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In this paper the method of analysis of internal resonance in the system of
rods under vertical kinematic excitation is presented. The elements of the
system are connected with articulated joints. The couplings of elernents of
the system through internal longitudinal forces, which are the parametrical
ones are taken into account. e equations of motion are obtained from
the Lagrange’s equations and the harmonic balance method is applied. The
small nonlinear forces connected with damping are necessary to get the stable
amplitudes of vibrations. The considered problems may have the practical
significance for the paraseismic phenomena when the weak excitation may
couse the big effects because of the autoparametric resonances:

1. Introduction

In the papers of A:D.S. Barr [1,2,3] there were compiled the examples of pro-
- blemis connected with a phenomenon of parametric resonance in the systems of
beams or rods which were kinematically forced. The phenomenon was analyzed
in structural elements placed in the systems motion of which was determined. In
many cases the resonance of autoparametric kind occurs due to the coupling of

elements. For instance the system presented in Fig.1, analyzed Barr [1). Thesy- = -

stem is made of two beams connected stiffly. Transverse harmonic load of angular
frequency  f2 acts on the horizontal beam. Therefore on the vertical beam perio-
dic, axial load acts and plays the role of parametric excitation. If 2 = 2w, (where
w, is the natural angular frequency of vertical beam) the dynamic instability and -
autoparametric resonance occur (cf [4,5,6]). : g ;
A matter of this paper is a similar problem but.in the system of three rods -

(Fig.2). Transverse, symmetrical vibration of the system is considered. The cou- -

plings of the rods through internal longitudinal forces are taken into account. The:
longitudinal forces are the transverse forces at the ends of neighbouring rods. The
system is placed on a verticaly moving support, moreover the external harmonic
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Fig. 2.

load acts on the horizontal element I. This load may occur due to machmes or .
another devices acting in engine room.

The coupling has the autoparametric nature. The analysis of these problems
in systems kinematicaly excited is important. Kinematic excitation of buildings
and structures occurs for seismic or paraseismic excitations. The latter can be
sometimes controlled, in terms of the possibility of evalution of their effects. So-
urces of paraseismic vibration can be: motion of vehicles, running of machines,
shootings in quarries. Vibrations of support of buildings or structures gives a ki-
nematic excitation. The response depends on dynamic properties and character of
structures. The structures vibrate longitudinally and transversaly. First one can
calculate inertial forces connected with the kinematic excitation. '

In this paper we confine ourselsves to the vertical vibration of system of rods.
Such system is an essential element of many buildings and structures e.g. engine
rooms. Internal couplings between rods are important and are taken into account.
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2. The model and the equation of motion

The analyzed system of rods is presented in Fig.2. The horizontal rod I is
connected by means of two articulated joints (points A and B) with two identical
elements II, stiffly connected with the support (points. C and D).

We assume: the rods are prismatic and of square cross sections, the deflections
of the rods are small, the elements are made of the Kelvin—Voigt linear viscoelastic
material. The following notation is used: I}, /2 lengths of rods, mjy, mz linear
mass densities, E,, E; Young moduli, I;, I; cross-sectional moments of inertia.
The couplings of the rods through internal longitudinal forces S; are taken into
account. The transverse harmonic load acts on the horizontal element I. The
system is placed on the vertically moving support and the function z(t) repre-
sents. Transverse displacements are w,, w; and longitudinal displacemets are
" 1, u3. The transverse, symmetrical vibrations of the elements of the system are
_ considered. Because the exact description of analyzed vibrating system is difficult,
the approximated method is used. We propose a certain model of the system of
vibrating rods. The system vibrates in such a way that in the points of articulated
joints the elements I and II are separated and the displacements of the ends of
elements are small and following

: l.
:-%/ 3':: i
o .

'The rods are coupled with forces S; (c = l 2) only Equatxons of motion
are obtained from the Lagrange’s equations of the second order. Any external
loadings, internal coupling forces, damping forces and non-linear forces are taken ,
into account by means of corresponding generalized forces. - »

First we consider the vertical rod placed on the moving support (Fig.3). Asa
- result of motion in dxrectlon of z axis — the longitudinal connnuons load actmg £
on the rod occurs T gt Lot

e ' Syphe ol Rl ' ;

_ n(z,t):-—mz:ze— A : (2.1) Gy

where :
z = ysinwt

The virtuallwork of n(z,t) on the virtual displacement u(:ﬁ,t) i§

6L = / n(z, E)ou(z, t)dz 2.2)
J .
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Fig. 3.
where u(z, t) is determined by the following formula

u(z,t) = %/(g_?)zdf ) s @3

We assume that the transverse displacement w(z t) can be expresed in the ap- .
proximate form

w(z, 1) = X(2)T(2). - Y |
" According to Egs (2.3) and (2.4) the expression (2.2) takes. the form

i z -
—m3 / dz / ) dET6T = Q,116T (2.5)
0 0 .

where Q.17 is the generalized force coresponding to the longntudmal load gvenera.ted_
by harmonic vertical dxsplacement of support

z
o [0 [(OXN2 e o
Quir = ~miT / @ [(Ge) d=-6r @9
] 0
In the above formula the notation G is introduced

G=m oj dx / (%X)’ae ’ (2.})
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When at the end of vertical rod the concentra.ted mass M is placed the generalized
force is

Qurr = —MET/(%%()zdf
0

Next we consider the vibration of horizontal rod I. On each element of this rod

" acts the force .
dP = —myidz; (2.8)

generated by the harmonic vibration z(t) of the support. We calculate the virtual
work of this force on the virtual displacement §wy

§L = —]mlizswldzl = - /m12X1(31)6T1d31 = Q.r6T (2.9)
0 0 - .
So one gets the following formula for the gex_xera.]ized force Q.r
. 1
Qa1 = —mli‘/ X1(zl)dzl' = ~G% = Gyw? sin(wt) (2.10)
0 .

where
G= my / X(zl )dzl

In the considered system we take into account the mternzl friction and the damping

forces connected with the rates of displacements #; of the artlcula.ted joints A

and - B (so called non linear damping). g
- -Coresponding generalized forces are (cf [7,8,9])

Qp; =% / L)X @:)daili = DT; - (211)

where .

D. =0 [ I (z.)X” (z.)dz
2 nl

and the genera.hzed forces corespondmg to the forces P; (i =1,2) connected. with
displacements u; of the articulated joints Aand B are :

R=aSi=-ks . (@)

- where k is the coefficient of nonlinear damping.
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The generalized forces connected with (2.12) are
y .
Qas, = —k{ / [Xi)] dei} 17 = ~E:TT? i=1,2  (213)
0 e

where

B= i / [xiwo] dai}’

On the base of the Lagrange’s equations (cf [7,8,9]) we get the system of differential -
equations, where the periodic longitudinal forces §; are taken into account. The.
coresponding generalized forces connected Wlth S; are’

Qs = E2hX{(h) / [x;(-zl)]’-dzm(t)rz(.t)
0 .

i
Qs, = E1h X{'(0) j [Xé(zz)]zd_zzTr(t)Tz(t)
0

. The system of differential equations is
ATy + BT, - CTiTy + DT + ETYT? 4+ G% = I sinwt

| _ . (2.14)
Aj:'g_ + ﬁTg +CT Ty + DTg + ETszz + GETQ =0
The constants which appear in Eq (2.14) are as follows
[ : ' ' [ ° ’ )
A= [m(e)Xier)de A= [ ma(es)Xi(a2)das
0 0
! . hh
B = ExL X}'(l3) / (XN%z;, = B=E / (X3)dz2
0 0
Y ’
C = ExhryX2(la) / (X1)2dz, G = By[LX™(0) / (X3)2dz2
0 (2.15)

D, D, E E according to Eq (2.11) and (2.13).

G, G . according to Eq (2.10) and (2.7)

i
r= /‘7_1X1("71)d11'
0 3
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- where Dy = D, Dy = D, By =E, E; = Eand 7 denot&s the amplitude
 of external excitation whereas <+ is the amplitude of kinematic excitation. In
comparison with the previous papers (cf [7,8,9]) devoted to the internal resonance
phenomenon the two new constants G and G connected with the kinematic

" excitation appear.

) Because of the assumptions that the coupling has a httle influence on the
* modes of transverse vibrations, these modes are obtained as the solutions to partial
dlﬁ'erentla.l equations describing the transverse vibrations of the seperate rods;
solvmg the proper boundary value problems one gets

Xy(z1) = sin Lo

h (2.16)

Xz(xz) = —com\l [smz\l— - smhAi— —tan); (cos 4\1—-— — cosh A== )]
where \; = 3.9266. Beca.use our further considerations are confined to the main
parametric intérnal resonance which occurs when the following relations hold
Wor =W Woz = o1

the eigenfunctions for the first elgenvalues were used. Calculating tlie'integrafs in
relations (2.15) we get

A = 0.5000m, A = 0.490hm,

B= 48.71E111% | . B= us.sf,t,ll,

R o .—17_2.8E111-'.15ll;. R ;)0.48951_'_117,1— |
R .

D= 48.7111'71—15 o 11'8.81,1;,1

e o _[1. el P l%

E= 24.35&% : : E= 3399&%'

. - &
G = 0.6366L,m G = 2.2836m,

Next we consider an internal resonance in the system of rods described by the
set of ordinary differential equations (2.14). In modificated form the equations of
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motion are
. : (64 D. E_. G ny ., i
Tx 'fmet = Tng ATI ATIT + (Aw 7+ P ) sin(wt) o
f‘g + UggTz = ‘--'A.Tng - -Tz' - -TgTzz + -w2‘7 sin(wt)Tg

A

here

{ &

B
wor = \[H woz = \/:

Solving Eqgs (3. 1) we assume that we seek only the for non—zero real solutions
which we analyse. The second equation in the set (3. 1) has also trivial solution
Ty = 0 which is of no interest to us.

We introduce the following notations

C D. FE,.
A= ZT2TI - 'Z'Tl - ZTle
F= —-C-'-Tng - 2T2 - ETQTQ -C-;-w 'y-n(wt)Tg
A A
(3.2)
m= ( ) sin(wt)
p2=0
Now we introduce the complex variables U, and V, (s = 1,2) as follows
LR
’ (3:3)
L T, =2V,
WO:
Then the equations of motion (3.1) take the form
U ~ jwo,U, = il (F + Po)
(s=1,2) 3.4)
1 .
T (F, +.)

where

' c . D,
(U1, N, 02, 3) = 2(Ui + V)(Uz + V) - iwor = (U1 - V1) -
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[+ @+ %y
(3.5)
: ¢ . D
Fy(Ur, V1, U2, V2) = —I(Ul + W)Uz 4+ V2) - W'X(Ul -W)-
E G
[14+ F@ + VaP] + 0 1(Us + Va)sin(wt)

We analyse the steady state of internal resonance with the external hamonic load
acting on element I. Then the following relations hold

; wo 2w wog %wm (3.6)
So we seek for approximated solutions to Eqs (3.4) in the form
= At Vi = Afe~ivt
3.7
Ua= Age T Va = Aje—'%*

- Inserting Eqs (3.7) into (3 4) and equahng coefficients at proper harmonics we get
equations.

[2(wm - w) +1——(1 + A;A‘)]Al = -——-[ .I..} 5
(3.8)
[Z(wm w)—l—-(1+ ZAA )],4*=~.___[A -1‘1]211

From Egs (3.8) we get the formula for the quantity z, = A;A} which is pro-
- portional to the second power of a.mphtude Ry (R; = 2\/2171_). After some’
mmngemmts one gets e

'va;1+bz,+m+dl=o'

4 whm_"

=@ o=+ ) (39)
; b=2 ﬁf d= - %Az(Gw7+P1)
On the other hand from the seccmd and -fonrth eqnanons of the set (3. 4) we get
bl 50 fana))n= L 53- Gal s
: (3.10)

[2(<wm-%’)— ,,(1+~A2A:)]Az——[ $1a-Sai)a
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After some transformation and taking into account the relation

1 Men-w)(§etr+ )
Bwor (g, ~ w)? + (0)2(1 + ,’_.*’,AIA;)2

A - A= (3.11)

one gets the following formula for the quantity zz = A243 wh:ch is proportlonal.
to the second power of amplitude R,

aa:2+bzg+c=0

" where
“alom-3)+ (@) - GGV @i @
Gy wa-w)(ftr+G) }
AT W g —w) + (32)2(1+ Ea,45)"

4. Numerical calcuiatioﬁ and results

We assume that the rods are made of steel and are of square cross~sections. For
calculations the following numerical values of parameters and material constants
are adopted: the coefficients of internal damping m 2 € {1-10%1-108,1-107}
[Ns/m?], the coefficients of nonlinear damping * € {1-10%,1-10%} [kg/s], the
cross—sections sides ay = a2 = 610”2 [m], the length of element I equals /; = 8
[m], the natural angular frequency of Iis wo = VBJ/A = 14.47 [s7!]. The
remaining constants are the same as in [9].

The sizes of rods are selected so that the static strains caused by their own
weights are so small that one can employ the linear geometric theory. We can
change the value wgz/wo; (the tuning) by means of changing the length I3 of
element II, so that

o2 = 0.50(4.’01- 12 = 14. 14[m]
wo2 = 0.40wg; _12 = 15.81[m]
woz = 0.60wn I; = 12.90[m] (cf Fig.5)

In our calculations the value of amplitude of kinematic excitation is
7 €{0.1 [m], 1 [m]} - 50 that it is many times greater than the amplitudes coming
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~ from the real paraseismic sources of vibration. These values of amplitudes empha-
size the existance of phenomenon connected with the specifisity of the modél. The
~ results are presented in Fig. 4 + 7 for different values of the tuning. On graphs
“the plots of the amplitudes R;(w) for the horizontal element I as well as the
. amplitudes Rj(w) for the vertical elements II are presented. On the element IT
the parametric excitation ‘coming from the vertical motion of the support acts (cf -
(3.1)).
" In the figures the parametric resonances in element IT are conspicuous. From
the analysis of equations of motion (3.10) we can see the reason for adding the
non-linear damping. For k = 0 we get only the trivial solution of to Eqs (3.10).
For k # 0 we get non-trivial steady response of the element II in certain interval
of w near to wq; and this response is typical for parametrically excited: systems
(cf Fig.7). In the case of non-linear damping the resonance curves are stable (cf
[11]). One can see how the externally excited systems tuning into the internal
resonance are close to the systems parametrically excited.

Analysing the results one can distinguish two kinds of resonance ¢urves. The
first kind — when the kinematic excitation Gvyw?sin(wt) is greater than the har-
monic load I sin(wt) and the second kind when the harmonic load is greater than
the kinematic excitation. The results depend on the value of damping coefficients.
For Gyw? > I and for big value of damping the amplitudes are presented in
Fig.4a and 6. Their patterns are identical with those presented by Osinski (cf
[12]). The amplitude of element IT is non-zero in the large interval of frequencies
near woy. For Gyw? near I the resonance curves are presented in Fig.4b and
5 (cf [12]). In this situation the amplitude R, is non—zero in the smaller interval
" of frequencies. We point out that on the above ﬁgnres the dashed lines represent
~ non-zero resonance amplitudes whxch are not taken into account because of the

relatlon (3.6). :

8. Conclusion_s.. o

In the present paper the internal resonance in the system of three rods: placed
on the moving suppori was considered. The internal interactions between neigh-
bouring rods were taken into-account. The considered problems may have the
practical significance. The system is the typical element of many devices and con-
structions. The analysis of such object under kinematic excitation may have the

essential significance at the study of paraseismic phenomena. The fundamental o

problem is to choose the appropriate model of the described object (structures,
buildings, mechanical devices, mechanisms). The model should include some im- -
portant pm?erties of the object in the particular situation. Most often the physical
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models of investigate objects are discrete or discrete—continuous models with con-
centrated masses. In the papers [10,13,14] the influence of paraseismic phenomena
on buildings and another objects was investigated adopting the simplification that
they are the rods, bars or floor plates connected together with articulated joints.
- In this analysis the internal forces were not taken into account and thereby the
autoparametric phenomena were neglected. How fundamental these effects are
- we estimate in each case separatly. The autoparametric phenomena can play an
essential role in processes of destruction of described objects. In considerations
presented in the paper some simplifications were adopted. The results seem to be
encouraging to further analysis of this kind of phenomena. The description should
be more precise (without some simplifications encountered).
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Rezonans wewnetrzny w ukladzie pretéw przy wymuszeniu kinematycznym

Sreszczenie

Celem pracy jest analiza rezonansu wewnetrznego w ukladzie pretéw przy pionowym
wymuszeniu kinematycznym. Elementy ukladu sa polaczone przegubowo. W opisie 83
uwzglednione wewnetrzne sily sprzedajace o charakterze parametrycznym. Na podsta-
wie réwnan Lagrange’a otrzymuje sie uklad rwnan rézniczkowych zwyczajnych, ktére -
rozwiazano metoda bilansu harmonicznego. Uwszglednienie malych sil nieliniowych po-
zwala uzyskaé ograniczone amplitudy. ‘Omawiane tutaj zagadnienie moze mieé istotne
znaczenie przy badaniu Zjawisk parasejsmicznych, gdy slabe sily wymuszajace moga po-
wodowaé znaczne efekty na skutek rezonansu autoparametrycznego. -
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