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FLEXURAL WAVES IN A FLUID-SATURATED POROUS
STRATUM EMBEDDED IN AN ELASTIC INFINITE MEDIUM

ZENON KoONCzAK

Technical University of Pormes

The flexural waves in a fluid-saturated porous stratum embedded in an ho-
mogeneous, isotropic infinite medium, impermeable to a fluid flow have been
studied in the paper. The outer half-space has been assumed to reveal the
same mechanical properties. Basing on the Biot's equations for wave propaga-
tion in the porous media and the theory of elasticity for the outer half-spaces,
the dispersion equation relating the phase velocity to the wave number has
been derived in a complex form. The simplified version of the dispersion equ-
ation for which the dissipation caused by the relative fluid flow is neglected
has been also presented. The roots of this equation have been found nume-
rically. The way of passing to the well-known classical results has also been
shown.

1. Introduction

The propagation of waves in layered media due to its important applications in
geophysics and seismology, has been the subject of several investigations. Perhaps
+he best source of inforamtion on this subject is the monograph of Ewing, Jardetzky
and Press [1]. However, most of the work done in this field does not concern
a multilayer medium including a fluid-saturated porous layer. To the best of
Author’s knowledge, there are few papers only in which the propagation of waves
in such media has been investigated. It has also to be noted that majority of
the work on multilayered media considers mainly the propagation of shears waves
because of the relative mathematical simplicity.

Many authors have considered Love wave propagation in a fluid—saturated
porous layer resting on an elastic half-space. The work of Deresiewicz [2], Chat-
topadhyay and De [3], Chakraborty and Dey [4], Chattopadhyay et al. [5] and
Koriczak [6] can be mentioned for instance. The propagation of SH~-type waves in
porous layer of nonuniform thickness has been examined by Chattopadhyay et.al.
[7] and the effect of a double surface layer on the propagation of Love waves has
been investigated by Deresiewicz [8].
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Most recently the propagation of shear waves in a multilayer medium including
a fluid—saturated porous stratum has been studies by Koriczak [9]. The Rayleigh—
Lamb type waves in a fluid—filled porous layer embedded in an infinite impermeable
elastic medium has been investigated receutly [12].

In all papers mentioned above the equations formulated by Biot [11], [12] have
been applied to describe the behaviour of a fluid—saturated porous medium. Al-
though another theories has been recently proposed be several investigators e.g.
[13 = 16] the Biot’s theory remines widely accepted for the study of wave motions
in fluid-saturated porous media.

The purpose of the present paper is to examine a more complex problem i.e.
the propagation of flexural waves in a fluid—saturated porous stratum embedded
in an infinite impermeable elastic medium. Basing on the Biot’s theory for wave
propagation in the porous media [11] and the theory of elasticity for the outher
half-spaces, the dispersion equations has been derived. It relates the phase velocity
of propagation to the wave number and shear and longitudinal wave speeds of the
porous layer and the half-spaces. The simplified version of the dispersion equation
in which the dissipation caused by the relative fluid flow has been omitted, has
also been obtained.

2. Formulation of the problem and governing equations
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Fig. 1. Schematic outline of the problem considered

Let us consider a fluid-saturated porous stratum of finite thickness 2k em-
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bedded in an infinite isotropic elastic medium impermeable for the fluid flow, as
shown in Fig.1. The outer semi-infinite spaces and the porous layer are assumed
to be perfectly bonded at the interfaces. We refer the considered medium to a
(z1,22,23) coordinate system in which the (z, — z3) ~ plane coincides with mid-
plane of the porous layer. The z3 —axis is taken vertically downward and the z,
—axis is chosen in the direction of wave propagation.

As our point of departure we take the basic equations that describe the beha-
viour of the considered medium. We have
— for the outer semi-infinite layers [17]

8%*v

uV3 4 (A + p)graddive = PoT (2.1)
7 = u(gradv + (gradv)" ) + Adivel (2.2)
— for the fluid-saturated porous layer [11]
NV%u 4 (A + N)graddivu + QgraddivU =
5u P;U 9
=pugy trugg - bE(U - u) (2.3)
. . i " U 0
Qgraddive + RgraddivlU = PagE + [ by + bgt—(U - )
T, = N(grads + (grads)" ) + (Adive + Qdivl)1

(gradw + (gradw)T) + ( ) (24

Ty = (Qdive + RdivU)1

where v, % and U are the displacement vectors of the outher layers, the solid
skeleton and the fluid of the porous layer, respectively, 7, T,, T; denote the stress
tensors of the outer layers, the porous skeleton and the fluid, 1 is a unit tenosr, b
determines the resistance of fluid flow through the porous skeleton and A, u, A, N,
@, R are the material constants. p is the density of the outer layers and py;, pa2,
p12 are the dynamical coefficients that are related to mass densities of the porous

solid p, and fluid py by [11]
putp2=(1-f)psy patprn=fps
pll>07 P22>07 PleO
where p;2 is the coupling parameter.
If we now adopt the Helmholtz resolution for the displacement vectors v, w,
and U as
v = gradp + curlg divg=0 -
% = grady + curly divp =0 (2.5)
U = grady + curly divp=0
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then equations (2.1) and (2.3) are satisfied, provided that

(v? - cl‘z’ g:z)l’ =0, (V- c1§ gt? Jo=0 &9
(@7 g + o) + (RV" = prags ~bgy)x =0
2 &
(Nv? —m%,—-bg,)* (”“5:7 “"gt')"z 0 (2.8)

(Pug:; )¢+( 82+b§t)q=0

where P = A+ 2N, ¢3 = (A + 2u)/p, & = u/p.
Eliminating from the system of equations (2.7) first the quantity ¢ and then
x we arrive at the following decoupled equations for ¢ and x

{209?V? - (& % + w-;’—t)v’ + (az-:—; + bp'gg)}w,x) =0 (29)

where
a0 =PR-Q% a1 =Ppn+Ron-2Qp12, @1=pupn—r,
pP=pu+pn+t2m,, H=P+2Q+E.
If a similar operation is carried out for the system of equations (2.8) then we obtain
9* 0\ i »
{N(pngz +05,)V" - (aagz + sbss) Jwm =0 (210)

By substituting (2.5) for the parts of equations (2.2) and (2.4) the stresses may
be written in a cartesian coordinate system as

i = p{2p,; + em@ik; + g} + AV3pE;; (2.11)
0i; = N{20,; + eiritie; + e;udir} + (AVi0 + QVix)6;  (2.12)
o =QVip+ RV (2.13)

where §;; is the Kronecker delta, e,,, is the permutation tensor.
Since we are dealing with the waves propagating in the (z,,z;) —plane all the
field variables depend only on z,, z3 and t. In this case the displacement vectors
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become # = (v1,0,v3), # = (u;1,0,u3), U = (U1,0,U3) and for the vector potentials
¢, %, and n only the z; component is relevant. Thus.we have

qn=qgp=0, @ =g, Pr=v3=0
(2.14)

'I’?E'/” 7’1=7'3=0, Th=17.

The equations of motion (2.1) and (2.3) have to satisfy the continuity conditions
on displacements and stresses at the interfaces between the fluid-saturated porous
layer and the outer semi-infinite spaces, and the boundary conditions for the fluid
filling the pores as well. At z3 = +h these conditions are giver by

m=u, v3=us Ty=0m+0, Ty=03, 03=0 (215)
which in terms of the displacement potentials (2.5) become

P1—43=¢a1—¥3

P3atar=¢3+¥,

2u(p33 +913) + AVip = 2N (p a3 + ¥13) + (A + Q) Ve + (Q + R)V?x
w(2p31 + g1 —q33) = N(2031 + Y11 — ¥,33) (2.16)
QV2p + RV?x)3 =0

where the last condition of (2.15) or (2.16) denotes that the boundary z3 = +h is
impermeable to the fluid flow.

Moreover, the solutions to equations (2.6) have to be augemented by regularity
conditions at infinity.

Equations (2.6), (2.9) and (2.10) with the conditions (2.15) serve as governing
equations of the problem censidered.

3. Solution to the problem, dispersion equation

We are concerned with the wave changing harmonically with time and propaga-
ting along the z, —direction. Thus we seek, as usual, solutions to the displacement
potentials (2.5) in the form

o z1,23,t) = p-(z3)ei¢(zx.t)’ a(z1,73,1) = q-(zs)eiw(rl,t)
P(21,23,1) = " (z3)e Y, W(z1,23,t) = P*(z3)eE) (3.1
X(311$3,t) = x'(za)eiw(zhl), 17(31,33,1) — n-(zs)eiw(z,,l)

where k is a wave number, w is the angular frequency, ¢(z,,t) = kz; — wt and
:2
i =-1.
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Putting expressions (3.1) into equations (2.6), (2.9) and (2.10) with the aid of

(2.14) we obtain
& . e .
(0=§_‘g)’ =0 (5;5‘4)9 =0
& & .
(ng -—m{) 923 ~ '"3)(9? X)) =0

(E: -y

h
where 2 kz_f’_ =12, c2_4\+2” é-—ﬁ
K= cgs =1 1= R _p
w? H
"‘1.2""2";2'(1.:, ci.—.F
w? N
2=k2_ , =&
my g(; >

In (3.6) and (3.7) the following abbreviations are introduced

- B(aw +ibH) ao(azw? — ibp*w)
i ‘/1 ~ A e T RE) )
(s=a tim a) = az2pnw’ + bp* _ (a2~ p*pn)bw

= TRy = T

(32)
(33)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where cr /Re(/(3) is the velocity of shear wave and ¢1 /Re(1/{12), when the Biot’s
notation is applied, are the velocities of longitudinal waves of the first and second
kind in the porous stratum. ¢z and cr are reference velocities of dilatational and
rotational waves, respectively, for the case of no relative motion between fluid and

solid [11].

The solutions to equations (3.2), for the outer layers with the aid of (3.1) are

forz, > h
P(z1,23,1) = Aje (B —R)gilkn—wt)
g(z1,%3,1) = Aze—"3(D=h)gilk=1—-wt)
and for z3 < —-h

P21, %3, 1) = — Ay FHR)gilko—ut)

a(z1,33,1) = Age3(Fa+h)gilks—uwt)

(3.10)

(3.11)
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where the requirement of vanishing the disturbance as zz3 — 00 have been taken
into account. In the solutions given above A; and A, are the arbitrary constants.
Let us pass now to examine a disturbance in the fluid—saturated porous layer
occupying the region —h < z < k.
The solutions to equations (3.3) and (3.4) with the aid of (3.1) are

¥(z1,23,t) = (A3 sinh m;z3 + Aysinh mzzs)ei(k’l-m) .
x(z3,23,t) = (A3sinh myz3 + Aysinh myz;)eiksr=«t)
¥(z1,23,t) = As cosh mazzeiksi—wt) (3.12)
7(z1,23,t) = As cosh mazaeilF=1—?)

where Aj,.. .,As are arbitrary constants. Of course, these constans are not entirely
independent of each other, because of equations (2.7) and (2.8). Using equations
(2.7)2 and (2.8),, the relations between those constants can be written in the
following form

-‘is = —ry 343 _Q(kz—m{?)_m?“’z'*'ibw
4 = —T1,243,4, n2= R(k? - m%,z) — ppw? — ibkw

(3.13)

_ pupn? -8 (pa + pr)bw
T a4 ¥ T (pmwp + 8

Putting the solutions (3.10) or (3.11) and (3.12) together with the relations
(3.13) into the conditions (2.16), we obtain a system of five homogeneous linear
equations in A,,...,4s.

55 = —1‘3A5,

ikA; + k2 Az — k(5143 + S244) + m3S345 =0

—K1A; + kA3 — myC1 A3 — maChrAy — ikCaAs = 0
a” Ay — 2ikpxy A — $1514s — 1S3 A4 — 21kNm3S3As = 0 (3.14)
2ikpry Ay — p(k? + x3) Az + 2ikN(m C1 As + maCyAy) — N(k? + m3)C345 = 0
11C1As + 717C344 = 0

where we introduced the following notation

S; = sinh mjh, C; = cosh m;h, (J =1,2,3)

o = (A + 2u)s3 — AK? (3.15)
Bz =[P+Q - r12(Q+ R)mi; - [4+Q - ria(Q + R’

N2 =mia(k? - mi;)(rak - Q). |

In order to have a nontrivial solution to equations (3.14), the determinant of
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the coefficient matrix must be equal to zero. This condition gives us

ik K2 —ik(Sy — 112C1252) m3S3
K1 —ik (my — mam2)Ch ikCs —0 (3.16)
-a* 2ikpxy B151 — B212C1a Sz 2kNm3S; '
2kuxy p(k?+ &3) 2ikN(my - mama)C1 ~N(k* + m3)Cs

which is the dispersion equation for the considered problem.
In (3.16) the relation

C -
Ac= —mads, ma=1, Cu=4 (3.17)
72 Ca

that results from the last equation of the system (3.14) has been applied.

It is easy to see that the elements of (3.16) are complex due to the quantities
m; 2 and m3 expressed by the formulae (3.6) and (3.7) with the aid of (3.8) and
(3.9). Thus the wave number k is also complex and hence &, (¢ = 1,2). Therefore it
is difficult to obtain any analytical informaton from the dispersion equation (3.16).
It seems that the only way to get the roots of (3.16) is to apply an approximation
method.

The dispersion equation (3.16) simplifies somehow if the dissipation caused by
the relative fluid flow is neglected. This can be acchieved if we assume b = 0
(see equation (2.3)). Such an assumption corresponds to the case of elastic waves
propagation only. Now, according to the above assumption it results from (3.8)
and (3.9) that Im({;) = 0 ( = 1,2,3) and thus all the (; are real. Moreover, also
the wave number k as well as x, (¢ = 1,2) are real, and the simplified dispersion
equation becomes

2 » ‘
(&) a1 + (&) d1Ds - didzanDs = 0 (3.18)
P’ . P _
where we introduced the following notation

Dy = (14 13)(8; 57 — B3112C1253)C3 — 4dgvs( — va112)Cr S35
D; = dy(a13a34 — ax3au) — (a14a3 — a24a43),

D3 = hwsCi 53 — 51C3 + (53C5 — qra53C3 m2Cha,

dy = ‘% d2 é ¥

$ 4=3 43
an=wnr;—-1, a3 =5 - HnCl - 1n2(C12S; — winCy),
a4 = 1353 + 1C;, an'=4mm—(1+12)

azs = (ST — 112C1253) + (1 — 1 12)C},  au = mnSs + C;

a3 = 2{n(B7'S] — B37112C1253) + du(1 + v3)(i — VaT2)Cr}
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a34 = 41353 + (14 v3)(1 4+ 43)C3
ap = (14 2)(B1 51 — B312C12S53) + 4dava (i — Ia12)Cy
ags = 2{va(1 + 13)S3 + va(1 4+ ¥3)C3}.

In these expressions the following abbreviations are introduced

§; =sinh #;kh,  Cj = cosh vjkh, (j=1,2)
S3 =sinh »kh,  C3 = cosh 1s3kh

«_-2 A+Q Q+Ry, _ . _ Q& - puact
j= }—T—T }—rj(l—u})], rj=—Rf:-—pnc£
= 51— 5PY(Q — Fi sa= . Gp=Sl
% =v(1-7)(Q - 75R), Ju= = Ca = Cs (3.19)
Ha1 apa?z as

= 1+v/1-46), 6=—22, =

§1,2 2aop‘( ) p & om
e c? P

B=1-=, p=1-=¢, vP=1-1f
7 C; 7 c’i ) 3 é’ 3

Here ¢ = w/k is the phase velocity.

A condition for the existence of exponential decay is that both vy and v, (3.19)
are real-valued. This implies that ¢ < ¢2. The condition er/€s < ¢; is also
assumed to be hold.

Let us now consider a particular cases.

a) If we assume p/p* = 0 (or p = A = 0) what corresponds to an absence of
outer semi-infinite spaces, equation (3.18) reduces to

(2 = D{(1 + v3)(B7 ST - B2 712C1253)C3 +

—4dy(Pr — 712)13C1S3} = 0 (3.20)

which will be satisfied provided that
mra—1=0 (3.21)
(1 +23)(Bi ST — B3712C1253)C3 — 4dy(91 — Pryia)vsCr S5 = 0. (3-22)

The equations (3.21) can be satisfied if the phase velocity is equal to zero, and
thus the solutons are trivial.

The solution to (3.22) is the dispersion equation for flexural wave propagation
in a fluid-saturated perous stratum with the edges z3 = th free of stresses and
impermeable to the fluid flow.

Furthermore, if we assume that @ = R = 0 what implies that the layer is not
filled with fluid, then y12 = 0, 8} = d4(1 + v3), B3 = 0 and the equation (3.22)
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tanh (kh, /1 - & 44,/1-°’1/1—°2
( ?‘)= i 2 . & (3.23)
tanh(kh\/l -%) (265 - ¢3)

which, apart from the notation, is the classical dispersion equation for flexural
waves in a plate of elastic isotropic material ([1], p.283).

b) When p*/p = 0 what, for p being infinite, corresponds to a rigidly clamped
porous plate filled with fiuid, then equation (3.18) reduces to

now yields

[y — (14 3’ |{S1C5 — hsCrSs + T12(B313C3 S5 — S3C3)C1a} = 0 (3.24)
which will be satidfied provided that
dnm—-(1-v3y=0 - (3.25)

S1C3 — nwsCy S5 + F12(7asC3 S5 — S;C;)C'lg =0. (3.26)

Equation (3.25) is the well known dispersion equation of Rayleigh waves ([17],
p.606) for the outer layers, when the inner fluid—saturated porous stratum is ab-
sent.

Equation (3.26), however, is the dispersion equation for flexural waves in a
rigidly clamped porous plate filled with fluid and edges of which are impermeable
to the fluid fiow.

Moreover, if we assume @ = R = 0, p12 = py2 = 0 what corresponds to the
elastic non porous plate, then ;2 = 0, £&2 = 0, & = 1 and the equation (3.26)
reduces to

ta.nh(kh\/l - %) = J1 - fc% \/1 - g—tanh(kh\/;——%) (3.2.7)

which, apart from the notation, is identical with equation (3.65) of [18].
The simplified dispersion equation will be the subject of our interest in the
following part.

4. Numerical results

Because of the difficulty of solving the dispersion equation (3.16) analytically,
even in the simplified case (3.18), the roots of dispersion equation have been found
. numerically. The calculations, however, have been restricted to the simplified
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equation (3.18). The roots have been calculated on IBM-PC/XT computer for
different values of c3/cZ and p/p* using the following parameters

% _ o N _
2 =025 =05 p=o02

The results of these computations are given as plots of dimensionless phase
velocity ¢/cp versus dimensionless wave number kh.

vsefc,
o
N,
\ \
0
©.03 | \\ \
N
NN N
B o\ cz/ci--z‘s
002 |
0.01 | g/Q%= 12
—_—— g/g*=08
_____ Q/e*: 0.4 .
0005 ==
1 ) 1 L
0. 4 2 3 4 ich

Fig. 2. Variation of phase velocity with wave number

Fig.2 shows the variation of c/c3 versus kk for various values of the ratio p/p".
The plots indicate that the phase velocity ¢/co decreases as the wave number kh
increases. We also note that for a fixed value of ¢/c% and different p/p* the
dispersion curves are qualitatively similar. The differences concern the values of
phase velocity only. They are greater when ratios p/p* become smaller.
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5. Conclusions

The analysis of preceding analytical and numerical work, dealing with the
propagation of flexural waves in a fluid-saturated porous stratum embedded in an
infinite elastic medium allows us to draw the following conclusions:

1.

2.

The flexural waves are, in general (when the disspiation caused by the relative
fluid flow is not omitted), attenuated and dispersive.

For a fixed wave number the magnitude of phase velocity is greater when the
ratio p/p* grows small. -

Acknowledgment
This work was supported by Grant no CPBP 02.02 cocrdinated by the Institute of
Fundamental Technological Research of the Polish Academy of Sciences. The support is

gratefully acknowledged.

10.

11

References

. EwIN¢ W.M., JARDETZKY W.S., PrESs H., Elastic Waves in Layered Media,

New York-Toronto—London: McGraw-Hill 1957

DERESIEWICZ H., The cffect of bowndaries on wave propagation in a liguid—filled
porous solid: II Love waves in porous layer, Bull. Seism. Soc. Am., 51, 1961, 51-59

CHATTOPADHYAY A., DE R.D., Love type waves in a porous layer with trregular
tnlerface, Int. J.Engng Sci., 21, 1983, 1295-1303

CHAKRABORTY S.K., DEY S., The propagation of Love waves in waler-saturated
s0il underiine by helerogenous elastic medium, Acta Mechanica, 44, 1982, 163-176

. CHATTOPADHYAY A., CHAKRABORTY M., KUSVAHA V., On the dispersion equa-

tion of Love waves in a porous layer, Acta Mechanica, 58, 1986, 125-136

. KoNczaK Z., The propagation of Love waves in a fluid—saturated porous anisotropic

layer, Acta Mechamca 79, 1989, 155-168

CHATTOPADHYAY A., CHAKRABORTY M, MAHATA N.P., SH waves in a porous
layer of nonuniform t)nckncss Rozprawy Inzymerslne 34, 1986 3-13

DEREesSIEWICZ H., The effect of boundarizs on eave propagation in liquid—filled po-
rous solid: VI Love waves in double surface layer, Bull. Ser Am., 54, 1964, 417-423

KoNczaK Z., On propagation of shear waves in muliilayer medium including a
flusd-saturated porous stratum, Acta Mechanica, 79, 1989, 169-181

KenNczak Z., Rayleigh-Lamb type waves in a fluid—saturated porous siratlum inserted
in an elastic infinite medium, ZAMM, 70, 1990, 208-210

BroT M.A., Theory of propagation of elastic waves i ¢ fleid-saturated porous solid,
J. Acoust. Soc. Am., 28, 1956, 168-191



12.

13.

14.

15.

16.

17.
18.

FLEXURAL WAVES... .15

BioT M.A., Mechanics of deformation and scoustic propagation in porous media,
J. Appl. Phys., 33, 1962, 1482-1498

BowgN R.M., Compressible porous models by use of the theory of miztures, Int. J.
Engng Sci., 20, 1982, 697-735

KATSUBE N., The constitutive theory for fluid-filled porous materials, J. Appl.
Mech., Trans. ASME, 52, 1985, 185-189

KATSUBE N., CARROL M.M., The modified theory for fluid—filled porons materials:
Theory, J. Appl. Mech., Trans. ASME, 54, 1987, 35-40

KoNczAK Z., Equations of thermomechanics of flutd-saturated porous media with
viscoelastic micropolar skeleton, Bull. Ac. Pol.: Tech. Sai., 35, 1987, 505-515

Nowackl W., Teoria Sprezystosci, PWN, Warszawa 1970
MIKLOWITZ J., The Theory of Elastic Wves and Waveguides, North—-Holland, Am-
sterdam 1978

Streszczenie

W pracy rozpatrzono propagacje fali gigtnej w warstwie porowatej nasyconej ciecza,
zanurzonej w jednorodnej, izotropowej meogramczone) przestrzeni sprezystej meprzepu-
szczalnej dla cieczy. Przyjeto, ze oérodek zewnetrzny wzgledem porowatej warstw.
rakLeryzu_]e sie t.ynu samymi wlasnoéciarmmi mechanicznymi. Przyjmujac za po!stawq
rozwazan réwnania sformulowane przez Biota dla warstwy porowatej oraz roéwnania te-
orii sprezystosci dla warstw zewnetrznych, wyprowadzono réwnanie dyspersji wiazace
predkosc fazowa z liczba falows. Postad tego rdwnania jest zespolona. Podano réwniez
uproszczong forme réwnania dyspersji wynikajaca z pominiecia wplywu tlumienia spowo-
dowanego przeplywem cieczy. Pierwiastki tego rownania okreslono na drodze numeryczne;j.
Pokazano takze przejicia do znanych rozwiagzan klasycznych.

Praca wplynela do Redakcji dnia 5 grudnia 1989 roku



