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The paper is devoted to an analysis of behaviour of the densly distributed
chain of spring-mass system moving with constant speed along on infinite
Timoshenko beam on a visco-elastic foundation. The critical velocities of
relative motion were determined on the basis of the kinetic stability criteria.
‘It was proved that the instability regions are esentialy influenced also by a
very small intensity of energy dissipation.

1. Introduction

The problem od self-excited vibrations of continuous systeins under moving
inertial loads or self-excitation of systems with travelling waves has been the ob-
ject of intensive research in many fields of physics and engineering e.f. flutter
phenomena in aeroelastic structures, vibrations of pipes containing fluid or the
wheel-rail behaviour of high-speed trains (cf [1]).

The majority of previous studies devoted to the analysis of critical speeds and
stability regions were restricted to the determination of parameter resonances in
ordinary differential equations. In many cases the solutions were approximated by
standing waves, which can lead to significant differences in the estimation of critical
velocities (cf e.g. [2]). Bogacz et al. [3] gives an alternative formulation of the
problem which yields a solution in the form of travelling waves. Considerations of
the similar but elastic problem, presented Bogacz et al. [4] are interesting from the
theoretical point of view only. For each physicaly real dynamic system an energy
dissipation occurs. As follows from futher consideration that the stability regions
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for systems with travelling waves are particularly sensitive on viscous damping.
Let us consider the stability of the system shown in Fig.1., consisting of a chain
of oscillators moving along a Timoshenko beam on a viscoelastic foundation. The
effect of seif-excitation follows from the interaction between the vibrations of the
moving chain of oscillators and the travelling waves generated in the beam. This
simple mechanical model besides its own practical significance can also give an
insight into more complex and qualitatively new effects appeanng in aeroelasticity
and other fields of physics and engineering.

The aim of the present paper is to determine the critical parameters and the
stability regions of the steady—state motion of the system (cf Fig.1), as a function
of the system parameters, especially the speed of the oscillator chain. The stability
problem will be studied under the following assumptions

e the beam as well as the chain of oscillators are of infinite length

o the speed of the oscillator chain relative to the beam is constant

o the trajectories of the undisturbed oscillators motion are straight
o the friction between oscillators and beam is neglected

o the oscillator chain consists of densly and uniformly distributed discrete one—
degree—of-freedom spring-mass system

o the interaction between the beem oscillators and the surroundmg is assumed
to be viscoelastic
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e the gravitational effects are neglected

o the mass of viscoelastic elements is neglegted

2. Equations of motion

The equations of the beam motion regarding the effects of shear destortion and
rotatory inertia are given as follows

321p 3w1 8%&»
Bl s s + AG(a 0 —¥) —mlgy =0
4 . (2.1)
w0y Pwi ;0w M,
KAG ~mA—5 b= —aw = -m(z;,1)
(8 (1)2 65§1)) o2 ot
where : .
% - rotation angle of the cross section
‘w; - beam dlsplacement in 5( ) - direction
A -~ area of the cross section
E - Young modulus
G - shear modulus
I - moment of inertia of the cross—section area
p1 - — mass per unit length of the beam
k ~ coefficient describing the effective shear area
b foundation coefficient of viscosity per unit length
¢1 - foundation spring coefficient per unit length
-p1 - distributed load per unit length in :1:( ) _ direction

Assuming that the oscillator chain is moving in z( ) — direction, we are looking
for a steady—state solution in form of the travelling waves. At first, let us consider
the case, in which the pressure acting on the beam is given by

! S YA
(el ) = peila(@-u (22)
Then, the displa.cement of the beam takes a similar form

wl(xgl),t) = wloei.k’(f(ll)"”")' (2.3)

where
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ky -~ wave number e
73 - wave velocity in zg ) — direction
p,wye ~— amplitudes of pressure and beam displacement, respectively

We introduce now a moving system of dimensionless coordinates (zj,z3}) re-

lated to the fixed system (Igl),l‘2 )) by

e Y —(1)

of i 2y =2 (2.4)

i 0 .

where iy = \/T/A is the radius of gyration of the cross section. Then, the system

of Egs (2.1) takes the following dimensionless form in the coordinates (zj,z3) for

steady-state

(VE - o)™ + V3(W] ~ %) =0

(2.5) -

(VE = v )WE - 200, W) — W, — V3 4 P =0

where ( )! denotes the derivatives with respect to z}, some abbreviations have
also been introduced

k =0k wy=L m=v—:
%0 “U
V& b
VG = IJE; 'VE = V—f b1 = 2—-——*—;:‘
v c
| Y
/ A &G E
P = P\iT= V‘ = —— V‘- o —_
Ig % B -+ Lo
v = gy ) —
Y

It can easily be seen, that the system of Egs (2.5) is equivalent to one of the
following 4th-order equations

(vF = VE)(oF — VR + 20iby(oF — VEWT + [v2(VE + 1) - V| 9" R
2.7
+2v, b, V! + Viy = PVg;ikeik"‘; :
(of = VE)(v1 — VEWTY + 2miba(o] ~ VEWIT + [od(V2 + 1) - VE| W +
(2.8)
: +201 b, Ve W + V@AW, = P[Vé el - V,})k’] oike] -

In the next part of the study we are looking for both the relation between the
beam displacement and the pressure acting on the beam and the similar relation
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for the oscillator chain. Limiting our consideration to small displacements only,
we assume that the equation of motion of the chain of oscillators is linear

2 2 -
B 63::;2 E T'aa:,’ 3 536;;2 N 52(% _ ?%) +eswy 4 ez —uo) =0 (29)
where .
wy' - oscillator displacement in 59«) ~ direction
*wg - -displacement of the contact points between the oscillator
' springs and the beam
e ~ mass per unit length of the oscillator chain
b3, b3 - relative and absolute viscosity damping coefficients per unit
length, respectively
€3, €3 — 5pring constants per unit length of the oscillator ‘chain
T - tension of the oscillator chain

DescriBing the displacements of the oscillators in terms of dimensionless coor-
dinates (xﬁ” : xg” ), where ::.(,2] = :Ef,z) i, ¥ = 1,2, it follows

~ik(#\ —uat)

1wy = igWoe Wo = const.
: . (2.10)
g = io'er-'ik(’?)'”") Wy = const.
‘Utilizing Eqs (2.6), the pressure acting on the oscillators takes the form,
h(%tvi - %g)+ ea(wg — wo) = ~ Pigeyeik(e?—vat) (2.11}

The system of Eqs (2.1) and (2.9) together with conditions (2.10) and (2.11) com-
pletely describe our problem. The next part of the paper will be devoted to the
solution of the problem.

-3. Solution of the problem

In the coordinate system (z},z3) moving with the travelling wave, the beam
displacement (2.3) takes the form

Wy = Wipe* Wio = const. (3.1)
Substituting Eqgs (3.1) into Eqs (2.8) we obtain the relation '

(02 = V2)(v? = V2K + 21k by (v? — VEYWo + 652)

- [BOB+ )= VAR + Vo = 5 [VE - (o} - VO]
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Hence, the ratio between the ampﬁtude of beam displacement and pressure
can be given as a function of the wave velocity
V- (- R
KACy — k2C, + V2 + 2ikbyon [k2(V] ~ V2) - V]

Ji(vr) = (3.3)

where
Cr = (v} - V@) (v} - V§)

Cs = U?(ch + 1) - VE2

which for the case b = 0 is shown in Fig.2. Some characteristic values of the

.. 'wave velocities are given by the formulae

w=l=3{o-r-n)
o =00 =k 2+ EvE
= =\Y(s- /o -4

where

B=VE+VE+Ek3(VE+1)
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7= VEVE + k72VE + k1VE
The value of the function fi(v1) for v; = 0 reads

=0K = VEé + k*V2
B k2VEVE + K2V + V3

Let us now consider the chain of oscillators assuming that the pressure be-

tween the beam and the oscillators is described relative to the coordinate system
=(2) -(2}
(81 %)

Pn(-’”m t) = pe lkz( )—wt) (3.4)

The relations between the coordinates (z(l), gl)) and (5:52), :Egz)) are
V2 = gt iz =0 (3.5)

. 'From the boundary conditions describing the conformity of displacements and
pressure we have

w; = —wy P11 =P ks = —k (3.6)

B—Ba=U (3.7)
~ where 1y is the desplacement of the contact points between the oscillator springs
and the beam in .59) - direction.

Substituting Eqs (2.10) into Eq (2.9) and using Egs (2.11), we obtain the
relation between the amplitudes of oscillator displacements and the pressure similar

to Eq (3.3)

WID 012 + (13 = 1(b2 + 63)v2 0
G 3.8
f2( 2) é 2(&2 + bzba) + (1203 + l[bz(vz -— a3) - azbg,]vz ( )
where
g3 Cs 2__ €
The £clv"” e
b;
b; = pzkz’v" (‘l 2 3) (3(9)
mA 2 B 2 _ 2. 01
i pak? 2= ya Y

From the conformity conditions (3.6) we obtain

fi{v1) = fa(v2) = $(v1,02) = 0 (3.10)
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form

Hence, the Eq (3.10) of complex form can be rewritten as the equivalent system

of equations with real coefficients which together with Eqgs (3 7) constitutes the
characteristic equation of our problem. Eqgs (3.10) and (3.7) take then the following

[ée(1) + a(v1)(F + babs))

§d(v1)(bz + b3)v2 +
+Ee(n)(a] + @3) — a(v1)aja; = 0

(3.11)
a(v1)byv3 — £d(v1 )03 — [a(v1)a3bs — e(v1)(bs + bs) +
(3.12)
+a(v1)bad] o2 — d(m)é(e] + a3) = 0
vn—-vp=U V= g_— (3.13)
where . '
a(v) = V@ - k’(vf - V@)
e(vn) = KXo} - V@)(o} - VB) - B [}(VE + 1) - VE] + VZ  (3.14)
d(vn) = 2kbym [VE - k(] - VB)] "
Eqgs (3.11) in the elastic case are illustrated in Fig.3 in the vy,v; — plane of
wave velocities. Some characteristic values of the wave velocities are given by the
formulae
[a2
v, =04A= a27

v, = 0B = \/ 47)

v, =0C = \/ 2
where .

v, =0D = \/1 )
v =0F =y
ﬂtZ

Vo2 -41)

(3.15)
=0F = \/ -4y )
ﬁ=vg+vg+h~2(vg+1) g
=2
C2
¥ = VEvE

= Vé +VE+E A (VE+n+1)
7 =VEVE+EWEL kW2
E+i(n+ l)k"zVE +(n+ l)Ic"“V2
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The dependence of the characteristic velocities vz, v, v, and v, on the wave
number k is shown in Fig.4.
Now let us consider the polynomial

M(K) = (o} - VaNe] - VK = [ol(VE +1) - VE|k 4+ Ve (3.16) -

which is the denammator of the function fl(m) From M({k?) = 0 we find t.he
the roots k%, k2

1
o 1

Here

di(v}) = \/A(vz) = i\/:—A( 2
A(}) = (V& - 1)} + 2[2V8 + VA(VE - 1))} + V,g Vi - 4v3)

The polynomial A(v?) has two roots, v3, = v3 but for physical reasons we
have to take only the nonnegative one (v0 >0)

{ 0.5v/A; —2?— / VE(VE-1) M Vo #1
v = (Ve -1) (3.18)
V2(1 - 0.25V3) if Ve=1

where
Ay = 16VE[VEVE+1)-VE]
The velocity vp is the critical velocity of the travelling waves. It can be proved,
that
K} (v3) >0 if VE<VE(VE+1)
j=12 (3.19)
k}(v3) <.0 if VE>VA(VE+1)

but v =Vg if VE=VE(VE+1).

We see irom Fig.4 that the function v, = vg(k) reaches a minimum only if
VE < VA(VZ+1). The minimal value, mgn v5(k) = v,(ko) = vo, is the first critical
wave speed. The corresponding critical wave number ko is given by

Ve(Va+1)- Vg
2 i o\ G E
%(%) = 307 — VI)u3 =

(3.20)
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It can be shown that in the case of VZ > VE(VE + 1) (cf (3.19)), vy = vy(k)
is the monotonic decreases function from v, — o0 for £k -0 to v, - Vg
for k — oo, i.e. the behavior of v, = v,(k) is similar to that of v (k) and
vy (k) shown in Fig.4 and, thus, ko tends to infinity. However, in the case of
- VE < VEVE + 1), of Fig4, there exist finite minimum values v , where
vo < min(Vg,Vg). It is interesting to note that depending on the system para-
meters the range of stability (Us,Us) changes and sometimes even vanishes [4].
From this consideration it follows that the critical speed vy of travelling waves
in the system under consideration, neglecting viscosity, can be smaller than the
minimum possible velocity of wave propagation in the elastic subsystem (which
follows for a2 — 0).

As can be seen from a comparison of the characteristic curves given in Fig.3
with the corresponding ones given by Bogacz et al. [5] for the limit case of a
Bernoulli-Euler beam, the effects of shear deformation and rotary inertia are of
the great influence on the critical velocities of travelling waves. They can change
qualitatively the configuration of the stability regions. In general, the existence of
four critical velocities, which constitute two ranges of unstable motion is possible
(cf Fig.3). For some specific system parameters these regions can merge to one
large instability region as shown in [4].

In the present case, taking damping into regard the solution (2.3) may be
unstable, stable oi asymptotically stable, depending on the value of the velocity
U. Stability of the steady—state solution (3.1) requires Im(kv,) < 0for v = 1,2
and in the case of instability Im(kv), >0, v=1or v = 2. Now we will analyze
the stability behavior depending on the velocity U. First let us observe that
the solution is stable if and only if there exist six complex roots v("), v =12
n=1,2,3,4,5,6, of Eq (3.10) such that '

m(ko(M) <0 gt (4.1)

The plot of the Mikhaylov carve for this case is shown in Fig.5. If the inequality
sign holds the asymptotic stability follows while in case where the equality sign
_ holds the stability follows when the real roots are different.

The reglons S of U for which

51 = {U v,, Im(v,) > 0, &(v,,U) = 0} (4.2)

will be called instability regions. Since the analytical determination of the critica!
parameters is complicated, let us apply a géemetrical approach. The critical value:
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of U at the boundaries of the instability region S; are determined in the (v, v;)
— plane by the straight lines v, = v; — U passing through the intersection points
of the curve Red = 0 and Imé = 0 Eq (3.10).
In the region § = {U : U € [Uiery Uzer] or [Uac,.,-Uw-]}, the solution (2.10)
describes waves ‘with amplitudes increasing in time. Beside this solution there
exists also a trivial solution; thus, according to Lapunov’s instability criterion,
region S is the region of instability, S = §;.

Now let us determine the instability regions for certain particular cases. For the
numerical analysis following parameters of the system were taken as the constant

VG'=1' VE=2 k=1 ) k=1
=1 al=0 =1

The values of dimensionless damping coefficients by, b, and b3 were changed, and
results are illustrated on graphs in Fig.6 = 11. On the basis of the characteristic
equations derived it can be found that the critical velocities depend on the products
of the damping coefficient and their ratios. The characteristic results are illustrated
in the (v, v;) — plane. The curves representing the real part of the characteristic
equations equations Re®(v;,v2) = 0 depend on the product b;d; (i,j = 1,2,3)
and for the case b;(b; + b3) — 0 they are identical with the elastic case. The
imaginary part of the characteristic equations depends both on the products b;b;
and the ratio b,-bj". The curves representing the imaginary part Im®(v,v2) =0
fo_r b,~bj‘g = 1 are shown in Fig.6, and for the cases (b; + bg)b:_,Tl < 1 and
(b3 + b3)b7* — 0 they are shown in Fig.7 and Fig.8, respectively. It is easy to see
that in the case of b;b; — 0, the critical value of the motion velocity is not greater
than that in the elastic 'case, and sometimes the difference is very pronounced
(Fig.8). It can be easily seen that increase of the value of the beam damping b,
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vield reduction of the critical velocity and destabilize the system. For the case of
by = bz = 0.01 and by = 0.1 which is shown in Fig.9, the value of critical velocity
of motion is similar as in the elastic case. The value of critical speed increase when
the coefficients of damping are relatively large (cf Fig.10 and Fig.11).

5. Conclusions

As can be seen from the comperison of results given by Bogacz et al. [4] the
regions of instability for the damping coefficent equal to zero are différent from
those in the case of damping tending to zero (Fig.12). The comparison with results
given by Bogacz et al. [5] shows significant influence of the shear deformation and
rotary inertia on the qualitative change of instability regions configuration.

3
Al

.h-o -—-—i 1 ——

Fig. 12.

“The methods applied and the results obtained for comparatively simple mo-
dels with damping can be extended to more complex systems and, thus provide
additional insight into the problem of the dynamic stability of train-track—systems.
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O wplywie tlhumienia na predkosé krytyezna ukladu usprezynowanych mas
poruszajacego sie wzdhiz belki Timoszenki na sprezystym podlozu

Streszczenie

Prace poswigcono amnalizie zachowania laficucha ggsto rozlozonych oscylatoréw poru-
szajacych si¢ ze stala predkoscia wzdhuz nieograniczone) belki Timoszenki na lepkospre-
zystym podlozu. Okreslono predkosci krytyczne wzgledmego ruchu stosujac kinetyczne
kryterium stabilnosci. Wykazano, ze uksztaltowanie obszaréw niestabilnosci jest w istotny
:lposob zalezne od energii dysypowanej ukladu nawet przy niewielkie] mtensywnoéci

umienia.
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