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This paper deals with some problems appearing in smuso:da.l free vibration
damping analysis of linear, viscoelastic, both homogeneous and layered, be-
ams and bands. A homogemty of descnptlon of displacements of both di-
screte and continuous systems is shown. A manner of viscoelastic properties
of materials description in formulation of any boundary value problem of
sinusoidal vibration is discussed. A procedure of accurate calculations of ei-
genfrequency, for a given form of characteristic equation, of the structures
composed of viscoelastic materials is proposed. Some rules of transformation
of any boundary problem formulation for band /beam consisting of isotropic
layers into formulation of sucha problem for beam/band is revealed. A diffe-
rence in vibration damping analysis of layered beam and band, respectivelly
is proved and dlscussedp

1. Introduction

In the paper of Pearce and Baumgarten (cf [11]) one can find a conclusion that
damping of vibrations of two-layers beam consisting of elastic strip and viscoela-
stic coating will be the same as damping of vibration of two-layers plate composed
of the same materials when both the coating to strip thickness ratio and eigenfre-
quencies of the structures are identical. It means that we can analyse the vibration
damping of the plate by means of formulas for the beam. The foregoing conclusion

. has been proved experimentally for the layered structures composed of stlﬁ' (metal)
elastic strip and supple viscoelastic coating.

In this paper we prove that the rule given by Pea.rce a.nd Baumgarten will

- be deficient when a layered structure is composed of stiffness—comparable mate-
rials. We show that formulations of the damping problems for beam and band
are different and how the vibration damping depends on the difference. Besides
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we discuss some important problems as for instance the procedure of exact calcu-
lating of eigenfrequency of viscoelastic structure. In order to achieve the clarity.
of the considerations we introduce a reader, in sections 2 and 3, into problems of
vibration damping of discrete and continuous systems.

2. Homogeneity of description of displacements for discrete and
continuous viscoelastic systems

Some considerations dealing with a linear, sinusoidal vibration damping of
discrete systems can be useful in formulation of vibration problems of continuous,
viscoelastic structures such as layered beams and bands. Upon basis of a closed
form solution for the simplest, vibrating freely, discrete system, consisting of a
rigid body of mass m, a spring — characterized by the stiffness coefficient k
and a dashpot characterized by the coefficient ¢, both a way of including of
viscoelastic propetties in eigenvalue problem formulation and a way of calculating
of the logarithmic decrement of a continuous structure is discussed.

The equation of motion of the discrete system vibrating freely is as follows

d*z dz .
mmz—+ca+kz_0 ‘ c>0 (2.1)

where z denotes a displacement as well as a space variable while t denotes time.
The closed form solution to the equation, assuming that k/m is greater than
(¢/2m)?, is as follows

z(t) = Acos(Mt + ¢)e ™ = Acos ¢[ cos(At) + Csin(At)je“’“ = AT(t) (2.2)

where
[
h=— A% =wh - h?
2m (2.3)
2 k
‘G)o:— C=-ta-n¢
m

while A, ¢ are constant values dependent on initial conditions |10]. Let us notice
that wy is the eigenfrequency of the discrete system for ¢ = h = 0 however A is the
eigenfrequency of the system for A # 0. In the latter case one can obtain, starting
with the definition of periodic logarithmic decrement, the following expression for
the parameter

a2 _, T _, h
0 -lnz(t+T)—lnT(t+T)—21:\- (2.4)
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where T denotes the period of the oscillations. It can be noticed that the product
of the following complex quantities

wl—,\+1h u)ng—ih i2=-1 (2.5)

is equivalent to W ie., wywqg = wd. By usmg the left—ha.nd sxde equation in the
set (2.5) and assuming ‘that C =i where i = —1 one can transform right-hand
side of Eq (2.2) to the form

5(t) = AT(t) = Acos pexp(iwyt) = A* exp(iwt) (2.6)

where A® is any constant value. We note that the real displa.cen_ient of the mass
m in direction z is defined by the following equation [1]

z(t) = Re(2(t)) o 2.7)
however the formula (2.4) can be written in the form

L 2rxh Re(w)
= X T )

(2.8)

where w = wy while Re(w), Im(w) are real and unagma.ry pa.tts of the complex
eigenfrequency w, respectively. :

‘The formulas (2.6), (2.8) have been. obt.amed within the theory of dlscrete ’
system (by direct using of the classical solution for the simple model) however
they are widely used in papers on damping of vxbratnon of continuous systems.
Let the function Z(t) be of the form y :

E1t) = X(z)T(t) X(z)exp(iwt) . (2.:..9) '

where X (2) denotes a continuous and g_ena.rally complex field of the space variables

z = [z1,22,z3]. In the papers on vibration analysis of continuous, viscoelastic

systems the expressions of the form (2.6), (2.9) are called kinematical assumptions
and the parameter w = wy is called complex eigenfrequency (cf [6]). The factor -
X(z) has to be evaluated by taking into account equations of motion and boundary
conditions. In order to calculate the loga.nthxmc decrement the formula (2 8)is
‘used.

Due to the forma.l homogemty of description of dlspla.cements of both discrete -
and continuos sinusoidally vibrating systems one can apply some conclusions rela-
ting to the simple discrete model in the vibration da,mpmg a.nalysns of continueus,
vwcoelastlc structures.
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3. A way of including the viscoelastic properties of material into
formulation of a boundary value problem of sinusoidal vibration

Let us discuss a problem of including the viscoelastic properties into formula-
tion of the three—dimensional eigenvaluevalue problem of a continuous structure.
By using displacement functions in the form (2.6), (2.9) one obtains infinitesimal -
strains, in the three-dimensional case, in the form

& = (E(2,w)),, exp(iwt) : (3.1)"

After substituting Eq (3.1) into constitutive equations of hnea.rly viscoelastic ma-
terial [13] :

o= Ct = 0)(t) - / oC(t - ’);( )dr (3.2)
0
one obtains the following expressions for stresses

ou = (E(2,0))y exp(iwt) = 0 = C(w)e exp(iwt) (33)

* where 0, & denote the complex stress and the strain vector respectively, C(t) is
the stiffness matrix of viscoelastic material however elements of the matrix C*(w)
are in fact the Fourier transforms of corrésponding elements of the matrix C(f).
The tensors (£(%;w))y, (£(2,w))y, for continuous system, are generally de-
pendent on the space variables and the frequency w since material parameters of
a viscoelastic material are dependent on a frequency [8]. The tensors are complex
- thus to obtain real stresses and strains one need to use the equations

ou = Re(o3) ew = Re(Ew) (3.4)

Within the complex stiffness matrix C*(w) of the isotropic viscoelastic mate-
rial we have two independent complex material parameters. One of them is the.
Kirchhoff modulus which can be written in the form

pr (W) = pr(w) +ip2(w) = p1(W)[1 + 1 (w)] (3.5)

The second independent parameter can be either the Poisson ratio »* or the
Young modulus E*

v (w) = n(w) + irz(w) = n(w)[1 + m(w)] (3.6)
E*(w) = Ey(w) + l1—’3'2_(“’) = Ey(w)[1 + 15(w)] (3.7)

The functions 7jm(w), fa(w), 7z (w) in Eqs (3.5), (3.6) and (3.7), are called ma-
terial loss factors. We notice that the expressions (3.1)+(3.7) will also be valid
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when behaviour of the viscoelastic matenal is described by the structura.l (springs-
dashpots) models [1] or a continuous system is excited by an external force to
vibrate sinusoidally.

' The function p*(w) as well as the remaining comple.x characteristics of a
viscoelastic material can be obtained experimentally in domain of frequency w (cf

" [2]). The experimental results for each complex material parameter one obtains
" in two charts as shown in Figure 1. In order to calculate any damping parameter
for the continuous structure composed of viscoelastic materials, one needs to read
from the experimental charts several material parameters which will afterwards be

- the input data necessary for making calculations of the damping parameter of the
structure. In the case of isotropic material one should read either the values of u;,
B2, ¥1, V2 or the values of u1, pa2, E1, Fs. Since the material characteristics can

- be defined in several ways we sometimes need to apply the quantities of p;, pa,
K, K, where K1 and Kg are the rea.l and imaginary part of so—called Helmholtz
modulus. '
”1
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Fig. 1. Typical charts for frequency dependent Kirchhoff modulus

a b ..“ a

- We notice that for the accurate reading of the complex values of any material
parameter from the experimental charts, one should know the exact value of vibra-
tion frequency. However in the case of free vibration of any system the condition
is not fulfilled — an eigenfrequency is unknown. There are two ways to overcome
the difficulty i.e., (a) an exact approach and (b) a trial-and—error method. In both
cases however the following procedure is proposed :

1. by applying either the exact approach or the trial-and-error method the
exact value of eigenfrequency wg (correspond.mg with wp in expresswns
(2.3)) of undamped (elastic) structure is evaluated, ; :

2. for the eigenfrequency w, the complex material parameters (for instance
= pl(ws), b2 = pa(wg)) are found from the expenmenta.l charts —-such
as those given in Fig.1, , P

3. the complex materlal parameters are used to calculate the elgenfrequency Wy,
(corresponding with ) 'in expressions (2. 2)) and the logarithmic decrement
of the contmuous gystem. -
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" The procedure given here is exact eﬂdugh. Upon basis of Eqs (2.3), (2.4) one.
can obtain the following relationship

82 :
W= (14 4%) (3.8)

Let us notice that for 46, < 1.0 we will obtain wg 2 w, . Thus we conclude that
for exact calculating of uhe logarithmic decrement one should at first calculate
as exactly as possible an eigenfrequency of the continuous, purely elastic system.
. To prove the importance of the conclusion and the procedure proposed here we
present in Table 1 the loss factor 7, versus the frequency for special viscoelastic
material LD4 [7,8]. It can be seen that the Young modulus of the material strongly
depends on frequency. In such a case it is very 1mporta.nt to evaluate exactly the
eigenfrequency w; of the continuous system.

Table 1. Dependence on frequency of the loss factor 5, = E3/E; for viscoe-
lastic material LD4 [7,8] where E* = E; +iFE; denotes complex Young’s modulus

w, [rad/s] | 125.6 | 251.2 | 376.8 | 502.4 | 628.0 | 753.6
= Ey/E, | 0.3243 | 0.5267 | 0.6995 | 0.8550 | 0.9900 | 1.360
E, [MPa] | 1556.0 | 1723.7 | 18300 | 1909.0 | 1973.3 | 2027.1

Let us explain finally the exact approach and the trial-and-error method of
evaluating of the eigenfrequency wg. In the first case we have to approximate
the material characteristics (like for instance the experimental charts given in
Figure 1) by analytic functions in domain of frequency. Thus for any isotropic and
viscoelastic material we have four functions - for instance p;(w), pa(w), 11 (w),
vo{w). Since generally both material parameters occur in characteristic equation
of eigenvalue problem then for the exact evaluating of the eigenfrequency of purely
elastic system one need to solve the following set of nonlinear algebraic equations.

detA =0 m = fi(w) v = fa(w) (3.9)

where A is a matrix of the boundary eigenvalue problem of the continuous, purely
elastic system, however the functions f;, fo are known - as the approximation of
the experimental material characteristics. In the case when behaviour of the visco-
elastic material is described by the structural (springs—dashpots) Voight model the
functions f1, f2 areindependent of frequency. Elements of the matrix A depend on
both the eigenfrequency w, and the parameters pi, 1 ie., Agy = Ar(wg,p1, ).
We stress that the exact approach in the calculating of the eigenfrequency of purely
elastic, continuous system (discussed here) is entirely and directly connected with
- the problem of including the viscoelastic properties of materials i.e., dependence
their properties on frequency. We do not refer in the considerations to the quality
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of formulation of the eigenvalue problem itself. Thus we have not considered either
form or manner of the numerical solving of the equation detA = 0.

The trial-and-error method can be easier in some cases. At first we have
to take any value of the eigenfrequency w, in order to find for .nstance puy,
from the left-hand side chart in Fig.1. After substituting the value puj, into the
characteristic equation of eigenvalue problem considered we calculate (assuming
M2a = 0) wear = wp where W,y denotes the calculated eigenfrequency. Since w, is
not equa.l to w; we have to repeat the procedure wluch will be interrupted when
Wa X wy. -

4. A difference between formulation;i of eigenvalue problem for beam
and band

We notice that we have the plane stress within a beam and the plane strain
within a band. Because of this eigenfrequencies of any beam of rectangular cross—
" section are lower than the eigenfrequencies of the band having the same material
-and geometrical parameters. It can easily be observed by comparing the equations
of motion and their solutions obtained, for instance for homogeneous beam and
band, within so—called classical theory which is based on Kirchhoff’s assumption
of flat cross—sections. Thus for the rectangular cross-sections of the structures
considered the equations of motion are as follows

— for beam ”
_ a:: (h) (E" 96 i=0 («1)
- for band o o s
‘ T sn-eD) (D)5 e

where u., h, p, E*, v* denote the deflection, the total thickness, the mass density,
the complex Young modulus of the beam/band and the complex Poisson ratio,
respectively. We notice that Eq (4.2) can be obtained directly from the equation
of motion of the classical plate theory. Eigenfrequencies of the beam and the band
in the case of simple supports of the structures can be calculated a.ccordmg to the
formulas

— for beam ) 4bh"E‘"-.-b2". L __
| “m = Am (5) ety ) (43

.- for band bl . e . .
o W= 0'4"(5) [3p[1 my eyl pro g ”,)] (4.4)
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- where u denotes the Kirchhoff modulus, @y = mx/L, m = 1,'2__, 3,... and the L
is the length of the beam/band. It can be seen by comparing the Eqs (4.3), (4.4)
that, for given values of the a, k, p, E* and v* # 0, eigenfrequencies calculated
according to formula (4.4) are higher than eigenfrequencies calculated according
to formula (4.3). _

We notice that replacing the Poisson ratio »* in Eqs (4.1), (4.3) by the fol-.
lowing quotient v*/(1 — v*) we will derive Eqs (4.2) and (4.4), respectively. On
the other hand by replacing the Poisson ratio in Egqs (4.2), (4.4) by the quotient
v* /(14 v*) one will obtain Egs (4.1) and (4.3), respectively. Let us write the rules
as follows _

V .
11—
V‘

—
1+

plane stress v* — plane strain (4.5)

-

plane strain v*: plafxe stress (4.6)

It can be veryfied that the rules of transformation of the plane stress/strain eige-
nvalue problem into the plane strain/stress eigenvalue problem are valid for any
problem formulated in the plane strain/stress for any system composed of viscoe-
lastic, isotropic continua. '

5. Differences in vibration damping analyses of beams and bands

The differences appearing in vibration damping analysis of beams and bands
result from different equations of motion in both cases. The problem has been
discussed in the previous section of the present paper. In this section we discuss
some additional aspects relating to homogeneous and layered beams and bands.

In order to calculate the logarithmic decrement &, for a homogeneous and
viscoelastic beam or band one should apply the formulas (4.3) or (4.4) and (2.8).
At first we have to calculate (for instance according to the trial-and—error method)
exact values of eigenfrequencies of the structures ignoring damping. As it has been
~ stated in section 3 the eigenfrequencies are necessary for accurate reading from the
experimental charts the complex material parameters appearing in Eqs (4.3),(4.4).
By means of the equations (i.e. the transformation rules (4.5) and (4.6)) we discuss
here differences appearing in vibration damping analysis of homogeneous beams
and bands. In this case we can meet two typical situations described below.

1. Let us assume that both a homogeneous beam and a band are made of the
same material and their geometrical parameters (excluding their. widths) are
the same. The eigenfrequencies of the structures and values of the complex
material parameters, found from the experimental charts such as those shown
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in Figure 1, will be different. Consequently we obtaxn dxﬁ'erent values of the
logarithmic decrement in both cases.

2. Let both values of the eigenfrequencies and material of the bea.m and the
band be the same. We notice that an eigenfrequency of the beam depends
on the Young modulus E* however an eigenfrequency of the ba.nd depends
on both the Young modulus and the Poisson ratio #*. When both. the
parameters depend on frequency (ie., E* = E*(w) and »* = v*(w) we
will obtain different values of the logarithmic decrement for the structures..
However if the Poisson ratio is not dependent on frequency (i.e., v* # v*(w))
the decrement will be identical in both cases.,

The second case of the situation (2) occurs during vibration of classical san-

. dwich beam/band. Such a structure consists of thin facings and a thick and light
core. Moreover the facings are of higher stretching stiffness than the core. The
eigenfrequencies of the structure, when it is simply supported can be calculated
by using the fo].lowmg equation [14] :

, Ks1+ §l+a e - |
wl =ad =2 M (5.1)
™ — K
"M - » A
where o .
{01+ a3)? | _ Ethi + E3h3 :
| Ks= p -—————-h2 N Kz = 12 (5.2)
KM Biha} +E§h3a3 o M= Ep, i=123 (53)
daih 1-; A e A hs-;hz‘ (5.4)

R R s T et o€ ths bada laad. A e
thickness of the jth layer. a;, a3 stand for the distances between the centre of

gravity of the core and analogous points of the faces." The subscript j =2 in Eqs . o

(5.1)+(5.3) refers to parameters of the core.. We note that under two assumptions,
first hy = hs and second Ej = Ej one can derive Eq (5.1) d.xrectly from the
equation of motion given by Mea.d and Markus [9]. 5
Formula (5.1) predicts that the elgenfrequency of the structure consxdered de- :
- pends on the Kirchhoff modulus of the core and the Young moduli of the facings.
Since the transformation rules (4.5) and (4.6) do not refer to the Kirchhoff modu-
lus then one can conclude: when the Young moduli of the facings do not depend
~ significantly on frequency and the values of all parameters, excluding oy, are the
same for both the sandwich beam and the band then, for equal eigenfrequencies
of the structures, the logarithmic decrement values for the beam and band will be
the same.
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Basing upon the theory given by Raville et all. in paper [12] one may assume
that the conclusion also refers to the three-layers beam and band when adjoi-
ning layers of the structures are of stiffness—comparable materials and the cores
are much more thick than the facings. In such a case eigenfrequencies of the
beam/band, which is clamped at the ends, can be calculated from the following
equation [12] :

1

O+ Z = "= o (55)
”'h (v')’; ( Fti ’3) .
where ' .
Qn=0 for m=1,3,5,..
' : (5.6)

1 .

Om = —ZZ for m=24,..

Ir = IF(hl, hs) ) IT = .IT(hl,.hg,ha.) . . (5.7)

S = S(hl,'h?7h3y L, B‘,.'V.,,u.) A . (5.8)

_while a,, = mx/L for m = 1,2,3,..., E*, v* are the material parameters of the
facings, u* is the Kirchhoff modulus of the core, h; is the thickness of the middle
layer however h;, k3 are thicknesses of the facings. The symbol p denotes here
the mass density of the composite beam/band per unit length and width.

On' the basis of expressions (4.5), (4.6) and (5.5)+(5.8) we conclude: when
dependence on frequency of the Young moduli of the facings is negligible and values
of all parameters, except of a,,, are the same both for the clamped three-layer
beam and band then the logarithmic decrement values for the layered structures
will be equal.

Both formula (5.1) and (5 5) have been derived by applymg severa.l s:mphﬁca-
tions refering to both geometry and materials of the layered structures. Because
of this it is difficult to notice a difference in vibration damping analysis of the
beams and bands. However when the foregoing simplifications can not be applied
the difference can easily be proved. For this purpose we apply the characteristic

. equation of eigenvalue problem of isotropic simply supported plate derived within
. the linear theory of elasticity by Levinson [6]. The equation is as follows

46, 52( M)’ tan ﬂ‘ - P*tanh ﬂ;h ('5,9)' '
" where - :
‘ - (M- 2 _ 2 pt ;
= (Mr)? - £2 B = ey - B (5a0)
M= (%)2+ (3)2_ N P? = (Mx)? 4 2 (5.11)

b
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while u*, A* are the complex Lame constants-for vnscoela.stxc material, p is the
density, - a, b, h denote the length, the width and the thickness of the plate,
" respectively however m, n are integer numbers denoting the modes of vibration.
We notice that after substitution for M? = (m/L)? into Eq (5.9), where L
denotes the distance between supports, we will obtain the characteristic equation
for isotropic and simply supported band. As stated in section 4 the equations
-of motion of plane strain can be transformed, according to the rule defined by
* expression (4.6), into the equations of motion of the plane stress. Because of this
- the characteristic equation for plane stress problem is not the same as in the case
of the plane strain. It is because of the dependence of Lame constant A® on.
u* and »* (ie, X* = p*20°/(1 — 2v*) whereas the v* has to be transformed
‘according to Eq (4.6). We can conclude finally that formulation, within the linear
theory of elasticity, of the eigenvalue problem for homogeneous, isotropic beam
is different than formulation of the problem for such a band. Upon basis of the
correspondence principle the rule can be refered to viscoelastic beam and band.
Following the procedure given in [3] one canh extend Levinson's approach to
formulate the eigenvalue problem for layered band without introducing any sim-
plifications. The formulation for layered beam, derived by taking into account
Eq (4.6), differs from that for band however in both cases the eigenfrequency is
formally dependent on both the Kirchhoff modulus and the Poisson ratlo of each
layer. Thus for any layered. structure we have :

) w = wip, 5,85, Vz,ﬂvs,l’s,ﬂ) . (5.12)
where subscripts 1,2,3 refer to layer 1,2,3, respectively and g denotes vector of

. geometrical parameters. Unlike in Eqs (5. 1) and (5.5) we have in Eq (5.12) the -

Poisson ratios of both purely.elastic and viscoelastic layers. Since the parameters
. ¥; have to be transformed according to expressions (4.5), (4.6). we obtain different
values of the logarithmic decrement for the layered band and beam, respectively.
The latter conclusion results directly from Eqs (2.8), (4. 5), (4.6) and (5.12). Thus
the difference in vibration damping analysis of homogeneous and layered beams
and bands has been proved. On the other hand it is impossible, in this case, to
- derive an explicit relationship of the form (5.12). Therefore one can not estimate an
influence of a particular material parameter on a value of the logarithmic decrement
‘of the structure without making calculations. :

6. Numerical calculations

In Table 2 of this paper we present several values of the logarithmic decrement
for rectangular simply supported three-layer bands and percentage differences be-
tween v1bratxon dampings of the bands and the three-layer-beams — -corresponding
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both geometrically and physically to the bands. The differences of intensity of vi-
bration damping are defined by means of the logarithmic decrement i.e.,

I(ér Jband = (61' Jbeam 5

oo 100 (6.1).

The guantities’ (6,. bmd have been calculated for (ﬂs)') = 0.1 and ('r;,.)g =0

* while the values of (6,.),(,:) are obtained for (ng); = 0.1 and ()s = 333,
where subscript 2 denotes the middle layer. In order to investigate an influence
- of material characteristic v*(w) of the middle layer on the logarithmic decrement
values for the layered beam the following factor has been calculated

18 (2)
= l(s‘r)beam (2§6 )beam 100 (6.2)
(61‘ beam

where the values of (8, glm have been calculated for (ng)g =0.1and (g)2=0

while the values of (6,.),(,2," are obtained for (15); = 0.1 and ()2 = 333, where
subscript 2 denotes the middle layer. '

Table 2. The logarithmic decrement values for 1-st mode of vibration of
three-layer bands and the percentage differences defined by expressions (6.1), (6.2).
Parameters of the middle layer (core): hz = 120 [mm], (E;); = 1.6 - 10'° [Pa),
(1)2 = 0.3, p2 = 1750 [kg/m3]. Parameters of the outer layers (facings): h; =

ks = 2.5 [mm), (Ey); = (E;)3 = 2.07-10" [Pa), p; = p3 = 7860 [kg/m>). L is the
length of the beam/band, 7 = (1)2-

L[mm] 1000 | 1500 | 2000 | 2500

(6,7, 0.1336 | 0.1260 | 0.1231 | 0.1217

(6,) g 0.1869 | 0.1914 | 0.1931 | 0.1939

(‘;forr;,, =0 193 | 199 | 211 | 230

€% for 1, = 0.33 | 63.72 | 65.48 | 66.15 | 66.48

€2 14.36 | 6.65 | 3.87 | 2.56

Parameters of the structures considered here are written above in Table 2. We
note that the middle layer (core) of the structures is stiffness—comparable with
the outer layers (facings). It has been veryfied that in such a case the theories
[9,11,14] predict inaccurate values of both the sigenfrequencies and the logarithmic
decrement (cf [3]). Therefore the results given here have been calculated accordmg '

to the method presented elsewhere [3,4,5].
It can be observed in Table 2 that for (1,)2 = 0 the damping of vibration of

both the beams and the bands is almost the same — egl) 2 2%. The result coincides
very well with the theortical predictions. We notice that the Young modulus E*
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- _depnds on the Poisson ratio. »* and the Kirchhoff modulus u* according to the
" formula: E* = 2#'(1 + v*). Assuming (7,)2 = 0 one obtains for the middle
~ (viscoelastic) layer v* = v (i.e. a real number) and 7 = nn. It means that one
. includes only the damping resulting from the shearing deformations as in the (5.1)
and (5.5). This is the reason of almost equal intensities of vibration damping of the
bands and the beams. However for (7,)2 = 0.333 the damping of vibration of the .

bands is much more intensive — 5(2) & 66%. It seems to be unquestionable that
. vibration damping of layered ba.nds depends sngmﬁca.ntly on both characteristics of
. viscoelastic (isotropic) strips i.e., ¥*(w)and p*(w). However in the case of layered
beams one needs only to take into account the function p*(w) to evaluate material
damping of sinusoidal vibrations. The logarithmic decrement of the beams depends
. weakly on the material loss factor ~%,. We note finally that the differences of -
intensity of vibration damping (em and 6(2)) depend slightly on the length. of
the structures considered. The same conclusion refers to the factor &2 provided
that the quotient of L by A (length over total thickness) is greater than 10. For -
thickset layered beam (L/h = 8) &3 is equal to 14.36% thus in the case the
influence of v*(w) on vibration damping seems to be more significant. However -
- in order to establish the latter conclusion precisely one should compare the results
given here with theresults obta.med by usmg other (for instance an experimental)
method. - : : g

7. Final remarks and conclusi_ops

On the ground of both theoretical considerations and numerical results given in
the paper we conclude: (1) in order to calculate exactly the logarithmic decrement
of any viscoelastic structure one has first to calculate exactly the eigenfrequency
* of corresponding purely elastic structure, (2) formulations of the eigenvalue pro-
blems, as well as another elastic and viscoelastic problems, for both layered and
* homogeneous bands/beams composed of isotropic layers can be transformed into
corresponding problems for beams/bands according to formulas (4.5) and (4.6),
(3) the logarihmic decrement for layered band composed of isotropic strips depends
significantly on complete material characteristics of viscoelastic strips however the
logarithmic decrement for layered beams is weekly dependent on nnagma.ry pa.rt :
- of complex Poisson’s ratio of wscoe]a.stlc layers
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Analiza drgai swobodnych belek i pasm warstwowych utworzonych z

izotropowych warstw lepkosprezystych

Streszczenie

Praca dotyczy pewnych probleméw pojawiajacych si¢ w analizie thumienia swobodnych

i liniowych drgan sinusoidanych belek i pasm lepkospreiystych ~ zaréwno jednorodnych
iak i warstwowych. Przedstawiono jednorodnoéé opisu przemieszczen w ukladach dys-
retnych i ciaglych. Przedyskutowano sposéb uwzglednienia lepkosprezystych wlasciwosci
materialéw w sformulowaniu dowolnego problemu brze. (fowego drgan sinusoidalnych. Za-

proponowano procedure dokladnych obliczii czestodci

rgan wlasnych, dla danej postaci
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réownania charakterystycznego, struktur zlozonych z materialéw lepkosprezystych. Wy-
prowadzono zasady transformacji sformulowania dowolnego problemu brzegowego dla pa-
sma{belki skladajacego(j) si¢ z warstw izotropowych do sformulowania takiego problemu
dla belki/pasma. Przedyskutowano i udowodniono réinice w analizie ‘tlumienia drgan
belki i pasma. ‘
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