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The paper presents a method for determination of a phase transformation ki-
netics in cylindrial steel bodies with an arbitrary shaped cross-section. The
analysis is presented for a two—dimensional region, where the hea.t flow on
the edges of the region appears. The solution of the problem is based on
variational-difference method, being a combination of the finite element mr=-

thod and the finite difference method. The results are the basis for evaluation
of temporary ard residual stress distribution in self-cooling processes.

1. Introduction

The aim of this weork is to develop a numerical method for the analysis of the
kinetics of phase transformations in the hardening process of cylmdnca] bodies of
any cross—section made of carbon steel.

The object of calculations refers only to steel grades dxsplaymg C-shaped
T — T — T curves with a carbon content close to that of eutectoidal steel. The
computations were madefor different cooling rates (characterized by the din:en-
sionless Biot number Bi) as well as for different time intervals to achieve halfthe
full austenite into pearlite trensformation 7o 3.

The obtained results will be used in our further works for the estimation of the
distribution of transient and residualstresses appearing in the process of hardening.

‘We assume that the heat exchange in such a body occurs on the boundary
of one of the two dimensions of the field (thereby the dJscussed problem becomes
independent of variable z).

The determined field of temperature T(z,y,t Bi) will be the basis for the
kinetics of phase transformations analysis.

The authors (cf [1,9]) dealing with one—dimensional problems reported that
they have succeeded in obtaining an analytical solution in the form of an infinite
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series. In the analysis of the temperature field varying in time for an optional
planar field with the boundary conditions of another type (as it is in our work),
it is not possible to obtain an analytical solution. Therefore, we apply here the
variational-fiusite difference method being a combination. of the Finite Difference
Method (FDM) and a variational method [10].

The solutions are based on the experimental data of Lomakin (cf [2,3,4]) and
on the theory of Inoue and Raniecki [5], as well as on the model of Ericson and
Hildenwall [6]. An algorithm has been presented, being the basis for the computer
simulation of hardening stresses generation process.

The stresses propagation in the hardening process occurs due to the non-
uniform thermal expansion and the non—free change of the specific volume of the
particular structures and phases.

The (relative) volume of the element during the transformahon of austenite
into martensite, depending on the chemical composition of g steel and a number
of other factors, can be changedwithin the limits of several percent. During the
transformation of austenite into pearlite the element is subject to a slightly smaller
volume change, but this change is also comparable with the decrease of volume
due to the thermal contraction caused the difference of temperature equal to 1000
K. We have determined in our work the weight fraction of austenite, pearlite and
martensite, and we have accepted the thermomechanical properties of bainite as
being equal to those of pearlite. With the fixed distribution of temperature fields
and the weight (volume) fractions of austenite, pearlite and martensite we have
calculated the relative cha.nge of volume €T of the material assuming that the
phase transformations occur within the elastic range.

2. Basic analytical equations of heat transfer with phase
transformations

The problem of heat transfer consists in finding a temperature field satisfy-
ing the differential equation together with the accompanying boundary conditions
and the initial condition. As a result of this solution, we obtain a function of
temperature in the coordinates z,y, of the investigated point, time ¢, and the
dimensionless Biot number Bi, ‘respectively.

T = T(z,y,t,Bi) (2.1)
.
Bi= Xl

where @ is the heat transfer coefficient on the body surface, A is the coefficient
of thermal conductivity, ! is the characteristic dimension. This solution depends
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in parametrical way on the Biot number, representing the cooling rate and on
material properties that also depend on Biot number. This dependence expressed
by a non-linear equation and its solution generally requires the application of
‘numerical methods. Among the existing numerical methods we have chosen the
finite elements method. The investigated field was divided intoan adequate number
of elements and nodes and the function of temperature fields inside the elements
depending on the temperature of nodes was assumed.
The general form of the solution is the following one

T=) HT; (22)

"~ where: H is the shape functions, T; is the temperature at the ith node.

22, 224

Fig. 1. Region 22

Having in mind the application of the Finite Element Method to the determi-
nation of temperature field in the planar areas let us analyse the equation:of heat
transfer over the area {2 (Fig.1) in the form

o, 0T\ 8,87\ 8T ' =
3;( E) + %(AE) = CPW (2.3)
with the initial condition
T(z,3,1)|,_, = To(,9) (24)
and with the following boundary conditions
-—/\-qz =a(T - 1) at the boundaryds,
on
(2.5)
orT
1\3-; =0 .o at the boundarydf2;

where;, T§ is the initial temperature at the boundary 8f2;, c is the specific heat,
p is the density.
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We assume that Eq (2.3) with conditions (2.4) and (2.5) has an exactly one
solution. For the solutian to Eq.(2.3) we apply the variational-finite difference
method being a combination of the Finite Element Method and the variational
method. The first method is applied with respect to variables z,y, and the
second one to the time variable t.

In order to reduce Eq (2.3) to the variational one, we apply the Galerkin’s
‘procedure.

For this purpose we multiply Eq (2.3) by a function v € R!, and then we
integrate it over the area 2.

[ G050+ 05 lnisis = [ [ rotzar 29

rApplying boundary conditions (2.4) and (2.5) we obtain

// 8T3v aTa‘v)vdzdy-f-

s 3:: dy 9y
(2.7)

+// cp%f—vdzdy - / a(T ~ To)vds = 0
9 - ey .

Therefore, the solution of the problem (2.3) is reduced to the solution (2.7). We
look for the solution 7'(z,y,t) in the form

w
T(z,y,t) =.Z T[(t)H[(I, y) . {28)

The functions Hj(z,y) are the shape functions and they are the base of finite-
dimensional space V;,. They are explicitly defined by the fun.tions of coordinates.
They Lave to be continuous functions (also when passing from one element to
another) and their first derivative has to be defined and different from zero. Let
us note the important property of these functions within the element.
From Eq (2.8) it follows that
H; =1 for the i-th node
H; =0 for the remaining nodes.
As soon as we define the shape of the element and its corresponding function,
the further operations will be carried out according to the standard scheme. By
substituting the solution (2.8) into (2.7) and substituting for v = H; we obtain

(PHL0Rs | 0,38,
ET'(‘)// 52 0s T oy oy )Y
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w
aTi(t
+‘§ f.’t(—)// cpH Hidzdy — (2.9}
- 7]

w
) / oH Hyds + / aToHuds = 0
I=1 am N

with the initial condition
w ' H
Y- Ti(0)Hi(=,y) = To(z,y) (2.10)
=1 '

Taking in Eq (2.9) for k = 1,2,3,... we obtain a system of differential equations

ng%g +AT(t)=B
(2.11)

T(z’ ¥s t)|t=0 = TO(za y)

This system is solved by the application of differential a.pproximaf;ion over: time.
For this purpose we construct a mesh wy for [0,7] in the form

i w,:{t: t=nAt; n=0,1,..H, HAt=T} (2.12)
Accepting the following
Ti(nAt) =TP (2.13)
" the problem (2.11) is approximated by the following finite difference scheme

Trtl_m  pmHl g gm
: % At +,A 2 P
(where: T is fixed by the initial condition).
It is so called Crank-Nicolson scheme [10}. ;
To the diagonal elements A;; of the principal matrix A, we add the term
2-pV;(At), while the vector of constans elements B¥ are increased by the terms

Bf '+ Y AT : (2.15)
i _ '

8 (2.14)

where the summing up takes place throughout all non—zero elements of the ith
If the thermophysical properties depend on the temperature, we determine
them for the temperature corresponding to the half of the time step.

Following the procedural scheme according to the Crank-Nicolson method le-
ads us to the equation system in temperatures 7_}" solved at each time step.
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In the first step, after the differential division and the numbering of nodes,
we determine the indices of neighbouring points and boundary nodes. Then, we
conctruct the matrix of the system modifying only the entries of the principal
diagonal, and in the further part we construct the vector of constants.

In order to determine from Eq (2.11) the matrices A, B, C, occurring in Eq
(2.14), we must determine the integral expression over the area {2 (first and second
Eq (2.9)).

For the caculation of these integrals we transform the real elements of coor-
dinates z,y, into unity elements with coordinates £,7, and we use the standard
FEM procedure described by Irons and Ahmad [10]. The integrals are calculated
numerically using the Gauss—Legendre metod.

Let us analyse now the curvilinear integral over the boundary 812; (see Eq
(2.9)) .

/ aHHds  and / aToHyds (2.16)
81 8,

We assume that the boundary 382, is a regular curve, i.e. it can be divided into
a finite number of smooth arcs.

This division follows from the discretization of the 2D continuum into the
quadrilateral elements. The boundary 812; is defined by the subset i® of the
successive boundary nodes. '

if = {if,i8, 8 (217)

where: WB - indicates the number of boundary nodes.
Calculationg curvilinear integrals from Eq (2.16) we use the formulas

/ aH;Hyds = J aH Hyds + J aHHids + ... + / aHHds (2.18)

30 Fip Fp Boien
/ oTyHyds = J aToHeds + ... + / aH;Hyds (2.19)
am e+ WB—1'WB

For the calculation of the curvilinear integral of the form

/ f(z,y)ds (2.20)

the regular arc s is presented in the parametrical form

-z = z(r) y=y(r) -1<r<+1 (2.21)
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Then
+1
/ f(z,y)ds = / £ (=(r),9(r)) /2% + y2dr (2.22)
s -1

Let us analyse the segment of the boundary between the successive boundary nodes
- W1and W2, Fig.2. '

(Xw2, Yw2)

(Xw1, Yw1)

g
X
Fig. 2. Element boundary section

This section is parametrically represented

z(r) = Iwa " Zwr . | Zws +Zwy

2 2 (2:23)
y(r) pe Yws — !ler + Yws + Yw,
_ 2 I
In this case
: g L
[ Hawyis = 5 [ 1(=r),9)) Gz ) (2:24)
s -1
where '
G(2,9) = V(2ws = 2w )? + (9 = 1)’ (2.25)
Ay will be different from zero in the following three cases
(a) k=Wl I=W): :
(b) k=W1 {=W2 or vice versa
(c) k=W2 [ =W2
w2
Ay = / aHiHids (2.26)

‘ Wi
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Thus we have

(@  Au=G@y) / (1 = r)(1 = r)dr
l

() A= %G(:,y) / (1 = 1)(1 + r)dr (2.27)
1 H
(© A = 7G(z,9) _/1 a(1 +r)(1 + r)dr

We proceed in an analogical way calculating
Bi= / aHTods | (2.28)

This integral on segment W1, W2 is different than zero only for
k=WwW1 and k=W2
In these cases
1 41
Bw1 = 7G(z,v) / (1 — r)Todr
=1
(2.29)

+1
Bw, = %G(z,y_)/a’(l + r)Todr.
21

For the calculation of integrals (2.35) and (2.38) we use the Gauss—Legendre me-
thod of numerical integration. In this way, integrating along the boundary and
over the elements, we determine the system of equation coefficients

AT+ =B (2.30)

- The solution to Eqs (2.30) results in the required temperature field [T“'”] for
t = (n + 1)At in all nodal points of the analysed 2-dimensional area £2.
3. Basic equations of phase transformation kinetics

After determination of the transient temperature fields, we proceed to the
calculation of the weight fractions of pearlite p; and martensite m;, and the
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relative volumetric change. Below we discuss briefly the basic formulae necessary
for the formulation of the algorithm of the simulation of phase transformations
 acompanying the hardening process.
' As we know, the transformation of austenite into pearlite A — P has a dif-
fusive character. It belongs to the tra.nsformauon group of nucleation and growth
of [ )
( 7] In constant temperature T < T4 (T4 is the temperature of the end

of austenite transformation) the amount of transformation product

p1 (weight fraction of pearlite') grows in time until the moment when

the free energy of the steel element reaches the minimal value.

b. The speed of transformation p; = -?-} depends in an essential way
on the actual value p; and the temperature T. Within the tem-
perature range T < M, the transformation occurs practically of a
negligible speed, (M, is the temperature at which the martensitic
transformation begins).

¢. The significant preliminary plastlc strains and stresses affect the co-
urse of the transformation.

d. In rather a wide range of temperatures the nuclei appear mainly on
the borders of austenite grains. Therefore, the speed of transforma-
tion depends on the grain border size.

In the paper we do not take into consaderatlon the assumptions of ¢ and d

given above.
We are going to use the following dimensionless values
1] o (3.1)
s . Kt
i R

where x = A/cp is thermal diffusivity. :
In order to determine the weight fraction p;, we assume after Can (cf [8]) and
after Inoue and Raniecki [5] the model of isokinetic transformation

£ = Gi(2) #2,9,7) = [ (6@, 5,7)dr (3:2)
and 7
4 0 for 61> Ty
H(8) = { _ (3.3)
I"(91)-,-0.Is or 61 <Ta
where
61(5,5,r) = A7 BRI < (3.4)
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£(61) = [1 - exp(~76}%)] exp[-2.6(1 ~ 61 (3.5)

In Eq (3.2) both Gi(z) and f;(O) can be determined from the usual isothermal
time-temperature-transformation (7-T-T) diagrams [5].
We can determine the weight fraction at pearlite in each point of the area
= constat and at each instant 7.

From the analysis of the formulae for p, it follows that p; depends on four

dimensionless parameters
h= m(Bl, TA1 Tl, 7'0.5)
(3.6)
TA.=§—: ‘ Tl—% ,1‘0,5=.K—:g—'i

where T4 — is the temperature of the beginning of the isothermic transformation
of austenite into pearlite. T; - is the temperature of the least durability of the
mothermxc disintegration of austenite into pearlite, o5 is the time mterval of half
disintegration of austenite into pearlite at temperature T;.

The dimensionless parameters T4 and T, ‘accepted for different steel grades
differ significantly, therefore the calculations are done for the followmg data of
these parametres

T4 = 0.95 Ty = 0.75

The weight fraction of martensite is calculated from the formula
' my = (1~ py)in(T) 3.7)

where the function #1(T) is determined by the weight ﬁa.chon of martensite in
the case when the transformation A — P does not occur

i 0 for T> M, i
m = ' ' a0 R
1 my(T) for M,2T>T, (

In the above formulae, M, is the temperature at which the martensitic transfor-
.~ mation begins and T; is the room temperature. Inove and Raniecki [5] defined
the function my(T') applying the experimental results obtained by Lomakin [2]

=~ my(T) = (1 - a,)8(63) (3.9)
where ;
M,
61= 3= ;; (3.10)

#(6s) = [1-(1- e,)uy(l 93)][1—exp( 1763)]  (3.11)
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where a, is the residual austenite, symbol H is the Heaviside function, and M
"is the temperature at which the martensitic transformation ends. The function
62 can be expressed by dimensionless values in the following way

Ta - 6(5, i, ‘r)

| 6x(2,3,7) =~ (3.12)
where '
Foo M, r My
L= Ty=7 (3.13)

Hence, it follows that the actual content of martensite depends on seven dimen-
sionless parameters :

my = ml(Bi1 TA» 7-‘1 vTﬂ Tj, T0.59 ar) (3- 14)

Knowing the temperature distribution and the weight fractions of pearlite and
martensite, we determine the relative change of volume

& = p1(n — aiT) + mi(73 — @sT) + au(T - To) (3.15)

where a4 is the mean coefficient of the linear thermal expansion of austenite,
but a; and ay differ from the thermal expansion coefficients of pearlite and
martensite, respectively; although they directly depend on them. If a; = a3 =
ay = 0, then we obtain a simple model neglecting the thermal expansion of all
components. The parameters 7 and 73 are dimensionless constants depending
" on the carbon content 7, the initial temperature To, and the relative volume
changes accompanying the transformations of A — P (austenite into pearlite)
and A — M (austenite into pearlite), respectively :

y o

a = _%(1.01 + 0.037)10-3C-1 oy = 1,37‘-1-'10-3"0-‘
ay = 235‘%10'3‘0" o ‘%(_1.4‘2 - 0.567) (3.16)
yo = %(1.42 +0.219) | w=122.82+ 2,157 + 856 - 10~°T,
where Tp should be expressed in °C, and 7 is the percentage (Wt) content of
C (< [5])- -- B
Eq (3.15) in dimensionless quantities
T )
% N | § R = 12
¢ TaT Nn=oT 7= T
= _a - Qs
N al = — a: = N
a a,.
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depends on eleven parameters
e-T . S-T(Bi,TA, Tl) 70.5» TM Tf’ Qr, ‘_YI )‘72a ay, &2) (3-17)

In the calculations, for steel with 0.8% carbon content, the following experimental
results of Lomakin have been accepted

7 =044 ¥ = 0.71 i}
(3.18)
a; = 0.36 a; = 0.48

4. Discussion of the numerical calculations a@ritm and a numerical
example

The program of numerical calculations is written in FORTRAN 77. This pro-
gram consists of two parts. The first part calculates the temperature field varying
in time ©(z,y,t) for an optional 2-dimensional material area, which can be devi-
ded into finite elements.

The second part of the program refers to the analysis of the kinetics of phase
transformations and basing on thetemperature field ©(Z,§,7) determined in the
first part, it calculates the weight fractions of pearlite p, and martensite m;,
respectively, together with the relative change of volume eT._

The program is constructed in such a way that after the data collection, there
follows the linking of nodes and elements, and a control printout of the basic va-
lues like:physical and geometric parameters, mesh of finite elements, characteristic
temperatures. The field of temperatures 6(z,y, ) determined in the first part of
the program is stored in the memory for the second part to be used in.

Additionally, in order to speed up the calculations when some parameters are

chunged, the field of temperatures is stored in a binary file.
’ For the integration of some functions occurring in the connections of the ki-
netics of phase transformations, the numerical methods are applied (Romberg’s
method and the trapezoid method).

Two forms of the printout have been provided for the interesting values: the
full printout (the field of temperatures and p;, m;, £7), and also an abbreviated
. printout (only the values referring to the kinetics of phase transformations). The
relative change of volume was calculated both according to Lomakin’s theory [2,3,4]
and according to the modification by Inoue-Raniecki [5).

The purpose of the numerical calculations is thé presentation of the develo-
ped part of the computer system referring to the two—dimensional problems and
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. to the investigation of the influence of the basic physical and geometric parame-
ters of the considered object on the temperature field and the kinetics of phase
transformations.- )

A spline shaft has been selected (» = 8) of 0.22 m in diameter (n is the
- number of splines). We have assumed that the length of the rod was large in
comparison with the dimensions of the cross-section and that heat was carried
away uniformly along the whole perimetr of the cross-section.

Fig.3 presents a scheme together with the dimensions of thediscussed cross-
section and the division into finite elements. -

Fig. 3. Spline shaft scheme with the division into finite elements

The analysis of the spline shaft was carried out for the perimeter of the cross-
section. The analysis of the spline shaft cross-section was carried out for 1/16th of
the whole cross—section area, utilizing the repeatability of the shape and the course
of the heat exchange for the particular sectors. An isolation (no heat exchange)
was assumed here along all boundary elements, with the exception of 36-35; 35-39,
39-38, 38-37 — since these elements, referred to the free boundary contacting with

~ the surrounding. The division was made into 26 non—normalized finite elements
with 39 nodes. The same material parameters have been accepted here as in the
previous work [9], but the characteristic dimension was { = 0.11 m. '
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We have assumed that the analysed spline shaft was uniformly heated to the
temperature of 1053° K, and then suddenly immersed in a cooling medium. The
following basic parameters have been assumed :

w J ' kg

= = 800 —— = 7800—

A=40 K c= 800kg K p —~
a = 13300 —— ’K s = 0.1

Basing on prepared sets of data, a program of numerical calculations was excen-
ted and basing on the obtained results a series of plots were prepared.

Fig.4 illustrates the temperature distribution over the cross—section of the
spline shaft as the function of time, in selected mesh nodes of the finite elements

division.

8 Bi=28 T,=0/

o
o

o
&
|

)
N
|

Dimensionless temperature
.?

L
oo! 0.025 005 o’ s as 079 1 126 T.

Fig. 4. Temperature distribution in spline shaft cross-section

It follows from this figure that during the starting period of cooling, the tem-
perature suddenly drops, but in the core it is constant for a longer time. Hence,
during the first period of time, no transformations take pla,ce, the core is compres-
sed and the shaft surface is tensioned.

The dimensionless values 7 (Fig.6) at the nodes 16,30 ,34,38, start to decrease.
In this period, the thermal deformations practically do not play any role. So, after
the hardening process ends, the layers lying close to the surface are compressed
what is connected with the transformation of A — M (austenite into martensite)
since intensionless condition the volume of the element would increase.

The transformations A — P (austenite into pearlite) and A — M (austenite
into martensite), respectively (Fig.5), taking place in the second period of time
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M B=28  Tps0l
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T
— pearlite
08 -——- mortensite
o8 -
0¢-
021
|
Qo! 0025 005 079 o1 025 as 125
Fig. 5. Pearlite and martensite weight fraction in nodes
Bi=28  Tos=0l '
- T T T l T T

—~—— tomgokin

Q8| —~ —Hildenvsoll node no
-~

; |
ao! 0.635 ees o 025 (a5) 07

Fig. 6. Relative volumetric dilatation for spline shaft

899
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at the nodes 2,6,14, cause that the increase of the element volume is reduced
by a thermal shrinkage, because the boundary of the shaft is cold. The core is
tensioned. Finally, it must be noted that the diagram of the relative change of
volume presented in Fig.6 is not a working diagram. In the calculations, it is
assumed that the distribution of temperatures depends only on the dimensionless
Biot number Bi and for the carbon steel grades displaying the C-shaped T-7-T
curves in the form of letter C. Therefore,taking into account the wide range of
themperature changes during hardening (more then 1050° K), it is some kind of an
approximation. For a closer estimation, the real processess could be characterized
by a greater number of dimensionless parameters, but it would significantly extend
the present program of numerical calculations being complicated already.

Nevertheless, the present considerably simplified calculations indicate that the
method presented in this work has great potential possibilities to answer important
practical questions.
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Podejécie dwuwymiarowe w kinetyce przemian fazowych proceséw
hartowania stali

Streszczenie

W pracy przedstawiono metodyke analizy kinetyki przemian fazowych dla cial cylin-
drycznych o dowolnym przekroju poprzecznym. Ana.fizq przeprowadzono dla obszaru dwu-
wymiarowego, gdzie wymiana ciepla odbywa si¢ na jego brzegu. W rozwiazaniu oparto sig
na metodzie wariacyjno-réznicowej, bedacej polaczeniem metody elementu skoriczonego 1
metody réznicowej.

Uzyskane wyniki stanowis podstawe do szacowania rozkladu pél naprezen chwilowych
i szczatkowych w procesach hartowania.

Manuscript recesved June 17, 1991; accepted for print April 23, 1992



