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The aim of the paper is to propose a certain method of macro-modelling of
micro-periodic elastic beams. The approach is based on the concepts of a
non-asymptotic macro-modell proposed by Wozniak [3]. In this paper the
equations of motion for a straight linear elastic micro-periodic beam has
been obtained. A solutions of a dynamic eigenvalue problem and steady
state harmonic vibration liave been presented. The problems were analized
within the engineering theory of elastic beams.

1. Primary concepts

The analysis will be restricted to the small displacement gradient theory of

beams and to linear-elastic materials.
In the paper the bending vibrations of the straight beam of a finite length L

with tlie periodic variable flexural rigidity is considered (Fig.1).
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Fig. 1.

Let in the undeformed configuration the axis of a beam coincide with the
intervall [0, L] of the z-axis. Let X, X3 - axis be principal central inertia
axes of an arbitrary cross-section F(z), z € [0,L]. A beam has [-periodic
structure, it means that F(z) = F(z + [) and material constant (the Young
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modulus) E(z)= E(z + ) and the mass density related to the z-axis of a beam
p(z) = p(z + 1), for every z € [0,L - ].

We assume that [ is sufficiently small compared to L,! < L and L = PI,
where P is any integer number.

The condition [ € L made it possible to treat the beam under consideration
as the micro-periodic structure.

Throught out the paper indices a,b run over 1,2,...,n, where n > 1,
m = 1,2,..,p=0,1,..., P. The summation convention for a,b holds.

Setting L = [0, L] we shall refer to L as a representative length element of
the beam.

The coordinate y, y € [0,!] will be called a micro-coordinate and z € [0, L]
will denote the macro-coordinate of the periodic beam under consideration.

For any differentiable function g(z,t), where t is the time coordinate,
t € [0,00], we define

,_ 0g(z,1) . _ 0g(z,t)
9= oz 9= ot

For any integrable function G(-) defined on the interval [0, L] the averaged
value is

!
<G>(z)5%/G(z+y)dy for ze[0,L-1]
0

2. Dynamic macro-modelling

The method presented bellow is based on refined macro-dynamics of micro-
periodic composites (Wozniak, 1993 and [3]). We start our analysis with some
preliminary concepts.

Let g(-) be an arbitrary continuous function defined on [0, L]. The function
g(-) will be called a L-macro function if g(z) 2 g(z) for every z,z such that
|z — 2| < in the whole domain of the definition of g(-). A continuous function
g(+) having continuous derivatives up to cut order will be called £-macro function
if g(-) and all its derivatives are L-macro functions.

The independent real-valued functions h,(z), a = 1,...,n satysfy the following
conditions

1. they are defined and continuous for every z € R
2. hg are l-periodic, hy(z) = ho(z+ 1),z €[0,L -]

3. <hy>(z)=0 (2.1)
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4. <phy>(z)=0

Functions he(-) characterize micro-oscillations of a beam due to its micro-
periodic structure and will be called micro-shape functions.
We postulate that

e a displacement field along the z-axis and towards the Xjz-axis W(,t) for
every z € [0, L] can be represented by

w(z,t) = W(z, 1) + ha(2)Q%(z, 1) (2.2)

where W(:,t) and @Q¢°(-,t) are arbitrary, independent, sufficiently regular
L - macro fields defined on [0, L] and h,(-) are postulated a priori micro-
shape functions.

We shall also postulate that

e in derivatives of the displacement w(z,t) the terms involving functions hg(-)
can be neglected compared to terms involving derivatives of h,(+).

Hence, we assume that
w'(z,t) = W'(z,t) + k) (2)Q%(z, )
(2.3)
w"(z,t) = W(z,t) + hl(2)Q%(z,1)

The first from the aforementioned postulates is implied by the fact that the
motion of a micro-periodic beam can be obtained by a superimposition of micro-
oscillations h,Q%(-,t) on a certain fundamental motion desciribed by L£-macro
function W(-,1).

The second postulat is motivated by the micro-ascillatory character of shape-
function h,(-), where h, € 0(I?), !, € 0(1), h” € 0(1).

For the beam under consideration the principle of virtual work will be postu-
lated in the well known form

L
- / Mz, )w"(z)dz = Mo(t)6w'(0) — My (£)6w'(L) — To(t)6w(0) +
0
(2.4)

L
+TL(dw(L) + / [f(z,8) — p(z)i(z, )]6w(z) dz
0

where
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Fig. 2.
M(z,t) - bending moment at the cross-sections z = const
My(t), Mp(t) — values of M at the ends of a beam
To(t), Tr(t) - boundary values of shear forces
f(z,t) - vertical total loading distributed along the axis of a

beam (see I'ig.2).
The principle (2.4) is assumed to hold fold every

dw(z) = W(z)+ ho(2)0Q%(x)
dw'(z) = §W'(z) + hl(2)6Q%(x) (2.5)
dw"(z) = §W"(z) + Kl(2)6Q% ()

where §W(.), 6Q%(-) are independent functions defined on [0,L) such that
dW(0)=86W(L)=0,6Q%0)=46Q*(L)=0.

It has to be emphasised that §W(:) and 6Q%(-) are L-macro functions due
to the first one from the afforementioned postulates.

Let us transform Eq (2.4) to the form which involves exclusively £-macro
functions. Following the line of approach applicd by WoZniak [3] we obtain

L L
/zw(z,t)éw"(:c) dr = /A!(a;,t)[élV"(z) + h:l'(z)éQa(z)] dr =

o

(p41)1 (p+1)1
~ [/ M(z,1) dz6W"(pl) + / M(z, OR(z) desQ*(pl)] =
0 pl pl

NU
L

3
I

(2.6)

~
|

1

[< M > (pL, )W (pl)+ < MY > (pl,1)8Q%(pl) ! =

]

0

[, 05W"(2) + T, (2,)6Q%()] da

o~

O\h 'ﬁ
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where M(-,t) and M,(-,1) are sufliciently regular L-macro funtions defined on
[0, L] which satisfy conditions

M(z,t) 2< M > (z,t)
(2.7)
My(z,t) X< ME'> (z,1)
for z € [0,L - 1]. . .
L-macro functions M(z,t), M,(z,t) will be refered to as macro-bending mo-

ments and hiper-bending moments, respectively.
Simiarly we also obtain

L

50~ t@yiste, 0] su(z) dz =

0

I

L
[0 = o@Wia,1) = ple)hs(2)@%z, 1) -
0

P-1 (P+1)1

[6W(2) + ha(2)6Q%(x)] do = Z[/ e, 1) daW (pl) +
=0 4

(p+1)I (p+1)

+ / (2, Ohalz) dz8Q(pl) — / p() dz W (pl, 0)8W (pl) -
pl pl
(p+1)! (p+1)!

- / p(2)ha(z) d2V7 (pl, 1)6Q(pl) — / p(@)hs(z) dzGP(pl, 1)8W (pl) —
g " (2.8)
(pt1)i

— [ @) ha@)ha(e) d2GP(pl, 0)6Q ()] =
i

= 3 [<F> (PLOSW(p)+ < Tha > (41,1)6Q"(p]) -
p=0

— <p> (pOW(pl,)6W (pl)— < phahy> (P1)Q*(pl,1)6Q"(pl))

L
~ /{[< > (2,0~ <p> W(z, 0|6 (2) +
0

< Tha> (2,0)= <phaly > G'(2,1)|6Q%(2)} da

In formulas (2.6) and (2.8) we have taken into account both the afforementioned
postulates and the properties of L-macro functions.
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On the basis of Eqs (2.4), (2.6) and (2.8) we shall introduce the following
macro-approximation of the virtual work principle

—/[M(z,t)aw"(z) + Ma(2,06Q(z)] d = Mo()6W'(0) +

+Mo(1)he(0)6Q°(0) — ML (t)6W'(L) — ML(t)hy(L)8Q*(L) —

~To(4)6W(0) — To(1)ha(0)6Q(0) + T1(1)§W (L) + (2.9)

L
FTo(0)ha(L)SQX(L) + /{[< [> (2,0)- <p> W(z,1)|6W (=) +

+[< fha> (2,)~ <pha hb>Q(zt]6Q )} da

Condition (2.9) has to hold for every independent and sufficiently regular L -
macro field §W(-), 6Q(-), such that §W(0) = §W(L) = 0,8Q%(0) = 6Q*(L) =0

It can be proofed that the reduction of a virtual field éW(-), 6Q%(-) to the
L-macro field in Eq (2.9) is irrelevant.

Hence using the well known procedure we obtain

M"(z,t)+ < f> (z,8)— <p> W(z,1) =0

(2.10)
M"(z, )+ < fha> (z,1)— <phohy> Ob(z,t) =0
Taking into account conditions (2.7) as well as the known interrelation
M(z,t) = = B(z)w"(z,1) (2.11)

where B(z) is the flexural rigidity of the beam, B(z) = B(z +1!),z € [0,L -],
and using the first of the basic postulates we conclude

M(z,t) = — <B> W"(z,t)— <BhY > Q*(z,1)
(2.12)

(z,1) = — < BR!> W"(z,t)— < BR'h! > Q*(z,1)

<

for =z € (0,L).

Eqs (2.12) constitute the interrelation between macro-bending moments
M(z, 1), hiper-bending moments M,(z,t) and macro-displacements W(z,t) and
correctors Q°%(z,t), respectively.

Eqgs (2.10) and Eqs (2.12) desribe the macro-model of a micro-periodic beam
under consideration and constitute the final result of the proposed method of
dynamic macro-modelling.
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Let us observe that for beams with the constant cross-section B(z) = B =
const, under the initial conditions
"Qb(z,t0) =0 Q(z,10) =0 . z€(0,L)

we obtain Q%(z,t) =0, for every z € (0,L) and ¢ € (to,1s) and hence Eqs (2.10)
and (2.12) reduce to the well known form. Thus we conclude that the correctors
Q°(-,t) describe the effect of micro-periodic beam structure on the behaviour of
the beam under bending.

Substituting the RHS of Eqs (2.12) into Egs (2.10) we obtain the following
n + 1 differential equations

<B> WV (z,0)+ < B> Q" (z,0)+ <p> W(z,t) =< > (2,1) 1)
2.13

< Bhy> W"(2,0)+ < Bhjhi> Q*(z,1)+ < phahs> Q*(2,1) =< fha > (x,1)

Eqs (2.13) describe the behaviour of linear-elastic beams with the micro-
periodic structure under consideration, the inertial properties of which are de-
scribed by the averaged mass density < p > and by the micro-inertial modulae
< phghy >. It has to be emphasised that the micro-intertial modulae < phghy >
depend of the small length parameter ! and hence the derived equations also de-
scribed the dynamic micro-behaviour of a beam. Thus, it is possible to analyse
the micro-vibrations taking into account the dispersion effects.

These effects can not be shown by using asymptotic methods of homogenization
(cf Bakhvalov and Panasenko (1984) and an extensive liste of references on these
problems], where terms of an order 0(!) are neglected.

The second one from Egs (2.13) does not involve the spatial derivatives of
correctors. It follows that the boundary value problems are related to the macro-
displacements W(-,t). At the same time the initial conditions have to be prescri-
bed both for W(-,t) and Q°(-,1).

The examples of applications of Eqs (2.13) will be given in Sections 3,4.

3. Eigenvalue problems

We consider the free vibrations of the straight elastic beam with the -
periodic structure. For simplicity we introduce only one micro-shape functions
h(:v) = hl(x).

From Eqgs (2.13) assuming f(z,t) = 0 we obtain

<B>W(z,t)+ <Bh'> Q"(z,t)+ <p> W(z,t) =0
(3.1)
< Bh"> W"(z,t)+ < BK'h" > Q(z,t)+ <phh> Q =0
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for = € (0,L), t € (to,ty5).
Egs (3.1) have a special solution of the form

W(z,t)=0
Q(z,t) = Aj cos ut + Aqsin ut

where A;, Ay are arbitrary constants and p? = %2. The positive constant

i is the free micro-vibration frequency.

Applying the method of separation of variables we are looking for the solution

of Eqs (3.1) in the form
W(z,t) = Wo(2)T(t)

Q(z,t) = Qo(=)T(1)

Hence we obtain the equation for 7(-) in the form

T(t) +w?T(t) =0

where the constant w is the free vibration frequency of the beam.
The solution of Eqs (3.3) reads

T(t) = Cysinwt + Cycoswt
Taking into account Eqs (3.2), Egs (3.1) are transformed to the form

< B> W{V(z)+ <BL'> Qi(z) — w? <p> Wy(z) =0

< BR"> Wy(z) + [< BR"R" > —w? < phh>] Qo(2) = 0

After defining
<Bh >?

< BW'L >
and introducing into Eqs (3.4) the micro-vibration frequency p we obtain

BT =< B> —

WiV(z) - K'Wo(z) = 0

< Bh'">
<Bur> [1 - ()]

Qo(2) = — wg'(z)

where the eigenvalue £ is defined as

(3.2)

(3.4)

(3.6)
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The expression (3.6) can be written also in the form

efl
wr= BT g B ﬂk‘*] (3)2 (3.7)
<p> <p> i

The second term of Eq (3.7) describes the dispersion effect due to the micro-
periodicity of a beam. For a homogeneous beam with the constant cross-section
Bl =< B >= B Eq (3.7) yields w? = %k“. If I > 0than g — oo and the
dispersion effect disappears.

The solutions of Eqs (3.5) are

Wo(z) = Djsinkz + Dycoskz + Dsinh kz + Dy coshkz

"y o2
Qo(z) = = <BW> k s=(Dysinkz + Dy coska — (3.8)
<BR'R"> [1- (2)]

D3sinh kz — Dy cosh kz)

Let the function Wy(2) satisly the boundary conditions for a simply supported
beam

Wo(0) = 0 W2(0) = 0
(3.9)
Wo(L)=10 Wo' (L) =10
In this case solution (3.8) reduces to
Wo(z) = D, sin mz”’
(3.10)
25pies () s
Qo(z) = 5 < ,>2 > > D sinT
Wm Wm —4(wm Befl
- (4) ﬂ/[(#) +1] - 4(e) &5

where m =1,2,... and Dj is an arbitrary constant and
(mrr)'-’ <DB>

wy = [ ——
L <p>

4. Steady state periodic vibrations

We consider steady state periodic vibrations of a beam. We assume loading of

a beam in the form

f(z,1) = €' F(x) (4.1)
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where & is the frequency of a loading process.
The response of the beam can be assumed in the form

W(z,t) = W(z)ei;‘

(4.2)
Q*(z,1) = Gb(a)e™
Taking into account Eqs (4.1) and (4.2), Eqs (2.13) yield
<B>WIV(2)+ <Bh!> Q% (z)- <p> 3*W(z) =< F > (z) (43)

< Bhy> W"(2)+ < Bhghy > Q%(2)— < phahy > &*Q*(z) =< Fha > (2)

where a,b take the values 1,2,...,m.
Let us consider a simply supported beam. The solution of the system of equ-
ations (4.3) can be represented by

~ = mnz
W(z) = W, si
(z) mzz:l sin —>
(4.4)
Kb\ N~ b . TATE
@)= 3 Qhein ™}
Series (4.4) have to satisfy the boundary conditions
W(0)=0 W"(0) =0
(4.5)
W(L) =0 W”(L)=0

Substituting RHS of (4.4) into Eqs (4.3) we obtain (after the simple calcula-
tions) the following system of linear algebraic equations

[<B> (ﬂ)"_ <p> Gf"]Wm— < Bhy > (%)ZQ; =2 KF>,

L L (4.6)

2 2
) W + [< BRI > = < phahs > G| Qb = = <Fho>m

mmw

— <Bhl> ( I

where

mnx

LF>»,= | <F>sin dz

O — =

dz

L
< Fh,>, = / < Fh, > sin 27%
0
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Introducing only one micro-shape function h(z) = hy(z), Eqs (4.6) reduce to

[<B> (?)4— <p> Gﬂ]Wm— <BR"> (mTW)ZQm = % <F>, W

2
— <Bh'> (%’3) w,, + [< BW'h"> — < phh> :ﬂ]Qm = % &< Fh>,,

The solutions of Eqs (4.7) are

2[(1-B) <« P> + 02 (m2)’ < Fhs
sl 0-5) - (- B

2

2[<Bh'> (52)" < F o + <p> w2 (1~ &) < Fh>,]

L <p>w?i <Bh"h"> [(1 - S—Z)( - :—’:‘) - (1 - EBZ)]

W, =

(4.8)

m =

where

Hence the resonance frequency equals

Wi Wi m\2 Befl
s = %J (S2) 41t \/[(7)2 S RETCS R

For an uniformely distributed load F(z) = F = const we have

<F>=F LF>n= —[1—( 1™
<Fh>=10 <<Fh>>m_0

Taking into account only the first term of both series (4.4) we recive

_— 4F( —ﬁ) -
T (IR S
~ 4F <Bh"> 1 T2 .

sin

Q=) = s —sin 22
zep>at|(t-5)(1-5) - (- &) - *

An alternative solution of Eqs (4.3) can be presented in the closed form. As-
suming as an example F(z) = F = const and taking into account the boundary
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conditions (4.5) we obtain solution of Eqs (4.3) in the following closed form
W(z) = {[[(sinkL+sinh EL)(1— coshkL)(coskL — cosh kL) ~
— (coskL — cosh kL)?](sinkz — sinh kz) +
+ [(1 — coshkL)[(coskL — cosh kL)? + (sin2 kL — sinh? kL)] —
— (sinkL —sinh EL)[(sin kL + sinh kL)(1 — cos kL) —
— (coskL — cosh ZL)]] (cos kz — cosh Zx)} [2(1 — cos kL coshkL) -

EL — coshkL)]™" = (1 ~ cosh hz b ———
(cos coshkL)] (1 — cosh l}<p>~2
(4.11)

< Bh" > k? F
AN w2 ~2
< Bh'"h >(1_P)<p>w

{[[(sin EL + sinh EL)(1 — cosh kL)(cos kL — cosh kL) —
~ (cos kL — cosh kL)?)(sin kz + sinh kz) +
+ [(1 — cosh kL)[(cos kL — cosh kL)? + (sin? kL — sinh? kL)] —
— (sinkL —sinh kL)[(sin kL + sinh KL)(1 — cos kL) —
— (coskL — cosh ZL)]] (cos kz + cosh%x)] [2(1 — cos kL cosh kL) -
(coskL — cosh kL)™' — cosh Zx}

where

w370 (012)

Beft _ ;)2
<B> ©

5. Final remarks

From the analysis presented above it follows that the proposed macro-dynamics
of elastic beam structures can be effectively applied to engineering problems. This
line of approach can be applied to more complicated dynamic problems as well.

Some of these problems will be investigated in subsequent papers.
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Makro-dynamika mikro-periodycznych belek sprezystych

Streszczenie

Celem pracy jest przedstawienie pewnej metody makro-modelowania mikroperiodycz-
nych sprezystych belek. Sposéb podejscia do problemu jest oparty na nieasymptotycznej
metodzie makro-modelowania zaproponowane) przez WoZniaka [3].

W niniejsze] pracy otrzymuje sie¢ réwnania ruchu dla prostej, liniowo sprezystej belki
o strukturze mikroperiodycznej.

Przedstawia sie¢ rozwiazanie dynamicznego zagadnienia wlasnego i drgan ustalonych
belki w ramach inzynierskiej teorii zginania belek sprezystych.
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