MECHANIKA TEORETYCZNA
1 STOSOWANA

-Journal of Theoretical

and Applied Mechanics

2, 30; 1992

DYNAMICS PROBLEM OF MECHANICAL SYSTEMS WITH
UNILATERAL CONSTRAINTS

STANISLAW KUKLA
BoGDAN POSIADALA
BOGDAN SKALMIERSKI

Technical University of Czgstochowa

MACIE) TYLIKOWSKI

Silesian Technical University

Two examples of systems with unilateral constraints are studied in this work.
First system concerns a movement of the table tennis ball between rackets
with consideration of the air resistance whereas the second one determines a
motion of the rolling mill coupling as the result of a clearance existing in one
of the universal joints. An elastoplastic type of impact has been considered
in both examples what corresponds to the coefficient of restitution (during
impact) ranging from zero to one. The initial-value problems for motion of
the systems has been formulated and numerically solved. For solving the
problem the Runge-Kutta method of numerical integration of equations of
motion has been used.

1. Introduction

In solving problems of analytical mechanics the consideration of constraints,
which infiuence equations of systems motion being formulated, is a very impor-
tant problem. At the end of XVIII century the problem of holonomic constraints
has been formulated and solved by Lagrange [1,2,4]. In the subsequent years va-
rious forms of anholonomic constraints and other two—sided constraints have been
studied.

Amongst all the types of constraints, bounding motion of the system, the uni-
lateral constraints which express relationships between coordinates of the system
in form of inequality one may regard as a kind of curiosity in mechanics. Gene-
rally, in this case only a surface or a curve limits the range of space the system
can not leave beyond. In spite of the fact that this type of constraints has been
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known for a long time, process of taking into consideration the constraints equa-
tions and formulation differential equations of motion in the regular form (without
singularities) within infinite time interval have been just solved in the seventieth
[3.5.6].

To the range of practical problems for which the description of the system
motion requires introducing the unilateral constrains, belongs the phenomenon of
impact.

For the systems with unilateral constraints the problems to be solved may be
divided into two cathegories: kinematic and dynamic.

Kinematic problem is when on the grounds of the known state of the system
before impact its after-impact state should be determined. Problems of this type
constitute known part of the theoretical mechanics called theory of impacts. They
are reduced to the solving of the algebraic equations system by using commonly
known methods.

Dynamic problems allow one to investigate deeper the heart of the impact phe-
nomenon. They also make it possible to take into consideration and to determine
forces and motion of the system in terms of various models of interaction. In the
theory of vibration the equations of motion describing different systems with im-
pacts are still under consideration, because of difficulties which arise when solving
them. This state of things is caused by two reasons.

Firstly, in equations describing constraints very inconvenient for transforma-
tion eiements arise. The idea of taking them into consideration (the elimination
of unilateral constraints equations) in the way like for systems with the simple
constraints proves to be unrealizable.

Secondly, this operation is considered to be unnecessary because constraints
of the system between two impacts may be regarded as linear. Then in the time
interval corresponding to the constraints, equation of motion of the system may be
found. State of the system at the end of the time interval for one form of motion
is used for establishing initial conditions in the next time interval. Such method
of assignment practically leads to the labor-consuming transformations in order to
formulate equations of motion in form which is simpler to solve.

Among systems with unilateral constraints the significant group constitute
the systems with the clearance. In equations of motion describing dynamics of
the systems with clearance, constraints are considered through the appropriate
characteristic of reactive forces. Generally, in the range of clearance the force
equalls to zero and in the case when displacement of the system is greater than the
clearance dimension, the reactive force is determined on the grounds of a certain
characteristic related to the material properties of objects taking part in the impact
process. Respective characteristic of forces are analytically approximated with the
use of the Heaviside function. The characteristic assumed in such a way is a
continuous function but non—differentiable in limited number of points.
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This problem is connected with the necessity of solving highly nonlinear sy-
stems. The approximate methods of equation linearization, applied in the vibra-
tion theory simplify the solving procedure of equations of motion, but usually cause
the large errors in obtained results in the problem in question. Polynominal appro-
ximation of the non-linear force characteristic, because of its non-differentiation
in certain points, is also burdened with errors in model of the system itself and
generally, does not allow to avoid numerical method of solving the problem.

The method of special transformation of coordinates applied by Ivanov and
Markeev as well as by Zhuravlev [3,5,6], in order to obtain equations of motion
(corresponding to the system ‘with unilateral constraints), that are determined in
the whole time interval of motion, generally, has an apphcatlon for systems with
coeflicient of restitution equal to one. :

Moreover, all this methods, with the exception of the method of linearization
and systems with their characteristics being of the intervals-linear type, practically
for the systems with multidegrees of freedom require application of the numerical
methods for equations of motion integration.

Nowadays, when application of computers for investigation of practical dy-
namics problems of mechanic systems with the clearance is of comon use, it is
advisible to employ the contemporary methods of numerical integration of ordi-
nary differential equation systems. Peculiarity of the problem in question, with
unilateral constraints, is expressed by the properly formulated procedure which
determines numerically the force arising in the system with clearance. With such
a procedure and properly chosen integration step, the accuracy of calculations
depends on the applied method of the equations of motion integration.

2. Clearance characteristic approximation

P(x)

0/& b x

Fig. 1.
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Let us consider a mechanical system with the clearance affected by a certain
force system and assume that the clearance lies within an interval (a,b) on the 0z
axis only. Then within this interval on the element of the system do not act all
the forces but a part of them appears at the end points (Fig.1). These forces may
be expressed in the form

P(z) = k1(z — a)H(a — z) + Ka(z — b)H(z - b) (2.1)

where H(-) represents the Heaviside function, x; and k3 are coefficients of elasticity.
Thus, the differential equation, which containts the force P(z), may be written in
the form

mi = P(z) + F(z,%,t) (2.2)
where F(z,%,t) denotes the remaining forces acting on the element under consi-
deration, with the mass m. Let us assume that

Ky =Ky = —K (2.3)

Now, if we put a = —b, what means that the origin of the reference system is
assumed in the middle of the clearance, then :

P(z) = —k[(z —a)H(z — a) + (2 + a)H(-z — a)] (2.4)

There exist many real systems with the clearance, motion of which may be
described by the system of equations being in the form of (2.2) where P(z) is
expressed by relationship (2.4). Two examples of such systems are given below.

3. Motion of the table-tennis ball between two rackets

The equation of motion for a table-tennis ball which is moving between two
rackets (Fig.2) is the following

m# = P(z) - k®*mg|z|¢ — mg — F,(z,%) (3.1)

assuming that the air resistance R(z) is proportional to the second power of the
velocity, and that k = 1/vpax, Where: vp,,, denotes maximal velocity developed
by the table-tennis ball during its free fall with the zero initial velocity, m — mass
of the ball, ¢ — acceleration of gravity.

The F,(z,%) force, which characterizes the dumping when the ball rebounds
from the racket, is assumed in the form

F(z,z) = k,2[H(z ~ a) + H(-z - a)) (3.2)
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where k, is the coefficient describing losses of energy in the time interval when the
ball rebounds. P(z) force, according to the suggestions established in the previous
paragraph, is described by the relationship (2.4). Introducing coefficients x and
k, one describes conditions of the elastoplastic type of impact. After introducing
the relationships (2.4) and (3.2) into Eq (3.1), the initial conditions have been
assumed in the form

z(t)L:o = 2o :i;(t)L:o = o (3.3)

and in that way the initial-value problem was obtained. The problem has been
solved by means of the numerical integration with the use of the Runge-Kutta
method of the fourth order. The results of the numerical calculation are shown
below.

A

4. Rolling mill coupling dynamics with consideration of the clearance
) in the universal joint

Rolling mill coupling with its length and mass being ! and m, respectively,
undergoes vibrations in two perpendicular planes: = 0 and £ = 0. The system
of orthogonal coordinates 0€7¢ is a moveable system rigidly fixed to the rotating
rolling mill coupling, with its 0¢ axis overlying the axis of the rolling mill coupling
(Fig.3).

Angles of rotation, which determine an instantaneous position of the rolling
mill coupling within the clearance raflge, will be described as: ¢ and 1, — about
the 0 and 07 axes, respectively. On the rolling mill coupling acts constant force
P, directed vertically in the upward direction. The problem will be formulated on
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Fig. 3.

the grounds of the angular momentum variation law, from which results that

dK
=M (4.1)

Derivative of the angular momentum dK /dt calculated in the stationary refe-
rence system Ozyz is equal to
dK dK

o —W'FNXK (4.2)

where dK/dt is derivative of the angular momentum in the movable system. Thus
the vector equation (4.1) may be written as

K twxK=M ' (4.1a)
Vector K in the 0£7¢ system has the following components
K¢ = Jewe K= Ty, K¢ = Jewe (4.3)

if axes 0, Oz and 0¢ are principal axes of inertia. Components of the moment M
will be described as: Mg, M, and M. If we take into consideration the values of
angular momentum and moment components we will get then from Eq (4.1a) the
Euler equations system

Jewe + (Je = Jp)wqw = Mg
Inon + (Je = Je)wewe = My, (4.4)
Jewe + (Jn — Je)wewn = M

Let us assume that the velocity change in the Cardan universal joint is negligible.

Moreover, assuming that angular velocity of the shaft rotation is we = w, We can
rewrite Euler equations in the following form

Jewe + (J¢ — Jplwpw = M, (45)

Inwn + (Je — J)wew = M,y
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The latter equation from the system of equations (4.4) will not be used because
the velocity changes will be imposed in advance e.g. in the form

w = blc —e~%) (4.6)

where: a, b and ¢ are the constants.

Moments M¢ and M,, are determined taking mto account the following factors:
the fixed force P, the clea.ra.:nce in the universal joints and the friction 111 the
kinematic pair. After some transformations we will get

M = Plycosp — Tyl

(4.7)
M, = ~Plysing — T¢l
where
. T€ = K[(lﬁn - %)H('/’n - 617) + ('/’n + 6,,)H(-—1/1,, - 617)] +
+ bty + ken[H (%0 — 65) + H(—tn — 6y)]
(4.8)
Ty = &[(ve — 6)H (e — 6¢) + (e + 6)H(—ve — b)) +

+ htpe + ke [H (e — 6¢) + H(—¢ — 6¢)]

in which ¢ represents the angle of shaft rotation about the 0( axis, x is the
coefficient of elasticity, h stands for the dumping coefficient, é¢ and 4, are the
parameters of the clearance in the direction of 07 and 0§ axes, respectively, and k,
denotes the coefficient which characterizes energy losses during impact. As in the
previous case, coefficients k and k, describe conditions of the elastoplastic type of
impact. Initial conditions are assumed in the form :

o(t),_ =
\ ¥e(t)],_,= ¥eo de(t)]._,= beo - (4.9)
¢”(t)lt=o= Pno f '»Z’n(t)L=O= 1/"170

Like before, the formulated initial problem has been solved numerically with the
use of Runge-Kutta method. Results of the numerical calculations are also speci-
fied below.

5. Results of the numerical calculation

5.1 Computer simulation of the table tennis ball motion

Differential equation of the table-tennis ball motion (3.1) with consideration
of the initial conditions in the form (3.3), has been solved numerically with the
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use of Runge-Kutta method of the fourth order. Computations were performed
assuming that the distance between rackets was 2a¢ = 0.8 [m] and the ball mass
m = 2.37 - 1073 [kg]. Coefficient of the air resistance has been estabished on
the base of time measurements for ball falling down from the known height. An
averaged value of it, determined after series of measurements, was k = 0.122 [s/m].
Moreover, for all the shown results the following initial conditions were assumed

2(t),_, = —o 0|, = -3

It means that at the initial instant the ball has, when contacting with the lower
racket, the non - zero initial velocity. Additionally, it should be noted, that this
velocity is equal to the maximum value of velocity which may be obtained by the
ball, during its free fall down, without any initial velocity.

The results which are presented in this work have been obtained for various
values of the parameters k and k,, introduced in the force definitions (relation-
ships (2.4) and (3.2), respectively). These relationships describe conditions of the
elastoplastic type of impact. They, as it is known, corresponds to the coefficient
of restitution value from the (0,1) range. Values of k and k,, which have been
assumed for the individual examples, are listed in Table 1. In the enclosed figures
was assumed that the curve numbers correspond to the number of examles from
Table 1.

Table 1

Example K k.

number | [kg/s?] | [kg/s]
1 10000.0 0.1
2 10000.0 0.2
3 10000.0 | 0.4
4 5000.0 | 0.2
5 20000.0 0.2

Figs.4 and 5 show influence of the coefficient k, on the displacement and velo-
city changes (in time) of the table-tennis ball during its motion between rackets.
Curves 1,2 and 3 have been obtained for constant value of the coeflicient k. In-
crease in k, coefficient value both causes the greater energy losses what results
in lowering the displacement and velocity amplitudes, and as one can see in the
pictures affects also the vibration frequency.

Curves shown in Figs.6 and 7 have been obtained for constant value of k, in
order to illustrate the influence of the coefficient x on the ball motion. Within
the assumed changes range of this coefficient, the effect of its value on amplitude
magnitude and vibration frequency is also observed.

Phase diagram shown in Fig.8 illustrates motion of the ball for data from Table
1 (example 2). One can clearly distinguish in the picture between different phases
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Fig. 5.
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of the ball motion, i.e. its motion in the air and by contact with rackets. It should
be noted, that for the assumed initial conditions only one contact with the upper
racket follows.

5.2. Computer simulation of the rolling mill coupling motion

Like in the case of the table-tennis ball, Euler differential equations (4.5) de-
\scribing motion of the rolling mill coupling together with the initial conditions
(4.9) have been solved numerically with the use of the Runge~Kutta method of
the fourth order. The computaiiona.l results presented below refer to the run—up
stage of the rolling mill coupling during the first five seconds. Mass of the cou-
pling has been estimated m = 24000 [kg], its length [ = 13 [m], diameter d = 0.545
[m] and the distance from the support to the point of application of the force P,
l, = 6.5 [m]. Accordingly, values of the moments of inertia have been calculated
on the base of relationships: J, = J = mi?/3, J; = md?/8. The run-up is
executed from zero velocity. Increase of velocity has been assumed according to
the relationship (4.6) and values of the constants are: a = 0.768 [1/s], ¢ =1 (b is
given in Table 2). Moreover, the following initial conditions have been assumed

90(t)l,=o= 0

¥e(t)],_,= =6 be(t)],_,= 0
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$n(t)| _ =0 (1) _, =0

One may notice that the assumed form of the initial conditions corresponds
to the shaft position at the starting moment in static equilibrium point (lowest
possible static position of the shaft). The value of the parameter § depends on the
value of the clearance parameter A in Cardan universal joint and is determined by
the relationship: § = arctan(A/l). Parameters k and k,, characterizing the ela-
stoplastic type of impact, remain the for same all examples and have the following
values: k = 0.05J¢, k, = 0.02J¢. All other parameters which are different for each
example have been listed in Table 2.

Table 2

Example | a = ’nf_g A b

number [m] | [1/s]
1 - 0.500 | 0.010 12
2 -0.500 | 0.005 | 12
3 -0.500 | 0.001 | 12
4 -0.100 | 0.005 | 12
5 -0.001 | 0.005 | 12
6 - 0.100 | 0.005 6

Curves shown in Figs.9 and 10 are given for illustration influence of the para-
meters (listed in Table 2) on the value of impact forces in Cardan universal joints.
Components of the analyzed forces are described as

T;
Tﬂ

K[('/’n - 6,,)H(1/),, - 671) + (¥n + 8) H(—=%y — 6y)]
K[(Pe — 8¢)H (e — b¢) + (e + 8¢ ) H(— ¢ — 6¢)]

i

It should be noted, that values of the impact forces increase with the increase
of clearance, rotational speed and absolute value of coefficient & which charactrizes
the supporting force.

Subsequent Figs.11, 12, 13 and 14 illustrate motion of the rolling mill coupling
for the Example 6. Fig.11 is showing the course of changes of the displacements 1
(— ) and %y (- - - ). In Figs.12 and 13 one can see phase diagrams of the motion,
in planes £ = 0 and 7 = 0, respectively. Trajectory of the motion projected on to
the plane z = 0 of the fixed system of coordinates is shown in Fig.14. The latter
figures may suggest, that, for particular parametrs of the system, the motion of
the rolling mill coupling may be a chaotic one. This question has to be studied
separately.
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6. Final remarks

Examples of dynamics of the systems presented in this work give an illustration
of the way how to solve practical problems of the mechanical system dynamics with
one-sided constraints. '

From the nature of the ball motion rebounding from the table-tennis racket one
can evaluate the properties of the base material. Tests of the subsequent rebounds
may be used as qualifying factor of the racket-lining with fixed properties of the
ball. Similarly, for the fixed properties of base material — the quality of the table—
tennis balls may be evaluated on the base of their motion. Results of this work may
set up a base for establishing the rackets and balls characteristics identification.

Omitting the problem of table-tennis balls, similar way of approach may be
applied to the other element identification e.g. for balle of the rolling bearings.

In the case of the rolling mill coupling the analysis method of system dynamics,
which has been presented in this work, allows one to determine dynamic forces with
which supporting elements of the coupling are loaded. Knowledge of this force
magnitudes and determination of the factors which may allow us to diminish them
is, from the construction durability point of view, the basic value problem. Solution
to the problem of rolling mill coupling dynamics, which has been formulated in the
work, fulfil exactly for the analysed system all the above mentioned requirements.
It allows one to determine and to analyse the values of the dynamic reaction.

Basing on the results presented in the paragraph 5.2 of this work we can observe
the dependence of dynamic forces on the system parameters under consideration.
Moreover, we get the possibility to determine, by using the derived relationships,
the values of dynamic forces for arbitrary taken (different) parameters of the sy-
stem.

Computations, which have been done, give us the basis for the assumption, that
‘for the particular parameters of the system - the motion of the system may be a
chaotic motion. This problem, which is a very interesting one, requires additional
studies which exceeds the scope of this work.

References

1. BANACH S., Mechanics, PTM, Warszawa - Wroclaw 1951
2. BiatkowskI G., Mechanika klasyczna, PWN, Warszawa 1975

3. IvaNnov A.P., MARKEEV A.P., O dinamike sistem s odnostoronnymi svjazjami,
PMM, 48, 4, 1984

4. SKALMIERSKI B., Mechanika, PWN, Warszawa 1977

5. ZHURAVLEV V.F., Uravnenija dvizhenija mekhaniGeskikh sistem s idealnymi odno-
stronnymi svjazjami, PMM, 42, 5, 1978



418 S.KUKLA ET AL.

6. ZHURAVLEV V.F., Meckhanika sistem s odnostronnymi syjazjami, Advances in Me-
chanics, 12, 2, 1989

" Problem dynamiki ukladéw mechanicznych z wiezami jednostronnymi
Streszczenie

W pracy rozpatrzono dwa przyklady ukladéw z wiezami jednostronnymi. Pierwszy z
nich dotyczy ruchu pileczki pingpongowej pomiedzy rakietkami z uwzgleduieniem oporu
powictrza. Drugi zas okresla ruch lacznika walcarki w wyniku luzu powstalego w jednym
z przegubéw. W obu przykladach uwzgledniono uderzenie sprezysto—plastyczne, co odpo-
wiada wspélcznnikowi restytucji (uderzenia) z przedzialu od zera do jeden. Sformulowano
i rozwiazano numerycznie zagadnienia poczatkowe ruchu ukadéw. Do rozwiazania wyko-
rzystano metod¢ Rungego—Kutty numerycznego calkowania réwnas ruchu.

Praca wplynela do Redakcji dnia 29 lipca 1990 roku



