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The work presents the applicability of the exponential-type functions to the
description of linear viscoelasticity in polymers. These functions can be trea-
ted as memory functions and are apphed to the constitutive equations which
consist of the Volterra integrals. The equations are included in the theory
of viscoelasticity which is mathematically coherent. This enables the evalua-
tion of all functions neccesary to describe a viscoelastic body such as spectra,
components of complex modulus and compliance, etc. A new memory func-
tion competitive to the ones previously used is introduced in this work.

The suggested description is verified with the help of complex rheological
tests. The numerical values of the parameters in the constitutive equations
are calculated based on a simple creep test. To verify these values, another
type of rheological test is applied and the obtained, experimental curves are
compared with numerical simulation based on the formerly calculated para-
meters. .

Apart from the purely phenomenological verification, a comparison is made
between the molecular weight distribution curves and the curves calculated
from the newly introduced memory function. A good convergence of the cu-
rves which simulate the rheological processes as well as the spectral curves
with the experimental results confirms the proper structure of the function.

1. Introduction

Polymers are viscoelastic materials. That is why the calculating methods usu-
ally applied to classic materials like metals cannot be used for engineering cal-
culation of strength of plastic elements. In order to perform the calculations in
a proper way, an appropriate description of linear viscoelasticity should be esta-
blished. This kind of description consists of constitutive equations which contain
the so called memory functions. Finding a proper form of those functions is a
complicated mathematical task.

The attempts to create this kind of description were intensively undertaken
in the sixties. Due to the serious mathematical difficulties which arose, many
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authors gave up this method and switched into purely numerical solutions. Thus

this question remains open so far.
This paper presents the critical analysis of the memory functions known in

the literature and introduces a new, original function named ”root function”. The
purpose of this paper is to demonstrate the possibilities of the new function and to
remind the potentials of the analytical methods which seem to be forgotten. The
theoretical assumptions have been verified by the static rheological tests performed
at a complex program of load.

2. Theory

A classic, linear-viscoelastic, isotropic body can be described by two alternative
forms of the constitutive equation

t
ei;j(t) = sgg) + -2-%/¢(t — u)s;;(u)du (2.1)
0 t |
3i;(1) = 2Gei;(t) - 2Gw / U(t — w)es;(u)du (2.2)
0
where
eij(t) - shear strain
sij(t) -~ shear stress
G - parameter related to the Kirchoff modulus
W — Pparameter
#(t) - memory function of creep
¥(t) - memory function of relaxation.

The description given above represents the deviatoric component of the stress
and strain tensors. For the hydrostatic component the description is analogous
and shall not be quoted.

The mutual relation between the memory functions #(t) and ¥(t) can be obta-
ined by applying Laplace transform to both equations (2.1) and (2.2). The result
is

; &(p)

(p) = 14 wd(p) (2:3)
Constitutive equations (2.1) and (2.2) enable us to define certain distribution func-
tions A(s) and I1(s) as

(1) = / A(s)s exp(—st)ds (2.4)
0
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v(t) = /H(s)sexp(—st)ds (2.5)

where 7 = 1/s is a characteristic time constant. Distribution functions A{s) and
II(s) are related to the spectra of creep f(r) and relaxation g(7) respectively by
the formulae

f(r) = %32/1(3) (2.8)

9(7) = 2Gws* I (s) (2.7)

Eqs (2.6) and (2.7) enable us to find the correlation between the phenomenological
behaviour of the material and the structure of it.

We may convert the r—scale into the M—scale (M—-molecular weight) utilizing
the well known formula

r = AMF (2.8)

In such a case, new function f(M), in accordance with formula (2.6), will
be equivalent to the molecular weight distribution function D(M). Usually it is
assumed that k =2-35, A = 1.

Function D(M) is normalized to unity

/ D(M)dM =1 (2.9)
0

Thus the integral of the equivalent function f(M) should also be convergent to a
finite value

/ F(M)AM < +oo (2.10)
0

By applying a normalizing coefficient, convergence to unity can be obtained.
Substituing Eq (2.8) into Eq (2.6) we obtain the definite relation between the
distribution function A(s) and the molecular weight distribution function f(M)

w 1 1
If a viscoelastic material undergoes dynamic vibration, it can be characterized by
the complex shear modulus G*. Its real component is related to the storage of
energy, its imaginary component — to the loss of energy. Complex modulus is
obtained by applying the formula
2 .8"(t)
G*(n) = lim =L~ .
™= e (212
where ¢;;(t) = eijo(t)exp(int) (n — frequency), s;;(t) is calculated by substituing
for e;j(t) described by the given formula into Eq (2.2) and by performing the
integration.
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3. Creating memory functions

Searching for new memory functions is the main theoretical problem of linear
viscoelasticity. These function should meet certain requirements which can be
listed as follows

¢ should be relatively uncomplicated
‘s should be positive and monotonically decreasing to zero
o their integrals should be convergent to a finite value

e their Laplace transform should be uncomplicated

e calculation of the related viscoelastic functions (moduli, spectra) should be
possible

e should be "flexible” i. e. easy fitted to the experimental data
o their numerical tabulation should be effective.

The additional requirement is that the related MWD (molecular weight distri-
bution) function should have the desired character of plot i.e. it should increase
from zero for M = 0 to a maximum and then decrease to zero for M — oco. In
addition, the integral of this function should be convergent to a finite value (Eq
(2.10)).

To fulfill all the listed requirements simultaneously is a difficult task. Mutual
recalculation of $(¢) and ¥(¢) is in most cases the main obstacle.

All the requirements are met by the exponential function !P(t) = aexp(—at).
Its application was described elsewhere (cf [3,4,5,6]). So far most of the functions
suggested in the literature is derived from the exponential function. This is why
they are called "generalized” or "stretched exponential” functions.

3.1. Fractional function

A simple exponential function can be represented by the series

aexp(—at) = —a Z( nHm ((m)m—)'

If we introduce Euler function I'(m) = (m — 1)! into Eq (3.1), it can be rewritten
as

(3.1)

)mv—

evalt) = aZ( G (3.2)
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where 0 < v < 1.

This function called fractional function was worked out by Wilczyniski [%,10}
on a Mittag-Leffleur function [11] as the theoretical basis.

In practical application the integral of the fractional function is often used

alt) = [ ety = = 3 (- BT (33)
0

The plots of both the fractional function e,,(t) and its integral e}, (t) are
presented in Fig.l and Fig.2. The figures let us assume that this function is wery
flexible.

Both the fractional function and its integral can be converted into the integral
representations

a u
valt) = = —aut ' C
evalt) 7 sm(IIV)b/exp( aut) T+ 20 cos(TT0) u2udu (34)
3 ® v—1
e.t)=1- sin(v) exp(—aut) i du  (35)

14 2w cos(ITv) + u®

Papers [12,13,14] were applied while performing the conversion.
The asymptotic properties of the function are as follows

lim e,,a(t) = }mé €,(1)=0
t]i%lo eua(t) =0 tli%lo e;a(t) =1
1

Ofe,,a(t)dt =1 | éua(p) = :@71.

The fractional function can be applied directly as a memory function

&(t) = evalt) (35)
v(r) = 220 (3)

where

ﬂ = a(]_ + w)% (3.73)
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Fig. 2. Plots of the integral of the fractional function e} (t) for a = 1
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The memory functions represented by the given above formulae make it possible
to determine the distribution functions A(s), JI(s) in the forms

v—1
a) A(s) = sinI(II‘I!u) ' . y(-a-) -
1+ 2(;) cos(lTv) + (;) 68)
b e a0 (8)°

51 +w) 1+2( ) cos(lIV)+( )u

It can be seen that both the functions are identical, they differ only in the shift

of the argument.
The MWD-function, according to Eq (2.11) will be

_ sin({lv) (;']:_{F)y—l 1
T =561 1+2( ) cos(ITw) + ()™ M* o

This function has the limits
Jojon=e  gm 00 =0

so it is monotonic decreasing which does not fulfill the requirement concerning
the character of plot. It is the main disadvantage of this function which has all
advantages including flexibility.

The components of complex modulus and compliance can be presented in the
form '

1+(3) cos B

Cra(s) s 2

J'(n) = % [1 tw =] (3.10)

J'(n) = 2G 1+2( ) cos%l+(§)2" (3.11)
: 1+ (%)ycos gv
G'(n) = 2G[1 A 1+w 1+2(2,) s 2(%)2,] (3.12)
G"(n) = 2G (%) cos% (3.13)

o 1+2(3) cos B+ (3)”
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3.2. The attempts to generalize fractional function

There are many different possibilities to generalize the fractional function.
RZanicyn [15] suggested in 1968 to treat the transform (Eq (2.3)) in a particu-
lar way. If the transform of the memory function of relaxation ¥(p) is assumed to
be the transform of the new hypothetic memory function of a creep i.e. if we as-
sume that ¥(p) = &,(p) = &(p)/(1 +wP(p)) and then if &;(p) is again substituted
into Eq (2.3), the following result will be obtained

$(p) _  ¥(p)
T wbi(p) - 15 28() (3.14)

This substitution can be performed w—times. The so obtained transform of the
new function can be written in the form :

é1(p) =

‘éw(p) = T% (3.15)

where &(p) = €,4(p)
The transform of the memory function of relaxation will be

1 1

v,(p) = — (3.16)
1+(w+1
Do 14 [ ratae)
The originals of this functions can be thus obtained
1 .
Pult) = T omem(t) (3.17)
1 S '
Vp(l) = ——————e,,(¢ .
0= e (3.18)
where
T=a(l+ ’ww)% (3.19)
p=all+(1+ w)w]% (3.20)

It can be seen that formulae (3.17), (3.18) end formulae (3.6), (3.7) respectively
which represent the fractional function are similar.

The new w-parameter which appears in the latter function could increase its
flexibility. The following analysis will prove, however, that this function is not a
novelty if compared to the fractional function.

Formulae (3.17) and (3.18) can be rewritten in the symbolic form as

B,(t) = He,(2) (3.21)

¥, (t) = He,,(t) (3.22)
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where
1
H= (3.23)
1 4 ww
_ 1
1+ (1 +ww (3.24)
Comparing formulae (3.19), (3.20) and {3.23) it can be found that
p=~(1+ Hw)s (3.25)

Formulae (3.23) and (3.24) enable us to evaluate the relation
0= (3.253)
In this way the w-parameter has been deleted and replaced by the H-parameter.

If the functions (3.21) and (3.22) are substituted into constitutive equations (2.1)
and (2.2), the following equations will be obtained

.J(t)—s”(t) . G euy(t — u)sij(u)du (3.26)
sis(t) = 2Gess(t) — ff“’fl eun(t — w)ei; (u)du (3.27)

In the above equations the w— and H-parameters do not appear separately but
as a product Hw. It means that equations (3.26) and (3.27) would be identical to
the similar equations written for the fractional function. It is because the relations
between the parameters o and 5 (Eq (3.7a)) and between the pa,rameters p# and

v (Eq (3.25)) are identical.

The conclusion is that this kind of generalization does not give positive results
as no new function is created.

Another possibility of the fractional function generalization is to apply the
value v > 1 to the series (3.2) or to the integral form (3.4).

For the series, a complicated analysis (cf [14,15,16]) leads only to negative
results which are summarized in Fig.3.

For the integral form, the character of spectrum f(M) (Fig.4) is as desired. It
appears, however, that the calculation of the function ¥(t) based on the known
function @(t) is not possible. After some complex transformations the final result
is



442 J.GARBARSKI

¥(t) =) res+ al—sin—(l%I—Vl,/exp(—aut)u"[l + 2u” cos(Tv) + u?] -

2w ¥/
-{1 + 2u” cos(MTv) + w[1 + u” cos(Tv)] + T[ucos — +1]-

1+ 2u* cos(lTv) 4 u?¥ }—l 1

. : 3.28
1+ 2ucos(fIv) + u? w3u?¥ sin(MTv) (3.28)

ort
altizae™ ¢ Measinat ey (1 g[ .2e°‘go.s(‘(-zlut.!3!)]
K v 42 3
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Fig. 3. Applicability of the series representation of the fractional function
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Fig. 4. Plots of molecular weight distribution function f(M) for the fractional function
at different ranges of v

In the given above formula it is not possible to calculate the residua, it does not
seem possible to prove that they do not exist either. If the function is written as
the strict integral, it will be very difficult for the numerical tabulation because the
positive and negative components of the function will mutually delete one another.

Thus the impossibility of recalculating $(t}, ¥(¢) makes the result negative.
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The next possibility of generalizing the fractional function suggested by Kol-
tunov [18] is to apply the product of the fractional function and the simple expo-
nential function

)
B(t) = evas(t) = [1+ ()] exp(=bt)esa(t) (3:29)
This function fulfills all the listed previously requirements and its Laplace trans-
form is Y .
) = 1) (3:30)
€vas(p) = —F oo :
()
The memory function of relaxation written on the base of Eq (2.3) has the form
v(t) = v .
(t) = s evss(t) (3.31)

where )

p=afi o+ ()]

The newly obtained function can be rewritten in the form
§\v1 sin(llv) T
evas(t) = [1 + (Z) ]a——I—I—/e.xp[—(au + 6)t] -
0

ull

1+ 2uv cos(lTv) + u? du (332)
t .
Sat®) = [ evas(w)in =11+ (2)" 22U,
0
o0
uV
s d
J exp[—(au + 6)t] (@u )1+ 20" cos(T o) & uzy)uu (3.33)
The spectral functions are ex'pr'e.ssed by the formulae
’ ! =5\Y
6 \vysin(ITv) (T)
A(s) = [14 (= . _ (3.34)
{ (a) ] IIs 1+2(_,§£) cos(ITv) + (’;_6)2
2—5YY
2 §\v1 sin(ITv) (T) _
H(s) = [1 * (E) ] HS(I +UJ) 142 =8\Y I =5 L (335)
+2(%52) " cos(Tv) + (%5%)
If we apply formula (2.11), the spectrum f(M) will have the form
. I/M*—5\¥
&\ vy sin(lTv o
s =14 () (Iv) ( ) (3.36)

ITMFE 14 ?(l[hi"—s)" COS(IIU) n (l!h‘l:—s)zu
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The plot of the spectrum will be monotonically decreasing from infinity for
M = 0 to zero for M = 1/6 (Fig.5).

HM) 4

~ o
- /
5%  m
Fig. 5. Plot of molecular weight distribution function f(M) for the Koltunov function

Cral (t)

In conclusion, this function also does not fulfill the requirement concerning its
plot. As the application of this function seems to be unuseful, the derived formulae
which describe the components of the complex modulus and compliance will not
be presented.

Several other functions suggested in the literature (cf [17,18,19,20]) have been
analyzed. One of the interesting function is the Williams-Watt fractional function

() = exp|[-(at)’] (3.37)
where 0 < v < 1. .

The obtained results are negative, mainly due to the impossibility of recalcu-
lation of the memory functions ®(t), ¥(t).

3.3. Root function

As a result of a thorough investigation, a new function has been found.
This function is represented by the formula

3
U2

, AB o]
eap(l) = ——H—b/exp(—ut) (Bu-17 +A2udu (3.38)
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and its Laplace transform is

1
_ 1+ Ap?
eap(p) = —1—— (3.39)
1+ Apz + Bp
The memory function of relaxation can be presented as
() = ! eac(t) (3.40)
= 1+w AC .
where C = Hiw'

It can be seen that this function converts into the exponential function for
A = 0 (see Eq (3.39)).
The integral of this function has the form

[o o] 1
. AB ul
eup(t)=1- T b/exp(—ut) (Bu- 17+ Azudu (3.41)

Due to the exponent (1/2) which is a characteristic feature of the Laplace transform
(Eq (3.39)), this function has been called "root function”.

The root function as well as its integral can be transformed into the form more
convenient for numerical tabulation

o0 3
Ala uz
CAlB(t) = T-o/exp(-—aut) mdu (342)
AT 3
- u2
eAlB(t) =1- -ﬁlfexp(—aut) mdu (3.43)
1™
0
where
1 1
'Al = ,A.B_5 a = E

The memory function of relaxation can be transformed in an analogous way as
previously presented memory function of creep. It can be expressed by the formula

¥(t) = T —edn(t) (3.44)

where
A2=A1(1+w)% y=a(l+w)

The plots of the root function as well as of its integral are presented in Fig.6
and Fig.7.



J.GARBARSKI

446

[ = » 10} (3)°'Vs wonpoung 1001 jo sjord ‘9 ‘1

- 0§

- 0S¢

()"

5.0

- 005

~ 000}

0044




DESCRIPTION OF LINEAR VISCOELASTICITY OF SOLID POLYMERS 447

? O; R 1(t)
1 -r ! . i BT
08 - _
D
064 4 M
// Aqz1
o,ki’ ' 016
A1= 0,3
0,2¢ Ay=0.1
= — ' t
DR Ty RS ;—‘;‘m P =777 T 7Y r~rr—
‘ -5 -6 1_3 -2 ! f i 1
10 10 10 10 10 1 10 100

Fig. 7. Plots of the integral of the root function e} ,(t)

The components of the complex modulus and the complex compliance can be
written as follows

1

1+ 432 +34,(2)?

1
S =3gll+ (3.45)
U (2) + () - mz(3)°
J'(n) = 2 éil(%")% ~a (3.46)
26 1+ A72 + (3)2'*'141(%")% _Als(gaﬂ)%
1
n 34 ()7
6'(n) = 261 < HAE”“Az(Z) 647
T e a3z (2) 1 ()" - A2 ()
1
G"(n) = 26 é%(%vn) -5 : (3.48)
= 1 : .
T e+ (3 () - a2
It is possible to calculate the distribution functions as
1
As) = 2 (3)° (3.49)

Ha (2 1)2 + A22

[+ 4
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1
A (‘%) ’

H‘)’(l +w) (;"; _ 1)2 + A%% (350)

II(s) =

The MWD function can be rewritten basing on formulae (2.8) and (2.11) and
it will be
1 )2
= (aim) 1 (3.51)
T Ha T, A M* '
(s = 1) +amx

f(M)

The asymptotics of the function f(M) are the same as for the fractional func-
tion i.e. the plot is monotonically decreasing from infinity to zero for M € (0, )
for k > 0. Such character of plot does not meet the previous requirements. If
we consider, however, a function defined by Eq (2.11) but with the factor 1/M%*
truncated, the function f'(M) obtained in such a way called incomplete MWD
function will have the form

. A ()
fM) = o —— = —— (3.52)
(a3 =) + e
It has the asymptotics
iy JM) = 0 i, S0 =0

for each k& > 0.

Thus the plot of the incomplete MWD-function will be in accordance with the
requirements.

The integral of the incomplete MWD-function will be convergent to a finite
value

/ F(M)AM < oo (3.53)
0

for each k > 2.

It can be concluded that in the case of the root function it is possible to separate
the incomplete MWD-function f(M) which can be directly compared with the
MWD curve obtained from traditional GPC (Gel Permeation Chromatography)
methods. Such a comparison will be presented in the next chapter.



DESCRIPTION OF LINEAR VISCOELASTICITY OF SOLID POLYMERS 449

4. Experimental

4.1. A complex program of deformation

In order to verify experimentally the described function, a complex rheological
program of deformation has been applied. The experimental curves of stress and
strain vs. time were compared with the numerical simulation based on the applied
memory functions. '

The selected material underwent the following rheological process

— deformation at a constant strain-rate €

— creep at a constant stress o

— relaxation at a constant strain ¢

— relief at a constant strain - rate €

— recovery at the stress equal zero.

dit)d 1= I I 1iv v

=
:g‘ 6=const |Eczconst T 6=0
' ' Rt
1 6(t,) | '-':
I _

&(t’)f

Fig. 8. Complex, five-steps program of deformation

The first two steps were utilized for the evaluation of the parameters of the
constitutive equation; the next ones — to verify the obtained results.

This method enables us to eliminate the fluctuation of the properties of the
material from one sample to another because only one sample can be used both
to evaluate the parameters and to verify their values.

The constitutive equations described each of the five steps of the rheological
process.
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The material underwent uniaxial stretching; that is why the symbols used differ

from those in Egs (2.1) and (2.2).

It was assumed that both deviatoric and hydrostatic components of the strain
tensor were described by the same function. This simplification seems to be ac-

ceptable.
Finally the five steps will be described by the following equations

— first step — deformation at a constant strain-rate £
t€[to,ts), €(t)=ét

t
o(t) = Eét — Ewé / (1 — v)udu
0

— second step — creep at a constant stress o
t € [tz,t,], o(t) = o(t:) =const

g(t) = 1(1%—)- + %/ﬂt - u)o(u)du + w-a—(Eff—)/ﬂt-—_ u)du
) ts

where a(u) should be calculated in the first step;

— third step - relaxation at a constant strain e
t € [ty,t:], &(t) =e(t,) = const

te
o(t) = Ee(ty)— Ewé / W(t - v)udu —

ty t - '
- Bw / U(t — u)e(u)du ~ Buwe(t,) / ¥(t - w)du
ol ty
where €(u) should be calculated in the second step;

— fourth step - relief at a constant strain-rate ¢’
te [t,,tw], E(t) = E(t,) +é . (t- t,)
ts
Efe(ts) + € - (t - t,)] — Ewe / W(t — u)udu ~

to

a(t)

- Ew/ﬂ’(t - u)e(u)du — 'Ewe(t,)/‘ﬂ’(t — u)du —

Ew / W(t - w)e(ts) + & - (u ~ t,)]du

tx

(4.1)

(4.2)

(4.3)

(4.4)
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where £(u) should be calculated in the second step;

— fifth step — recovery at the stress equal zero
t>t,, ot)=o(t,) = const

wa(t

e(t) = U(tw) /Q(t u)o(u)du + —— z) /!P(t —u)du + (4.5)

+%/45(t - wo(w)du + %/;zs(t - wo(w)du + ‘ﬁ%t/ B(t — u)du

where o(u) should be calculated in the first, third and fourth steps respectively.

4.2. Material tested and the testing device

The experiments were performed on polycarbonate "Lexan” (Du Pont ~ USA).
Paddle — shaped samples were cut mechanically from the injected plate of the 6
mm thickness. Cross section of the samples was 8 x 6 mm, the gauge-length - 55
mm. The samples were stored for 10 days in the vicinity of the tester and then
heated for 24 hours in the heating chamber before the experiment started. The
presented results are average values from 5 different tests. All tests were run on
an originally designed tester which was described in detail earlier (cf [21]).

4.3. Discussion of the results

In order to obtain the best curve fitting for the first and the second step of the
process, the least'squares_ method was used.

The calculated parameters for the tested polycarbonate are presented in the
following table

Mater- _ root function " fractional T.
ial E w [A] a [4A % v a g
[MPa/%] | (1] [[1) ] (1/h] [ (1] | [1/h] | (1] | [1/h] | [1/h]
PC 11.99 0.73 (40 [ 6-e7° | 52 [ 104-¢7° | 0.5 [ 88-¢3 | 0.263

The plots of the process as well as the simulation with the help of the fractional
and the root functions are presented in Fig.9. It can be seen that both functions
are suitable to simulate the process. It is confirmed by the least square delta A
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DESCRIPTION OF LINEAR VISCOELASTICITY OF SOLID POLYMERS 453

which was defined as

A= Zn:(e.' exp — i calc)z . _(4.6)

The values of A calculated in the first and the second steps should be as small
as possible and create the criterion of the curve fitting. Their values are: A = 0.109
for the fractional function and A = 0.061 for the root function respectively. It is
interesting to compare the simulation of the process with the help of the two de-
scribed functions to the simulation in terms of the double exponential function (cf
[6]). It can be seen (cf [6]) that the double exponential function gives a better re-
sult (A = 0.0102). This result is unexpected; it should not be, however, concluded
that the double exponential function simulates better the phenomena of viscoela-
sticity. The complexity of the mathematical description (Eqgs.(4.1) + (4.5)) and
the resulting possible numerical errors are more likely to be the reason. We:should
note that the exponential function enables us to use the ready analytical solstions.

Another reason may arise from the fact that in a viscoelastic material during
uniaxial stretching test both the deviatoric and the hydrostatic components of the
strain tensor occur. Consequently, the basically better (but single) functions used
in this paper may give worse simulation than a very simple double exponential
function.

The interesting thing is a very good convergence of the MWD—curve obtained
from the traditional GPC method and the curve calculated from the presented
rheological tests (Fig.10).

It should be noted that the function f(M) which represents the relation be-
tween the molecular weight distribution and the distribution of the time constants
is formally not proper and may have only a qualitative application. Even though
this disadvantage occurs, the convergence of the curves is very good. The conc-
lusion is that searching for new memory function which permits for this kind of
correlation should be continued. It seems that the fractional function represented
by the integral for v > 1 has rather good prospects. The difficulties concerning the
mutual recalculation of the memory functions could be solved numerically. The
methods used in creating the root function (Eq (3.39)) could probably be utilized
in working out new formulae. It should also be stressed that the possibility of
- determination of molecular weight distribution based on a rheological test is of an
important practical use.

The traditional gel permeation chromatography method can be applied only
to soluble plastics as it tests different concentrations of solutions. This is why the
worldwide chemical companies focus their attention on the rheological methods.
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Fig. 10. Comparison of the MWD—curve (continous line) for the polycarbonate ” Lexan”
and the function f(M) (broken line) calculated from rheological tests

5. Conclusions

1. Two of the analyzed functions used as memory functions in the constitutive
equations of viscoelasticity are suitable for the simulation of the material
behaviour. They are: the fractional function and the root function.

2. The root function introduced in this paper allows for a correlation between
the behaviour of the material in macroscale and the structure of the material.
The methods used in creating this function could be utilized in working out
new, competitive functions.

3. Further developement of the fractional function represented by the integral
for v > 1 may bring interesting results.

4. The significant aspect of this work is the possibility of the molecular weight
distribution determination basing on relatively simple rheological tests. This
method is competitive and more universal compared with the traditional,
chemical methods.
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Zastosowanie wybranych funkcji pamieci do opisu liniowej lepkosprezystoéci
polimeréw konstrukcyjnych

Streszczenie

Praca przedstawia mozliwoci zastosowania funkeji typu wykladniczego do opisu li-
niowej lepkosprezystoici polimeréw. Funkcje te spelnia)g role tzw. funkcji pamieci w
rownama.ch konstytutywnych, ktorych istotnym elementem s3 catki Volterry. Réwnania
te sa czeScia ogdlnej teorli sprezystosci, ktora jest systemem matematycznie spéjnym.
Umozliwia to wyznaczenie wszystkich funkcji charakteryzujacych cialo lepkosprezyste ta-
kich jak widma, skltadowe modulu 1 podatnosci zespolonej itp. W pracy tej wprowadzono
nowa funkcje pamieci konkurencyjna w stosunku do funkcji znanych.

Zaproponowany opis zostal zweryfikowany przy uzyciu zlozonego programu badarn reo-
logicznych. Wartosci liczbowe parametréw réownania konstytutywnego wyliczono w oparciu
o probq pelzania. Weryfikacja polegala na zastosowaniu odmiennego rodzaju badania i na
poréwnaniu otrzymanych w ten sposéb wynikéw z symulacja numeryczna wykonana, przy
zastosowaniu wyliczonych uprzednio parametréw.

Niezaleznie od weryfikacji czysto fenomenologicznej, dokonano poréwnania rozkladu
masy czasteczkowej z krzywa wyznaczona na podstawie nowo wprowadzonej funkcji
pamigei. Dobra zbieznosé zaréwno krzywych symulujacych procesy reologiczne jak i krzy-
wej rozkladu masy czasteczkowej z wynikami eksperymentalnymi potwierdza wlasciwy
dobdr funkeji pamieci.

Praca wplynela do Redakcji dnia 2 pafdziernika 1990 roku



