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The failure process of a middle—thick plate in linear-viscoelastic constitutive:
_description with thevapplication of tensorial continuum damage mechanics is:
-analysed. The damage evolution is considered on the base of Litewka one
arameter model 14] In the numerical solution of -creep of the plate FEM"
as been used. e numerical investigations are focused on searching the.
corelation between the incubation time and the damage tensor eigenvalues.

1. Introduction

The safety of engineering structures in creep conditions can be determined by
referinig the current state to the critical state which is identified with failure. There
can be distinguished three periods of time in the damage growth course: time of

“the first macroscopic cracks in a point, time of the rupture in a cross—section
of a structure, and finally, time within which the structure transforms itself into
kinetically unsteable mechanism because of either a brittle hinges formation (in rod
structures) or brittle break lines (in surface structures). Proposals for safety factors
considering both the exploitation and rupture time in the viscoelastic description,
either coupled or uncoupled with da.mage growth, were presented by. Chnanowskx
et al. [1].

~ Only in a few exceptional numencal structure analyses in a multiaxial stress
state a rupture front propagation causing a deterioration of the load—carrying
cross-section had been considered. The examples of such solutions can be found
in beams under tension combined with bending [2], in disks [3,4] and plates [5].
That solutions show that relative damage front propagation time referred to the
time of rupture does not exceed tens of per cent. Such results partialy justify the
limitation of the solutions to the time of the first macroscopic failure in a point
(cf [6+8]). But it should be noticed that the time of failure front propagation in

]



784 s J.BIALKIEWICZ, A.OLEKSY

absolute value can be significant and its elimination from considerations is rather
a result of mathematical analysis difficulties.

Theoretical rupture model in the above mentioned papers (cf [2+8]) is based
on the damage growth Kachanov-Rabotnov scalar representation w [9,10] with
the critical value. w = 1 in case of failure. A three-dimensional stress state in the
damage evlution equation was considered after applying the Sdobyriev-Rabotnov
equivalent stress [10]. The constitative equations are formulated in two ways: in
the case of coupled theory with the consideration of net-stresses accounting for
the net area damage reduction and for uncoupled theory where nominal stresses
are assumed. : ‘

The aim of this paper is the rupture analysis of Mindlin plates with the appli-
cation of the Vakulenko—Kachanov [12] and Murakami-Ohno [13] tensorial da-nage -
" measure. In this analysis the one parameter damage evolution equation proposed
by Litewka [14,15] is assumed. The governing set of equations for the initially-
boundary plate problem beside the evolution equation expressed by a density of the
elastic strain energy consists of a failure criterion for the solid being damaged [16]
and the linear viscoelastic constitutive equation with the omittion of add.ltlona.l
strains caused by damage growth.

The numerical analysis will be carried out by the apphca.tmn of FEM in viscoe-
lastic solution and the Runge~Kutta integral procedures in the analysis of damage
growth. The solved numerical examples present bending moments and changes of
plate deflection during creep as well as redistributidn of damage eigenvalue ten-
sor on external planes of the plate with the indication of scratch directions. The
numerical solutions indicate that the critical components of damage tensor do not
reach unity.

2. Viscoelastic analysis

The plate material is modelled by the linear viscoelastic constitutive equation.
In the present paper this material is assumed as the quasi-elastic one. This as-
sumption implies the independence of the first u(f,7) and the second u(t,7)
Poisson ratios of the load history. Both ratios are then identical functions of the
age of the material (v(t) = u(t)) and the constitutive equation can be written in
the following form

E=L[T- - :(:)(t)trT-l] (2.1)
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where L[(e)t] is an integral operator
1 t
U = 550 [ic) + / [(o)r)K (¢, 7)dr] (2.2)
_ io

. The material functions G(t) and K(t,7), assumed in Eq (2.1), describe the ageing

effect and show how the load history affects the current state of strains (K(t,7)).

Further considerations will be based on vector notation of the stress T and strain

E tensors. According to the assumptions of the Mindlin—Reissner plate theary [17]
vector stress and strain functions will be written down after the bending

OF = [02s: Oy, Oy (2.3)
€f = erstmmtn] = 5[00siOi3 00+ 6,0)]  (29)
and the shear states ’
0] = [0as, 03] (2.5)
€] = [exnitpa] = %[W.- +6:50,+ 6] (2.6)

~ will have been separated. The variables z, y are rectangular coordinates in the
plane of the plate and z is the thickness - direction coordinate measured down-
wardsfromthem:dplane;wmthemdphnednpboementnd 6, aad 6, are
the normal rotations in the zz aad yzphnes,respectxvdydwewbending.h-
cording to the assumptions of the Mindlin plate theory normals to the midplane
bm&immtmmm@thtnanmﬂymmalwthemdﬁme
-after deformation. ;
nemppmdthephtenmﬂymdbytheamﬁmmdmﬂe“
aolntrmwmbemmdo-tmesublshed,dmetemtsdume t; by the step
At
t; =to + 1AL for i.—.'o,l,2,...,n (2‘7)

where 1g is the instant of loading.
The constitutive equation for each discrete instant of time, after substitution
(2.3)+(2.6) can be written in the form

er(ts) = We(t)or(t:) | (2.8)
es(t) = Ms(tos(ts) (2.9)

_ In case of statical bouldzrywndibmmdepe.dentdhme, theﬂen‘bﬁtymama
l;—(t,)mdlls(t.)uemlt_:pﬁed by the integral operator (2.2) computed out from
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the qnity :
T —¥(t:)
Nr(t:) = 1 1+v(t.) 1+v(¢.) 0 '[1+jK(t- r)dr] (2.10)
)= 26() 1+u(t,) 1+v(t) T )
Ns(t) = 5705 E ‘1’] 1+ ! K] (211

Applied in this solution the displacement method will require using the inverse
(with respect to Eqs (2.8)+-(2.9)) constitutive equations '

op(t) = Dp(t)er(t) (2.12)
os(t;) = Ds(t)es(t;) | (2.13)

In this purpose for each fixed instant of time the flexihility xﬁatrixes inversion will
be carried out

' Dp(t:) = Np(t) ™ Ds(t) =Ns(t)™ - (214)

It should be noticed that the transformation of Eqs (2.8)<(2.9) into an inverse
form (2.12)+(2.13) in linear—viscoelastic formulation is linked with the necessity:
to indicate the inverse of the integral operator to (2.2). The analytical form of this
operator is defined by the resolvent function R(t,7) which is the solution of the.
integral equation being a relation between the kernel K(t,7) and resolvent R(t,T).
A procedure of the flexibility matrix inversion (2.14) is -applied in the present
calculations considering the possibility of uniform data preparation (practically in
cases when the a.na.lytlcal form of the kernel is related to the numerical form of
resolvent).
: In the numerical solution of creep the plate is dlscretlzed by 9 nodal izopara-
metric elements of "heterosis’ type, where the shape function is interpolated by the
Lagrange’s formulas. For the numerical volume integration the Gauss nine point
quadrature was applied. The details of the algorithm including the conditions for
numerical stability and accuracy can be found in monography [18] (Chapter 6).
The results of creep analysis in course of the damage growth will be presented
for the plate material which properties in non-damage state are modeled by the
kernel "

K(ti,7) = (1_ &) |-t -7)] . (2.15)

The analytical form of kernel is related to the creep process limited by asymp-
tote parallel to the time axis. The material constants taken in description charac-
terize: the instantaneous elastic response E, relaxation n and increase of strains
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caused by creep H. The obtained here results of the numerical solution stresses
after transforming to the principle directions are the entrence data for the analysis
of the damage process presented in the next paragraph.

3. Damage model

An analysis of a plate damage will be carried out by the application of an one-
parameter tensor model in continuum formulation proposed by Litewka [19]. The
evolution equation formulating the dependence of the damage rate tensor 3,Q as
a function of a modified stress tensor * can be taken in the following form

3.0 = C[ 2utr2 +l+v ‘,+

= —-—-—2( Ty Emﬂo] (3.1)

where C is a temperature dependent constant of the material. E and v are also
temperature dependent Young modulus and Poisson ratio for undamaged material
whereas 8 and o are deviator and tensor of stresses, respectively. The magnitude
D denotes damage tensor which principle values are defined by the formulas
Sei . :
D= — for i=1,2,3 (3.2)
Sk . »
where S.; and Sy; stand for the respective crack and ligament areas on the plane
orthogonal to the principle directions z;. The relation between principle values
of both damage tensors D and Q are related by
2; .
D; = i—o (3.3)
In modified form of the stress tensor o* the principle compressing stress compo-
nents are replaced by zeros, whereas the tensile principle stresses are left unchan-
ged.
' A damage in a particle identifies with an instant .t, in which the stress vector
(in the 5-dimension space) rea.ches the surface of a failure criterion for the solid
being da.ma.ged
Citr*o + Cytrs? + Cstro®D = o? (3.4)

where Cj, C; and C3 are material constants dependent on the temperature and
the state of damage growth process. On the other hand o, is also the temperature
dependent ultimate strength of the undamaged material. The constants €, Ca
and Cj3 can be determined after the application of Eq (3.4) to three different states
of stress: two of uniaxial tension in the perependicular principle directions 1 and
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2 and one of equal biaxial tension. These considerations result in three equations
with respect to the unknown C; (i =1,2,3)

2 Oy \2
G+ §Cz + D1C3 = (E)
) )2 :
Ci+5Ca+ DoCs = (=) (3.5)
02y
2 Ou\2
4C1 + §Cz + (D1 + D7)Cs = (E)

where the ultimate strengths in the uniaxial o014, 024 and biaxial o}, states can
be computed by [20]

O1u = Oy = (1 — 1)0y -
(3.6)
09y =(1 - ﬂg)au

The numerical analysis of the plate damage process will be associated with the
bending state (2.3) in the present paper. In the considered plane stress state the
tensor evolution equation (3.1) is written in a form of a system of equations in the
principle stress directions

o0 = [A+ By ( L ;n%%)]kaf

1-2
' (3.7)
0,02 = na‘r-ol
where
o2
m=—
(41
A=1-dvm+201 +20)m? — 4vm® + m*
B =2 — dvm + 2m? (3.8)
C
*= i

Having in mind the definition of the modified stress temsor o¢* and assuming
a1 > 0 in the second damage evolution Eq (3.7) it is needed to consider

: 39

m for o< m<1
n=
o for m<0

In the plate particles, where both principal stresses are compressive the rates of
damage growth (3.7) are equal to zero (9, = 8,92; = 0).
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The solution to the set of Egs (3.7) will be investigated in fixed discrete point
pattern on the upper and the bottom plate surfaces, respectively. Data indicating
the value of the principal stresses are brought by the viscoelastic plate solution
for the assumed uncoupled model of analysis, where in the physical Eq (2.1) the
influence of the damage on the deformation increase has been omitted. The Runge-
Kutta integral procedures have been applied in the solution to Eqs (3.7) where the
material was considered as being undamaged in the initial state

Ql(to) = Qa(to) =0 (3.10)

The integration of Eqs (3.7), for the assumed discretisation of the time axis
(2.7), is carried out separately in each of the established points of the plate up till
the instant t.(z;), in which the damage criterion (3.4) is fulfilled. This criterion,
in the considered plane stress state including the conditions defining the constants
Ci (3.5) is presented as [14]

ﬂﬂl m
1-—- n.Ql v

2 2 Ou\2
(1+2m+m’)01+§(1—m+m’)cg+(1_‘Ql+ 2)Cs=(a—)‘) (3.11)

-2
(1 - .Ql)zCl + 5(1 - .01)202 + (1 - .01)0103 =1
(1= n2)Cy + 2(1 —n2)Co+ (1= a2 Cs=1  (3.12)
41 - 2 )C + §(1 — 2)Ca+ 21 - 2)UCs =1

The time of damage t, in the point z; of the plate is adequate for the principal
value of damage tensor 2; < 1. The state of the damage growth in the analysed
‘points of either the upper or the bottom surfaces of the plate is described by the
principal value functions of the damage tensor. For these functions the variables
assumed in the middle surface are taken as independent. The numerical analysis
of the damage growth — after appearance of the first crack - gives informations
related to the directions of crack propagation and the eigenvalue of damage tensor
at the damage front.

4. Damage propagation

The results for square plate with uniform distributed load at intensity of
g = 0.15 kPa will be given here as an example. The kinematic conditions are
defined by simple support along the edges AB and BC as well as by restrain
with a possibility of a vertical displacement along the edges CD and DA (Fig.1).
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In this solution a plate of a constant thickness A = 0.02 m and a side length of 0.5
m is considered. The constants that describe the viscoelastic properties of the plate
material are physically interpreted in paragraph 2: FE = 0.12 MPa, H = 0.06
MPa and » = 0.47. Except for that, the damage process course is conditioned by
the parameter value C = 5.97-10~17 and the ultimate strength of the undamaged
material o, = 288 MPa. The values of the constants considered here correspond
well to the description of the carbon steel behaviour at the temperature of 540°C.

The analysis of the damage growth process in time is connected with the ne-
cessity to integrate the set of ordinary differential Eqs (3.7). In this purpose the
Runge-Kutta procedure of the fourth order has been used.

The functions of the midplate deflection are presented.in Fig.2. The diagram
in Fig.2a shows the immediate elastic deflection at the load instant fo = 0, while
~ Fig.2b shows the function of the midplate deflection at the instant ¢, = 12000 h.
The deflection increase course in time is noticeable in Fig.3 where the change of
the midplane deflection in the point D is presented.

The course of the damage process development is conditioned by the value and
the distribution of the cross-sectional forces. The mathematical description of the
damage growth is linked with the principal directions of the stress matrix. That
is why the diagrams of bending moments have been transformed into principal
directions in each of the points of the midplane. The functions of the principal
moment distributions (maximal and minimal) are shown in Fig.4a and 4b. The
localization of the first macroscopic cracks is linked with the places where the
- maximal absolute value of bending moments appears.

The process of the damage evolution is illustrated in Fig.5a-+5c. The damage
tensor eigenvalue distribution f2; at the instant ?, when the first crack occured
(point D: {2{1) = 0.57, ) = 205.6 - 10%h) is presented in Fig.5a. The damage
concentration in neighbourhood of the point D indicates the development of
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the fracture propagation. The chosen stages of the damage process are shown
in Fig.5b and 5¢ where simultaneously consecutive upper indexes. of the damage
tensor eigenvalues 0(') (i = 1,2,...) point the actual localization of the rupture
front. As it can be seen from the distribution of the damage tensor eigenvalues
the development of the failure is associated with the growth of principal values of
damage on the rupture front. If the first crack at instant t") = 205.6-10%h (point
D = 1, for taken discretization) corresponds with the eigenvalue .Q(l) = (.57 then
at instant t(s) = 720 - 103h, when the rupture front reaches point 6, the failure
proceeds at .(2(6) = 0.76. :

The influence of the load ¢ on the damage _eigenva.hio .(29) at the instant
of the first crack (point D in the external plate surface) is shown in Fig.6. The
results of calculations indicate here that the magnitude of the damage principal
value will increase when the load ¢ is decreased. The dependence of the eigenvalue
0{1) on the cross-secticnal forces becoming changeable by the side plate dimension
(for ¢ = 0.15 kPa) is presented in Fig.7. Analogically to the results of calculations
presented in Fig.6 it is seen that the decrease of the critical value .(29) is connected
with the increase of the plate dimensions.

The dependence of the time of the first macroscopic crack on the load ¢ and
the plate dimension a are presented in Fig.8 and 9. Both diagrams imply the
conclusion that the increase of the cross—sectional forces (caused by the increase of
the useful load ¢ as well as the side plate dimension a) leads to the shortening of
the time of the first crack. This remark together with earlier presented numerical
results of computations (Fig.6 and 7) lead to the conclusion that the critical values
of damage tensor are closely connected with the time of rupture process. The elon-
gation of the damage cumulation time up till the instant of the first macroscopic
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crack leads to a higher principal value of damage tensor. In spite of this all the
analysed numerical examples prove that these values are considerably less than

one (f2; =0.5+08).

20
16 -
)
4
10 4
[ . —
0.860 os7 0.500 0.025 0.760,
s [m]
Fig. 9.

5. Final remﬂﬂu

The experimental data and the results of theoretical investigations set up in
Ref. [14] confirm the validity of one parameter model continuum damage mecha-
nics applied in the presented above creep rupture analysis of the plate. Instead
of the linear - elastic material model with influences of damage on strain rate the
linear viscoelastic constitutive equation has been taken. After comparing both
mathematical formulations it can be seen that the replacement of the constitutive
description has no influence on the theoretical prediction of the first macrocrack
time and afterwards the rupture front propagation.

The main considerations in this paper have been focused on the damage tensor
eigenvalues at the rupture time. These magnitudes, according to the expectations
(cf [14]), do not reach unity. However, it should be noticed that the principle
values of damage tensor at rupture instant are conditioned by the incubation time
interval. In structural components this time interval depends on the value of the
cross-sectional forces. Computed ekamples show that the increase of incubation
time in fixed point of the structure, caused by decrease of external load (or dimen-
sions of the plate), has the influence on increase of the damage tensor eigenvalues.
As it has been pointed out in the preceding paragraph these eigenvalues do not-
attain umty
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Tensorowa analiza zniszczenia plyt lepkosprezystych

Streszczenie

Analizowany jest proces gniszczenis plyty sredniej grubosci w liniowolepkosprezystym
opisie konstytutywnym g zastosowamem tensorowego modelu kontynualnej. mechaniki
uszkodzen. Ewolucja zniszczenia rozwazana jest w ramach jednoparametrowego modelu
Litewki [14]. W rozwiazaniu numerycznym pelzania plyty postuzono si¢ MES. Badania
numeryczne skoncentrowano na poszukiwaniu korelacji pomigdzy czasem mkubaql i war-
toéciami wlasnymi tensora uszkodzen.
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