MECHANIKA TEORETYCZNA
I STOSOWANA

Journal of Theoretical

3, 30, 1992

A NEW LINEAR ELASTODYNAMIC SOLUTION TO BOUNDARY
EIGENVALUE PROBLEM OF FLEXURAL VIBRATION OF
VISCOELASTIC LAYERED AND HOMOGENEDOUS BANDS

STANISLAW KARCZMARZYK

Warsaw Um'vcﬂt't'? of Technology

A pew linear elastodynamics formulation together with a solution to the
eigenvalue problem for viscoelastic bands both clamped and simply suppor-
ted and consisting of any number of high-strength; fibrous and stifiness—
- comparable layers have been developed. New boundary clamping conditions
have been introduced. On the basis of numerical results, obtained after so-
lving a non—conventional nnmenca.l problem resulting from the formulation,
- for both simply supported (three- and two-layer) and clamped (homogene-
ous) bands, an accuracy and usefulness of the solution developed is shown.

1. Iatroduction

* Viscoelastic materials such as plastics, resins and rubbers can be components of
layered structure elements such as bands, beams or plates. However viscoelasticity
of the materials is the main reason of the structure elements vibration damping.

" Therefore the analysis of vibration damping of the structures is one of the most
important practical problems. In order to calculate the damping parameters such
as logarithmic decrement, loss factor or damping capacity accurately one ought to
formulate the considered problem as exactly as possible. First of all one should
include the transverse shear deformations iri each layer into the formulation (cf

~ [20,22]). It is also important to take into account complete material characteristics

(i.e., stiffness matrices) of layers (cf [16]).

As the viscoelastic material characteristics are dependent on frequency then in
the case of free vibration damping analysis one has first to calculate eigenfrequency
of a whole structure without taking into account material loss factors of its layers.
The parameter (i.e. eigenfrequency) ought to be evaluated accurately as it is
necessary for the proper choice of the material loss factors which will afterwards
be the input data for calculations of any damping parameter of the structvre. Since
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an eigenfrequency value Vdgpends on the kind of supports it is desirable to define
boundary conditions at the ends of the band or beam as precisely as possible. -

Let us note that we have plane strain within a band and plane stress within a
“beam. Inspite of the difference occuring in formulations of the eigenvalue problems
(for band and beam) one obtains, for the same values of material and geometrical
parameters of layers in each case, identical values of damping parameters of the
structures (cf [14,15]). Thus it is justifiable to compare the approach given here
with the theories presented in the papers on vibration damping analysis of layered
beams.

Most of papers on transverse vibration damping analysis of layered beams
referes to the sandwich structures (cf [1 + 10]). Few authors only deal with the
problem of twe-layer beams (cf [14,15]). Also filamentary composite beams have
been rarely investigated [16]. A short survey of the works published is given below
from the point of view of clear presentation of differences between the method
of vibration damping analysis proposed in the present paper and those published
elsewhere. As the published, analytic formulations of the beam problems have
been derived by using so—called semi~inverse techniques then a special attention is
paid to the kinematical assumptions, the boundary conditions at the ends of the
beams and the simplifications of material characteristics which have been used in

“the papers cited.

The analysis of the vibrations of sandwich beams has been carried out by many
authors (cf [3 + 8,10]). In such beams the material of the faces was considered to
be much more stiff and heavy than the material of the core. Due to the foregoing
restrictions it was justifiable to omit in formulation of the eigenvalue problem
‘both the normal cross-sectional stresses and the material damping resulting from
dilatation of the core. The energy dissipation (both sheating and dilatational)
in the faces likewise anisotropy of the layers were seldom taken into account. In
order to derive equations of motion the Kirchhoff hypothesis of flat cross—sections
was generally applied (cf {1 + 10]). Behaviour of the sandwich clamped—clamped
. beams has been modeled in the papers considered by application of the classical
clamping conditions. Majority of the aforementioned simplifications were also
applied in formulations of the eigenvalue problem of two-layer beams (cf [14,15]).

Due to the foregoing simplifications the theories are not useful for the vi-
bration damping analysis of both multilayered beams/bands and two/three-layer
beams/bands composed of the anisotropic stiffness—comparable layers. However
investigation of such beams/bands is important due to the development of high-
strength plastics — applicable for making of multilayered structures.

Boundary value problem for filamentary viscoelastic composite beam/band can

~ be formulated in the same way as for the laminated composite plate (cf [17,20]).
However in this paper an original work by Ni and Adams [16] on evaluating dam-
ping capacity of symmetrically laminated beam is discussed. Ni and Adams have
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solved the problem considered in three stages. At first a compliance matrix of the
beam consisting of fiber—reinforced and stiffness—comparable layers is obtained.
Elements of the matrix depend on the number of layers, the material and geome-
trical parameters of the layers and the arrangement of fibres within the heam. At
the second stage the strain energy stored within homogeneous beam, characterized
by the evaluated compliance matrix and undergone to the bending moments, is ob-
tained. Let us note that relationships for the strains—moment used by the authors
are the same as those predicted by the Saint—Venant linear elasticity solution for
the pure static bending of isotropic homogeneous beam. At the third stage both
the energy dissipation and the damping capacity of the structure is obtained. The
parameters are calculated as the sums of three products. One of the coefficients
in each product is so—called specific damping capacity evaluated experimentally.
‘The final expression on damping capacity of the laminated beam is not deperdent
‘on bending moment. :

. It can easily be noticed that Ni and Adams’s formulation of the problem is ir
" fact not a dynamic one. By using this formulation the authors obtained a good
agreement between theoretical and experimental results for slender beams i.e.,
200 mm long, 12 mm wide and 1.6 mm thick. It seems to be rather doubtful to
“acquire accurate values of damping capacity by using the non—-dynamic approach
given by Ni and Adams in the case of non-slender laminated beam. It should be
noted finally that the boundary conditions at the ends of the beam have not been
considered in the foregoing paper.

In the present paper a new linear elastodynamics solution of the flexural, free
vibration damping problem of layered band, consisting of any number of aniso-
‘tropic, viscoelastic stripes, is reported. An idea of the solution is an application
of the modified Levinson kinematic assumptions (cf [11]) and the linear elasticity
equations of motion together with the constitutive equations of viscoelastic mate-
rial for the analytic formulation of the eigenvalue problem for both a clamped and
a simply supported band. It is assumed that within the band we have the plane
strain. Due to the approach developed both the shearing and dilatational defor-
mations and the resultihg material damping of vibration in each layer are taken
into account. New boundary conditions (supports) for clamped band have been
introduced.. Thus a new, original method for calculating both the eigenfrequencies
and the logarithmic decrement of the layered bands is presented.

Formulation of the problem for the simply supported, anisotropic, viscoelastic,
~ multilayered band is in fact a direct extension of the Levinson’s work (cf [11]). Ho-
wever both the formulation and the solution of the eigenvalue problem for clamped
band in the way described in section 3 of the present paper are essentially quite
new. According to the best of the author’s knowledge for the first time the ei-
genvalue problem has been formulated analytically and exactly within the linear
theory of (visco)elasticity. The final form of the formulation depends on kind of



666 ; S.KARCZMARZYK

supports. Thus we obtain one transcendental complex equation in the case of sim-
ply supported band and a set of three transcendental coupled equations in the case
of clamped band. As a consequence of the approach reported one obtains a new
type of the displacement boundary conditions (supports) for clamped bands. The
conditions are different and in fact more realistic than those discussed by Valisetty
et al. [19]. A comment on the foregoing conditions is given in section 3 of this
paper.

Solutions to the algebraic problems derived have been obtained by means of
computer calculations according to Fortran programmes written by author of this
paper. The programmes have been prepared in double precision. Standard library
" routines for evaluating roots of transcendental, nonlinear, complex equations ac-
cording to the Muller method with deflation have been used. Numerical problems
resulting from the formulations described above have been new (in respect of the
complexity and number of final algebraic equations) for both the simply supported
(layered) and the clamped (homogeneous and layered) bands.

The problems considered in this paper have been fotmulated for the multila-
yered bands composed of fibre-reinforced, viscoelastic layers while the numerical
results have been given only for bands consisting of the isotropic layers. The re-
sults however are sufficient far the main purpose assumed i.e., for the presentation
of both the accuracy and usefulness of the approach developed. Thus one can
find in this paper several values of the logarithmic decrement for both the sim-
ply supported (two-layer) and the clamped (homogeneous) bands. .Additionally
for both the three-layer and the homogeneous bands one can observe differences
between eigenfrequency values obtained according to the presented method and
those predicted by the classical theories based on the Kirchhoff assumption and
some other simplifications.

2. Case of simply supported band

Contents of this section is a foundation for understanding of the next one so
it is written widely and as clear as possible. In order to formulate the boundary
value problem the following Levinson kinematic assumptions (cf [I1]) are applied

= fgj(z)dv:ix) exp(iwmt). : -
,.uw =0 ' - w421
i = fJ(Z)W(I)exP(iwmt) .

where i = -1, j = 1 2,3, ... denotes a number of the layér, variable z is the
coordinate in direction of the band deflection, symbol t stands for time and w,, for
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the eigenfrequency of mth mode of vibration. Functions gj(z)', fi(z) are unknown
however

W(z) = W, sin(?z) m=1,23,... (2.2)

where L is the length of the band. Let us note that Levinson introduced his
original kinematic assumptions in order to solve the eigenvalue problem of an
isotropic simply supported plate thus in his paper the displacement wu, has not
been put equal to zero. Applying the assumptions (2.1), (2.2) one obtains a plane
strain. Besides the stresses (ay,)j 023 7 Oy ; = (cru) are equal to zero.

It has been assumed for further considerations that the ﬁbres of each layer are
parallel to the longitudinal axis of the band. Such arrangement of the fibres is
most desirable considering bending stiffness of the band (cf [16]). Let us assume
additionally that the material properties of any layer are isotropic within each
cross—section of the layer. If the two foregoing assumptions are fulfiled we will
have so—called hexagonally anisotropic layer.

Constitutive equation of fibrous, hexagonally anisotropic, viscoelastic material
in case of the plane strain can be written in the form

g; = .D_,-E_,' (2.3)

where: o; denotes stress vector, &; is strain vector and D, is stiffness matrix of
jth layer. The matrices are defined as follows

g = [U:a:a Tzz, az:]

b; a; O
D; =|a; ¢0 (2.4)
0 0 2;13

& = [Era:a €2z, Ez:]

In expressions (2.4) symbol j¢; denotes complex Kirhchoff modulus of jth fibrous
viscoelastic layer in z-z plane however the quantities a;, b;, ¢; depend on four
remaining independent, complex, material parameters of a viscoelastic hexagonally
anisotropic material [26].

By using the formulas (2.1) + (2.4) one can transform the linear elasticity
equations of motion .

%u
Okik = 9372' (2.5)

to the following form

, &g
—I‘,d J+(ba - Pj m)91+(“.7+l‘1 fJ =0

(2.6)

&f; d
—g5 72 — (Mol — pswk )i + al(a; + 5 S = 0
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where

am = T for m = 1,2,’3,... (2.7) .

For isotropic material the quantities a;, b;, g; are defined as follows a; = A,
b = g; = Aj+2u;, p; = pj where Aj, p; denf)te the complex, frequency—dependent
Lame parameters. In this case the constitutive equation (2.3) can be written in
the well known form

(Ukl)j = 2u; (ékl); + briA; (Err)j kd,r=1,3 (2.8)

however equations of motion will be of the same form as those given by Levinson
[11] when a,, is replaced with the coefficient M7 used by Levinson i.e..

2.
“.“jd ng + [()‘ +2PJ)° ]91 (A + F‘J)"'&' =0
dz (2.9)

. dg;
O +20) 5~ (e, = piat f; + 02,05+ 1) S = 0

After solving the set of equations of motion one ebtains functions f;(2), g;(2).
A form of the functions in the case-of elastic layer depends on quantitative re-
lationships between the geometrical and the material parameters appearing Egs
(2.6) or (2.9). The aforementioned problem has been discussed in reference by
Levinson for the elastic, isotropic plate thus it is' not discussed here. In the case
of a viscoelastic layer the functions f;(2), g;(z) are complex. Taking into account
the correspondence principle one can write the functions for isotropic layer in the
following form

fit2) = Xy cosh(2fy;) + X, sinh(264;) + Xa, cosh(zﬂgj) + Xy sinh(zﬂ2,22 .

0)
95(2) = X, cosh(zBy;) + X3, 51nh(zﬁ1,) + X3, cosh(zfy;) + X, sinh(2/3;;)
where
32' = a2 o pj“"'?n
W Sy
(2.11)
2
Pivm
ﬂ2j m '\ + 2u;

The vector X is dependent on vector X; thus there are only five unknown
values in Egs (2. 10) Le., the vector X; and natural frequency w,,. For any layer
denoted by n # j subscript we have another unknown vector X,. Thus for the
mth vibration mode of a'band consisting of p layers one obtains 4p+ 1 unknown
parameters while one of them is the eigenfrequency w,,.
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After substitution of the functions (2.10) into the expressions (2.1) one obtains
the displacement field within the jth layer. However by using the displacement
field functions and constitutive equations one can derive the field stress. Taking
into account the homogeneous stress boundary conditions on the band free surfaces
(2.12) as well as the continuity conditions of stresses (2.13) and displacements
(2.14) between adjoining layers

(02:(2,0), = (0aslz, 1) =0

| | (2.12)
'(0‘;;;(3:,0))1 = '(au(z,h))'p =0
02:(2,hj)) . — (Oaz(z,h5)) . =0
( : )i~ i (2.13)
’(az-f(?’hj))j - (”z:(z’hj)_)j_'_l =0
(uz(z,hj))j - (u,(z,hj))j+1.: 0
(2.14)

(u,(zj,h_,'))j - (u,(z_'_,',hj))j a=0

v faic: -
where h = ) h; one can transform the eigenvalue problem to the form of algebraic,
T .
homogeneous, matrix equation _
A-X=0 - (2.15)

Symbol h; denotes thickness of the jth layer, while h stands for the total
thickness of the band. A is the 4p X 4p square matrix where p denotes the
number of band layers. wy, is _obta.ined from the equation

det(A)=0 (2.16)

' any layer of the band is a viscoelastic one then w,, consists of real and imaginary
part. ' : .

and a periodic logarithmic decrement is defined as follows

br = 27_:”‘—2 (2.18)
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After calculating &r one can obtain both the loss factor 7 and the damping
capacity ¥ according to the formulas (cf [4])
ér il : '
n=— ¥ = 1 — exp(—267) X 267 - (2.19)
The formulation (2.15) can be easily obtained, for a band consisting of any

number of stripes, by using of a computer. However computation of the eigenfre- -
quencies is somewhat more difficult. Matrix elements depend on hyperbolic and
trigonometric functions of eigenfrequency i.e. :

Ay = Ap (sin(wm, ve)y COS(Wip y - )y SR Wiy 5 .. ), COBR(W, -..), .u) (2.20)
and because of this Eq (2.16) cannot be transformed to the following one
det(B, — w2B,) =0 (2.21)

where B,, B, are given matrices. Eq (2.21) can be solved by using the standard
software modules.

To obtain solution of the elgenproblem (2.16) the following procedure has been
proposed (cf [12,13,18]) — at first a function F(w,,) = det(A) is derived, then
an eigenfrequency of undamped (elastic) band is estimated, finally a complex ei-
genfrequency of a damped (viscoelastic) system is computed from the equation
F(wm) = 0. All steps of this procedure were realized by the author using of IBM
personal computer. The third step only was carried out by using the standard
subroutine for evaluating roots of an algebraic, nonlinear, complex equation ac-
cording to the Muller method with deflation. The eigenfrequency of undamped
system was useful as an approximative value of the complex solution (eigenfrequ-
ency) i.e., as one of the input parameters required by the standard subroutine. It
was venﬁed that Fortran code nec&ssa.ry for the calculatxons has to be prepared in
double precision.

3. Case of clamped band — new elastodynamic solution

The formulation of the eigenvalue problem in this case has been derived by the
author as a direct development (extension) of the one for the simply supported
band. Therefore this section is more brief than the previous one. On the other
hand the approach presented in this section is essentially quite new as the final
form of the eigenvalue problem derived consxsts of three coupled transcendental
equations.

Let us assume that the origin of the coordinate system lies in the cross—section,
of the band, equally distant from the supports. For convenience the symmetric
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and the antisymmetric modes of vibration are considered separately. For both
symmetric and antisymmetric vibration modes, it is assumed that the displacement
field in the band is of the form

- = -[(6n) =™ ‘{W‘(x) (Gg(z))j%(:‘:)] exp(itwmt)
Uy, =0 (3.1)
u; = [(R) Wi@) + (Fa(2)) Wal=)] expliom?)

where i = —1, subscript j denotes a number of the layer and functions (Gl(z))

(Gz(z)) (F;(z)) (Fz(z)) are unknown. It is assumed additionally that in the
case of symmetnc modes of wbra.txon

Wi(z) = cos(fz) Wy(z) = cosh(z) (3.2)

where S,y are unknown constants. As the displacements u., u, consist of two
parts thus formulae for strains and stresses are also composed of two terms — one
dependent on Az and the other dependent on ,yz.

By using the expressions (3.1), (3.2), constitutive equations of viscoelastic ma-
terial and functions (G1(z)) 5 (Gg(z)) 3 (Fl(z)) N (Fg(z)) (resulting from equ-.
ations of motion) one can tra.Jnsform thé con‘ditionjs (2.12) + (2 14) to the form of
two complex matrix equations, analogous to Eq (2.15)

A1X1'=' 0 ) Agx'; =0 (33)

where both square matrices Ay, Az, as in the case of simply supported band, are
of order 4p (p denotes the number of layers). Let us assume that by using the
left~hand side equation of the set (3.2) one obtains, by applying the procedure
described in section 2, the left~hand side equation in the set (3.3). The same rule
refers to the right—hand side equations of the two sets. Thus the elements of the
matrix A; depend on f and w,, while the elements of the matrix A; depend on
4 and w,,. For nontrivial solutions to the matrix equations one can write

det(A1) = Fi(B,wm) = 0
(3.4)

det(Az) = Fa(7,wm) = 0

In the case of clamped tgchnica.l supports shown in Fig.1 the following condi-

tions have to be fulfiled
. u,(z = ——g,-:: z',t) = u,(:r = %,z-—* z‘,t) =0
(3.5)

urs(z = -
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where 2*is a coordinate of any plane @(z,y) within the band. ¥or instance
&(z,y) can be an outside surface of a band as in Fig.1b. The technical supports
shown in Fig.1 are of great practical importance. However it i§ possible to find
out some other supports modeled by the conditions (3.5).

A
a) [Sieu._ﬂr_l"?LL z ( '
g B o
FFH—— —
T7 77777 4 ‘q x vy ye i
L
; A
- — 4]
& - i
: ' er:
.
X 7
FEE, 4 b gy uppect

Fig. 1. Clamped technical boundary conditions introduced in the paper: a) the band is
bolted, b) the band is stuck to the supports

It can be verified easily that the conditions (3.5) are equivalent to the following
equation .

ﬂtan(ﬂ%):-*yfa.nh@%) e s (3.6)

Eqs (3.4), (3.6) are nonlinear, transcendental and coupled. After solving the set
one can obtain three parameters i.e., constants B, v and eigenfrequency wy,
respectively. To calculate the eigenvectors X;, X; both the equations (3.4) anc one
of the equations (3.5) have to be used. One of the eigenvectors is fully dependent
on the other. Eqs (3.5) establish a relationship between eigenvectors X, X,.

A difference between formulations of the eigenvalue problem for symmetric
and antisymmetric modes of vibration results from the different forms of functions
Wi, W, ineach case. In the case of antisymmetric vibration modes one ought to
assume  W;, W, in the form

Wi(z) = sin(Bz) Wa(z) = sinh(yz) (3.7 |

and then the equation corresponding to Eq (3.6) is of the form-

ﬂcot(ﬂ%) = 7coth(‘y-§) .. (3.8) :
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As far as the author knows, this formulation of the eigenvalue problem for
clamped band is essentially quite new. The Eqs (3.1), (3.5), (3.2)/(3.7), introduced
by the author indicate the formulation novelty. Due to applying the foregoing
equations the problem considered has been formulated for the first time exactly
within the linear theory of (visco)elasticity. Thus both the transverse shearing
deformations and complete material damping characteristics of each layer have
been taken into account. :

As a consequence of the approach reported one obtains a new type of displa-
‘cement boundary conditions (described by Egs (3.5)) for clamped bands. The
conditions are different and in fact more realistic than those discussed by Valisetty
et al. [19] and can be especially useful for investigation of laminated bands as
‘in this case a unique definition of clamping is not available {cf [19]). One of the
main features of the conditions can be expressed as follows: values of an eigenvec-
tor of the eigenvalue problem (thus values of displacements of the clamped band)
‘depend on the way of fastening the band to the supports however values of eigex-
frequencies do not depend on the coupling way. Two identical bands, one of them
supported in the way shown in Fig.1a and the other supported in the way shown in
Fig.1b, vibrate after simultatieous identical short press on the same eigenfrequency
however displaying different displacements in corresponding cross—sections. '

The approach presented here has also been numerically new, within the area of
clamped (both layered and homogeneous) bands, in respect of both the complexity
and the number of final algebraic equations.

Solution to the algebraic problem consisting of three coupled, complex equa-
tions (3.4), (3.6) has been obtained on the IBM personal computer using a Fortran
programme written by the anthor. The programme has been prepared in double
precision. Standard library routines for evaluating roots of algebraic, nonlinear,
" complex equations according to Muller method with deflation have been used. To
solve the problem considéred one has to evaluate the approximative values of three
unknown parameters wp,, B, v and then to use them as the input data required
by the standard routine used for solving the set of algebraic equations. To obtain
the approximative va.lues for a homogeneous band presented in section 4 the follo-
wing procedure has been. applied: at first eigenfrequency wy of the clamped band
has been evaluated according to the characteristic equation of the classical theory,
then (by using wy) the parameter ) has been calculated from the first equation
~ of the set (3.4), then (by usmg D) the parameter 7; has been obtained from Eg
(3.6).

4, Numerical results and discussion

The main purpose of the numerical results presentation is to show the useful-
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ness and accuracy of the solution developed in the present paper. Mathematical
correctness is shown in sections 2, 3 while below it is additionally confirmed by
comparing the eigenfrequency values (for three-layer and homogeneous bands) and
the damping parameters (for layered and homogeneous bands) calculated accor-
ding to the method developed with those obtained according to the theories (cf
[5,10,14,15]) based on Kirchhoff’s assumption. The analysis is limited to the 1-st
and the 3-rd vibration mode of homogeneous band and the 1-st mode of vibration
of layered bands consisting of isotropic layers. _

In order to show the significance of the problem formulation for the quality
(accuracy) of results and to present more carefully the method proposed in this
paper several values of eigenfrequency of the first vibration mode for simply sup-
ported bands/beams consisting of three isotropic layers are given in Table 1. For
each value of the length L the band and the beam have the same correspon-
ding material and geometrical parameters. Symbol wy4; denotes eigenfrequency
of three-layer band. The parameter is calculated by using the method proposed
in this paper. wprz is the eigenfrequency of three-layer beam. This parameter
is calculated according to the following formula, published by errmanskl [10] and

obta.ma.ble from [5],
K
2 K 1 + FZ' + a 2 ?g

Wl = ' - (4.1)
"M 1 4 e
where
Ko = Gales + a? Ky o Eal+ Bk |
ha ; 12
(4.2)
Ky = Eyhyad + Eshadl M = pyhy + paha + p3h3

@, is defined by Eq (2.7), while E;, p;, h; denote the Young modulus, the
mass density and the thickness of the jth layer, respectively G, is the Kirchhoff
modulus of the middle layer (core), symbols. a ,a3 stand for the distances between
the centre of gravity of the cross section of the core and analogous points on the
faces. We note that under two assumptions, first h; = h3 and second E, = E;
one can cerive the formula (4.1) directly from the equation of motion given by
Mead and Markus [5] where notations used by the authors i.e., m, Dy, g, Y can
be expressed as follows

Ks : Ky
= X Y= X, (4.3)

One should remember that we have the plane strain within a band and the
plane stress within a beam. Inspite of the difference occuring in formulations of
the eigenvalue problems (for band and beam) one obtains, for the same values
of materia! constants and geometrical parameters of corresponding layers of the

m=M Dt=KZ
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structures, the identical values of damping parameters for the structures. The
conclusion is drawn from the works by Oberst [14] and Banumgarten & Pearce [15)].
On the other hand an eigenfrequency of a band will be higher than a corresponding
eigenfrequency of a beam when both the material and geometical parameters of the
corresponding layers of the structures are the same. Because of this both w,; and
WMz, given in Table 1, have been calculated for two types of layered bands/beams.
In the case (a) we have the structures composed of stiffness—comparable layers
however in the case (b) we have typically sandwich bands and beams.

Table 1. Comparison of the 1-st mode eigenfrequency values for three-layer
simply supported band/beam: w,; — obtained by using author method and wysz
~ calculated according to the formula (4.1) published in [10] and obtainable from

[5] i

case (a) case (b)
thickness of ! thickness of
- facings - core facings core
hy =hs =25 he = 120 hy = hz =3.9 hy = 3.2
[mm] [mm] [mm] _ fom]
Results : Results
L wA1 wMZ L wa wMZ

[mm] | [rad/s] | [rad/s] | [mm] | [rad/s] | [rad/s]
500 | 46642 | 2908.0 410 | 352.40 3441

750 | 2201.2 1315.0 460 | 284.40 276.3
| 1000 | 1267.5 744.6 510 | 23390 | 2274

1500 | 573.4 3324 560 | 197.00 191.0
| 2000 | 324.6 187.3 610 | 167.69 163.1

Material parameters of layers: | Material parameters of layers:
E, = E3 = 68.9 - 10° [mPa] E; = B3 = 20.7 - 10% [mPa)

E, = 16 - 10° [mPa] E; = 2 [mPa
v = v3 =0.276 m=w1r=025
p1 = p3 = 2680 [kg/m’] p1 = p3 = 7860 [kg/m?]

p2 = 1750 [kg/m?], v2 = 0.3 | pp = 1180 [kg/m?], vo = 0.4

As can be observed in the case (a) the values wy; are almost two times higher
than the values of wysz however in the case (b) the eigenfreguencies wasz are close
to wa;. The inequality wy; > wyz in the case (a) appears due to neglecting in
the eigenvalue problem formulation given by Ziemiasiski [10] both the longitudinal
stresses and the strains within the middle layer (core) of the beam. Thus the
values of wysz in the case (a) are false. 54

On the ground of the results given in Table 1 one can come (among the others)
to the following conclusions: - if the neighbouring layers of the band are stiffness—
‘comparable then dilatational deformations of the core and the material damping
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resulting from the dilatation should sot be omitted. — the solution to the eigenvalue
yroblem for a layered band, developed her:, can be applied to the analysis of
vibration darmping of both classical sandwich bands and layered bands consisting
of stiffeness—comparable layers.

In Table 2 we have shown several values of the loss factor n for two-layer simply
supported band. 77; has been calculated according to the method developed in .
this paper aowever 77 has been read of charts given eisewhere (cf [14,15]). The
factor £) in the Table 2 is defined as follows

S (11 - ’71)109 (4.4)
m

£

As stated by Oberst {14] and Baumgarten & Pearce [15] the loss factor 75 of a
two-layer structure depends on three non—dimensional parameters i.e.,

or hy Eg Eqg
=2 e o Eay 4.5
=T n(hl En 521) 4

‘where hy, h, denote the thickness of viscoelastic layer and elastic stripe, respecti-
vely, however Eji, E;7 are real and imaginary parts of the complex Young modulus
of jth layer. For the elastic stripe (when subscript j = 1) we have E;; = 0.

We notice that the formula (4.5) has been derived by applying the well known
Kirchhofl hypothesis of flat cross-sections. Thus the transverse shear deformations
have been neglected [15]. However neglecting the shear effects in formulation of
the eigenvalue problem of layered beam or band is incorrect. The conclusion has
been confirmed by Oberst during the experimental investigation [14]). Eight expe-
timental results, for dimensionless ratio hs/hy = d,/d; varying within the range
from 1 to 3, presented by Oberst in Fig.10 (cf [14]) have been higher than those
calculated according to the theory based on the Kirchhoff assumption. It seems
to be unquestionable that the fact revealed experimentally has been confirmed in
Table 2. We notice that within the range from 1 to 6 the values of 77y are conside-
rably higher than the values of n;7. It means that the approach given here is more
exact than the theory presented by Oberst and Baumgarten & Pearce [14,15].

Table 2. The loss factors values of the 1-st vibration mode for two-layer
simply supported band: 7; given in papers [14,15] and 7y - calculated, for vep =
0 and vg; = 0.475, according to the method presented in section 2. Dimensionless
parameters Ep /Ey; = C.1, Exp/Ey =1 :

No. 1 2 3. 4 5 6 7 8
ha/hy 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0
nr 1 0.07 0.15 0.24 0.32 0.40 0.52 0.52 0.50

1 0.0897 | 0.2021 | 0.3122 | 0.4027 | 0.4689 | 0.5779 | 0.5521 | 0.5208
£3 28.2 34.7 30.1 25.8 17.2 111 6.2 4.1

a
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Let us note finally that the approach presented here enables us to include into
computations the complete material characteristics (i.e., stiffness matrices) of each
viscoelastic layer (cf [12,13,18]). For instance in the case of isotropic layers we can
take as input data the following complex parameters

E; = Ei;(1 +ing;) vj = vy;(1 + innj) (4.6)

where 1ng; = Ejj/Eyj, tj = v2;/1h; while E; denotes the complex Young
modulus, v; is the Poisson ratio and the subscript j is the number of the layer.

To verify the essentially new formulation of the eigenvalue problem for clamped
band, several eigenfrequencies were calculated and compared with those predicted
by the classical theory based on the Kirchhoff assumption. The comparison has
been limited to the first and third vibration modes of homogeneous bard.

Table 3. Values of flexural eigenfrequency wj obtained according to Eq (4.7)
and parameters £, v, waz = wn fulfiling the Egs (3.4), (3.6) for the 1--st vibration
mode of homogeneous (steel) clamped bands of thickness h = 20 [mm]. Material
parameters: E = 0.2 -10'? [Pa], v =025, 75 =0,7, =0

No.| L [BLI2 ] vL/2 ] ¢ Wk @Az €3 €4
[mm] | [rad] | [rad] | [%] | [rad/s] | [rad/s; | [%] | {%]
340 | 2.37196 | 2.34126 | 1.31 | 5821.4 | 5780.2 | 0.713 | 1.8396
300 | 2.37392 | 2.33461 | 1.68 | 7477.3 | 7409.7 | 0.912 | 1.8457
260 | 2.37684 | 2.32473 | 2.24 | 9955.0 | 9836.2 | 1.208 | 1.8559
220 | 2.38146 | 2.30918 | 3.13 | 13904 | 13675 | 1.675 | 1.8692
180 | 2.38943 | 2.28269 | 4.68 | 20770 | 20271 | 2.462 -1.899'5_4
140 | 2.40488 | 2.23222 | 7.74 | 34335 | 33023 | 3.973 | 1.9469

ofen] | ool v

The numerical results relating to clamped band and obtained here are given in
Tables 3 and 4, respectively. In columns 3,4,7 of Table 3 one can see the parameters
B, % (multiplied by - L/2) and the eigenfrequencies wy, = w4, satisfying Eqs (3.4}
and (3.6). wj denotes the eigenfrequency obtained after solving the following
characteristic equation _

tan(k—g) + ta.nh(k%) = 0= cos(kL)cosh(kL)—1=10 (4.7)

where L is the length of the band and k is defined as follows

2 [3p(1 — 2 .
i3 WER -‘BLE-—Z —— for band (4.8)
wk%\/% - —— for beam

while h, p, v, E denote the thickness, the mass density, the Poisson ratio and the
Young modulus of the homogeneous band/beam, respectively. Eq (4.7) is derived
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Qithin the so—called classical theory which is based on the Kirchhoff assumption
of flat cross-sections. The parameters &3, €3, €4 given in Table 3 are defined as
follows ;

_ (B-7)100 ¥ (waz — wi)100 = A
¥ Wi €3 '

On the basis of the values of wg, ws2 and £3 one can see that the eigenfre-
quencies obtained in the present analysis (given in section 3) are lower than those
calculated from characteristic equation (4.7) of the classical theory. As the clas-
sical theory overestimates the eigenfrequency values, in particular for non—slender
bands/beams [22], thus it has been shown that the new approach presented is
much more accurate than that based on the Kirchhoff assumption. It is intere-
sting to notice that the percentage difference £, between parameters 3, v varies
with the length L of the band in the same way as the difference £3 between the
eigenfrequencies wy and wa4y. As can be seen the factor ¢4 is almost constant.
Thus for slender bands/beams the relationship S = 7 is valid and Eq (3.6) has
the same form as the left-hand side of the expression (4.7).

Table 4. Logarithmic decrement values of the 1-st vibration mode for ho-
mogeneous (steel) clamped bands of thickness k = 20 [mm): érj — obtained
according to author’s method described in sections 2,3 and é7; — calculated ac-
cording to equation (4.7). Material parameters E = 0.2 10" [Pa], v = 0.25;
7 = 0.02, 7 = 0.1

No. 1 2 3 4 oo % T
L[mm]| 340 | 300 | 260 | 220 | 180 | 140
5 0.1047 | 0.1047 | 0.1047 | 0.1047 | 0.1047 | 0.1047
b7 0.1029 | 0.1025 | 0.1018 | 0.1007 | 0.0988 | 0.0955

In Table 4 there are given a few values of the logarithmic decrement for ho-
mogeneous (steel) clamped bands of thickness h = 20 [mm] and different lengths
L. Symbols ng and #, are defined in expressions (4.6), &7y is the logarithmic
decrement calculated from Eqs (4.7), (2.18) while 74 denotes the value of the
same parameter obtained after solving Eqs (3.4), (3.6). One should remember
that both #ng and 7, are not equal to zero. As can be expected values of the
logarithmic decrement &7 obtained according to the classical theory do not vary
with the length of the band. However the values of 474 calculated from Eqs (3.4),
(3.6) are slightly dependent on the geometrical parameter. Besides one has the
relationship é7. > 814. Also it is noticed that as the slenderness ratio of the
band is lower so difference A= bpp— 674 is higher. For L = 140 [mm)] the value
of the decrement evaluated according to the new method is about 10% lower than
- that predicted by the classical theory. Taking into account that the parameters
Wk, é7% have been calculated according to Eq (4.7), however the parameters wy,
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é74 calculated from Egs (3.4), (3.6) one concludes; from the results given both
-in Tables 3,4 and by Huang [22], that the new method predicts (for homogeneous
isotropic clamped band) more accurate and lower values of the logarithmic decre-
ment than the classical theory. This is due to the dependence of the Poisson ratio
on frequency included in the formulation given in section 3.

Table 5. Values of the flexural eigenfrequency wj obtained according to
Eq (4.7) and parameters B, 7, wa2 = wy, fulfiling Eqs (3.4), (3.6) for the 3-rd
vibration mode of homogeneous (steel) clamped bands of thickness A = 20 [mm].
' Material parameters: E = 0.2-10" [Pa), v =025, 75 =0, 7, =0

No.| L | BL/2 v Lf2 €9 Wi W40 €3 £4

o] | [rad] | frad] | [%] | [rad/s] | Trad/s] | T | (%]

340 | 5.53143 | 5.17155 | 6.96 | 31458.3 | 29824.7 | 5.193 | 1.3410
300 | 5.54042 | 5.08749 | 8.90 | 40406.5 | 37786.7 | 6.484 | 1.3735
260 | 5.55345 | 4.96762 | 11.79 | 53795.6 | 49336.0 | 8.290 | 1.4222
220 | 5.57337 | 4.78928 | 16.37 | 75136.0 | 66943.4 10.800 | 1.5018
180 | 5.60590 | 4.50925 | 24.32 | 112240 | 95596.4 | 14.828 1.6399
140 | 5.66440 | 4.03597 | 40.35 185540 146656 | 20.957 | 1.9251

o an| o] no| =

Table 5 contains the eigenfrequencies and the parameters f, 7 (multiplied by
L/2) for the 3-rd mode of vibration of the homogeneous clamped bands. One can
notice that dependence of each of the factors 3, €3, £4 on the length L of the
band is similar to that one observed in the case of 1-st mode of vibration. However
the factors given in Table 5 are generally much greater than those presented in
Table 3. The fact, as regards the factor &3, is very well consistent with Huang’s
predictions [22). By looking at the results given in Table 6 one can conclude that
the logarithmic decrement calculated for g # 0 and 7, = 0 is not dependent on
L. We stress that the numerical results were obtained for some exemplary values
of complex parameters of the constitutive equation (2.8).

Table 6. Logarithmic decrement values of the 3-rd vibration mode for ho-
mogeneous (steel) clamped bands of thickness h = 20 [mm]: &ry4 — obtained
according to author’s method described in sections 2,3 and 67 — calculated ac-
cording to equation (4.7). Material parameters E = 0.2 - 10!? [Pa), v = 0.25,
nE = 0.02, 9, = 0.0 '

No. 1 2 3 4 5 6
Llmm]| 340 | 300 | 260 | 220 | 180 | 140
ok | 0.0628 | 0.0628 | 0.0628 | 0.0628 | 0.0628 | 0.0628
A 0.0628 | 0.0628 | 0.0628 | 0.0628 | 0.0628 | 0.0628
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5. Corcluding remarks

New linear elastodynamics solution for the free vibration problem of layered. vi-
scoelastic bands, both simply and technically supported, has been developed. Both
the shearing and the iongitudinal deformations as well as the complete material
characteristics of each isotropic layer have been taken into account in formulation
of the problem. New type of the displacement boundary conditions at the ends
of the band has been introduced. The approach can easily be extended in order
to calculate the parameters (stresses, displacements and damping capacity) of any
layered band under a sinusoidally varying with time load.

Due to the perfect linear elasticity formulation of the problem considered the
solution proposed can be alsc applied in the analysis of the free vibrations of
classical sandwich bands. Numerical results for such bands obtained by means of
this method closely approximate those calculated according to the other theories
{cf [5,10]). :

Both the eigenfrequencies and the logarithmic decrement values of the homoge-
neous technically supported band obtained according to the new solution presented
in sections 2,3 are lower (thus more accurate) ihan those predicted by the classical
theory. As the slenderness ratio of the band is higher, the better is agreement
‘between predictions of the present solution and the classical theory.
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Nowe liniowe, elastodynamiczne rozwigzanie brzefowggo problemm wiasnego
drgann gietnych lepkosprezystego warstwowego lub jednorodnego pasma

Streszczenie

‘W pracy otrzymano nowe sformulowanie i rozwiazanie brzegowego problenm wlasnego
dla lepkosprezystego pasma, zaréwno obustronnie zamocowanego jak i swobodnie podpar-
tego, skladajacego sie z dowolne) liczby wysokowytrzymalych, wléknistych warstw o poréw-
nywalnej sztywnosci, Wprowadzono nowe warunki brzegowe (zamocowania). Na podsta-
wie wynikéw obliczeniowych, zaréwno dla pasma swobodnie podpartego (dwu- i tréjwar-
stwowego) jak i obustronnie zamocowanego (jednorodnego), otrzymanych po rozwiazaniu
niekonwencjonalnego zadania numerycznego wynikajacego ze sformulowania zagadnienia,
pokazano dokladnos¢ i uzytecznosé otrzymanego rozwiazania.
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