + n37) + @i (M3 + n3g) (2.8)

@(x) = ng(vss + ps7) + 115" (v36 + pSs) + £5(93s + us7) + +€o" (956 + u3s) +
+ 031 + ¥p32 + ¥o(ass + t35 + w37)y (aSs + 156 + w3s)

Let us introduce the following denotations into the expressions (2.8)

$1 =3 s$11 = a33 + I35 + f37
S2 = 59 812 = asy + IS¢ + [3s
$3 = g7 813 = M35 + N7

84 = ¢3g 814 = M3 + N3g

s5 = k37 815 = U85 + pS7

s¢ = kg S16 = VSe + P3s

sg = aS4 + €3¢ + [3Ss
sg = h3s + 557
810 = h3e + 733

S17 = ¢S5 + US7t
818 = ¢S¢ + uSs
S19 = a8z + 135 + ws7
820 = @34 + 186 + WSs
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Then the expressions (2.8) determining the functions of displacements 7, £ and
@ as well as their derivatives written down in a matrix form are as follows

[7n ] [s1 32 837 s5 0 0 s3 s4 0 0 s9 sio0][m ]
7 81 S2 87 sg 0 0 s3 s4 0 0 89 10 7%
n" 81 82 s7 sg 0 0 s3 s4 0 0 s9 sy0 e
" 81 82 s7 s 0 0 s3 s4 0 0 s9 sy0 06’
£ 0 0 s5 s s1 82 siu s12 0 0 13 814 o
€ | _ [0 0 s5 s s1 82 suu s12 0 0 s13 s14 &0
€ | 10 0 s5 s¢ 81 s2 si 812 0 0 813 sy 0
§" 0 0 s5 s s1 82 sn s12 0 0 s13 814 0
¢ 0 0 15 s16 0 0 s17 s18 81 S2 S19 S20 ©o
@' 0 0 s15 s56 0 0 817 s18 81 S22 S19 S20 %0
@ 0 0 s15 816 0 0 3817 s18 S1 s2 S19 S0 ©0

| " ] | 0 0 s15 s16 0 0 s17 s18 81 S2 S19 s20 | | 0

: (2.9)

A square matrix formed together with expression s; — sy0 will be called a span
matrix.

Calculations of the inverse transformation made on the basis of the expression
(2.6) result in a positive effect, if functions of the parameter s are relatively simple.

In the case of composite functions it is more convenient to calculate the in-
verse Laplace transform by the residua method when applying the Jordan theorem
(Smirnov, 1966).

The inverse Laplace tramsforms are then determined from the expression

n(z) = i TeSg=s, [T)‘(s)e“’] (z>0)
k—1

&(z) = iresmk [E(s)e*?] (z > 0) (2.10)
k—1

p(z) = i TeSg=s, [a(s)e”’] (z>0)
k-1

where
n  — number of poles of the function being transformed
sk — singular point of a given function.

Residua of the function are calculated from from the following relationships
a) for the function f(s) having a simple pole at the point s = s

ress=s, f(s) = sllrrslk f(s)(s — sk)

b) for the function f(s) having a multiple pole

d(k—1)
resf(s) = - 1)1 +128, Zst-T) (65 = 0] (2.11)
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The values of the function Fi(z) calculated on the basis of relationships (2.10)
and (2.11) and constituting the inverse Laplace transform Y Fi(z) = L71[f(3)]
3

are specified by Switoriski (1974).

3. Determination of a section matrix

A section matrix is determined in the cross section of a bar in which a change
of dynamic features of the bar or another cause of discontinuity of functions of
displacements and their derivatives occurs.

Elements of the section matrix are determined from conditions of the equality
of internal forces and from geometric conditions formulated for a left and right
side of the cross section under consideration (cf Switoriski, 1978; Switoriski and
Bizon, 1993), Fig.1.

—1

- {
|

Fig. 1.

On the ground of the conditions of inability of distribution of displacements
and of the conditions of equilibrium we shall write down the relationships existing
between functions of displacements and their derivatives on both sides of the cross
section in which a sudden change of geometric features and an elastic support take
place. When denoting constant elastic supports with C,, C, and C, towards the
axes ¥, z and around the axis z, respectively, we obtain the following relationships

Mo =M — (Zop = 2oy )P
& = &+ (2ap ~ 2091
Ty = 1~ (Zap = 2o )Pl
f;; = f; + (Zap - za:)S"i
©p = ¢
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Up = W (3.1)
Mg = Mg + Copo — MB + Qyi( 20, — 2oy) = Q2(Yop — Yoy)

My, = My

M,, = M,

B, = By

Qyp = le + Cy770

Q= Qu+ Co

where
Mo = M + 2a; 91
o = & — Yo 21 (3.2)
¥o = @i

These relationships do not take into account elastic supports around the axes y
and z.

The condition U, = U; which we use to determine the relationships between <p{,
and ¢/ is fulfilled for common points of outlines on both sides of the cross section
being considered only. When having regard to the constraint of free warping of
the cross section we obtain, in general, different relationships between c,o,{ and of
for particular common points.

From the condition of equilibrium of displacements U for the kth point of
contact of both cross sections we obtain

k
<P;cp - (Zozp - Za;)?/k - (ykap - yal)zk + w; (P; (33)
w
P
or
Php = Wk (3.4)
where
wp = (Fop = 7o )Y = Wap = Yo )2k + f
ot

The latter relationship between the quantitics c,o,{ and ¢! for a given cross
section is obtained when applying one of the approximation methods.
Then the relationships will take the form

?) = il (3.5)

If we express internal forces in the relationships (3.1) as derivatives of the functions
n,& and ¢ and if we take into regard the expressions (3.2) and (3.3) we shall receive
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Pp = @I
Yp = w1¢]
Jyl
" yl e
== (3.6)
P Ty
7 Jai "
P sz {
"_ Jol 1"
P pr l
-C Jz C,z
"mo_ y 2l _m y2ay
=B, YL T B,
-C Jui C.z
m z Zyl e z2%0y
& EJu,,& + Ton & EJ,, @
-C GJ wy — GJ{ le le Jl
" _ @ zp ol oy Jwl gy Tl Ao Tyl A et
Y =% Tom o1+ EJa, o+ prv + Ton U Tor 2§

Az = z5, — 2q

The relationships (3.6) written down in a matrix form are

. [1 0 0 0 0 0 O0 0 Az 0O 0 0 7.
e 0 1. 0 0 0 0 0 0 0 Az 0 0 m ]
T 00 0 000 0 0 0 0 0 i
ZZ,, Ws 0 0 2L 0 0 0 0 W, 0 0 0 Zi,,,
¢, 0 0 0 0 1 0 0 0 Az 0 0 0 £
g |_| 000 0 01 0 0 0 A 0 0 £l
» =10 00 0 00zt 0 0 0 0 0 £
o 0 0 0 0 Ws 0 0 3£ We 0 0 0 &
@p © 0 0 0 0 0 0 0 1 0 0 O @1
©p 00 0 0 0 0 0 0 0 W, 0 0 @]
©p 0 0 0 Weg 0 0 0 Wo 0 0 L 0 ngl
L'l o000 0 00 0 0 W W 0 L -‘*2137)

where

w, = Gl = Gl W, = Co

EJup -~ TEJ,
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CyZ C
W, = — Z¥Z = 2z
4 EJ,, ”_/5 EJ,
C.Y, C
We = — z4 oy W, = — ¥
*~ EJ, " T " EJup
Jai Jyi
Weg = Tur Az Wy = ﬁp(yap ~ Yoy)

A square matrix of the expression (3.7) is called a section matrix or a kinematic
pair matrix.

If we denote the matrix of the ¢th span with H; and the matrix of the :th
cross section with F; the transfer matrix H for a bar divided into n segments

takes the form
m—1

[H] = Hn [] FiH; (3.8)

=1"

4. Determination of eigenvalues and eigenfunctions

Eigenvalues are determined by equating the appropriate minor of the transform
matrix H (3.8) — the so called characteristic determinant — with zero.

The form of the characteristic determinant depends on the boundary conditions
of the bar under consideration. There are six from among twelve boundary values
of functions of displacements 7(z), £(z) and ¢(z) and their derivatives forming
the so called vector of state in the initial cross section which are determined on
the ground of the boundary conditions for z = 0. The remaining six values form a
system of homogeneous equations determining the boundary conditions for z = I.

Eigenfunctions for the i-segment of the bar are determined from relationships

i—1
Yi(z) = Hi(z) [T F;H;Yo (4.1)
J=1
where
Y;(z) - matrix of the eigenfunction for the i-segment of the bar
Yo ~  column matrix of boundary values for z = 0.

5. Example expressed in numbers

In order to illustrate the presented solution a critical force for a bar consisting
of two segments with a constant cross section (Fig.2) has been calculated.



STABILITY OF THIN-WALLED BARS... 823

x=21

Fig. 2.

The segment 1 has the cross section shown in Fig.3a, and the segment 2 has
the cross section shown in Fig.3b.

(a) 120 (b} 98.5 50
- 9 9 e 0 - -
1
3 £ g
§ 4 K
55 1|, i
on
| } 335
—
53
Fig. 3.

The following boundary conditions have been taken into consideration

z=0 =20 £E=0 p=0
I [ A !

z =2 Z;o0 §=_00 iz—oo (5-1)
77’=0 £/=0 S0/___0

z=0 =20 £E=0 =0
/I / __ I —

z =2l Z=_00 §=_00 $=—00 (5.2)

T]”=0 £II=0 ‘P”=0

Results of numerical calculations of the minimum critical force are presented
in diagrams in a function of the bar length

a) for boundary conditions (4.2) ~ Fig.4,

b) for boundary conditions (4.3) - Fig.5.
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Per (kN1 A
776}

0 . \ -
2 4 6 1ml
Fig. 4.
Per [kNI J
536 |
0 T T -
2 4 6 1
Fig. 5.
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Statecznosé pretéw cienkosciennych o zmiennym przekroju

Streszczenie

W pracy przedstawiono rozwiazanie zagadnienia pretéw cienkosciennych o zmiennym
przekroju, dla dowolnych warunkow brzegowych. W algorytmie obliczen wykorzystano
metode macierzy przeniesienia i rachunek operatorowy Laplace’a. Rozwiazania dotycza
pretéw cienkosciennych o profilu otwartym przy zalozeniach Wlasowa.
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