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We are considering the finite elements controlled motion, in view of fur-
ther applications of it into problems of the control of deformations. Using
differential-geometric techniques based on the Lie brackets and the Lie al-
gebras we have formulated certain statements concerning controllability and
minimization of the number of controlling inputs.

1. General considerations

To make the treatment self-contained let us begin with a brief reminder of
elementary concepts in control. As asual, the state and control variables will be
denoted respectively by z = (z!,...,2") and u = (u!,...,u™).

The state and control spaces will be denoted by P and C, respectively.

We say that the control system ’

Z—:; f(z, ), (1.1)

i.e., analytically

dz’ ;

o £z, ...,z e, o, u™),
is controllable if for any pair of states z;, and zs;n, there exists a control signal
u(t) and a motion z(t) such that the equations given above are satisfied, and

Z(tin) = Zin,

z(tfin) = Tfin,
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tin and ts;, being, respectively, an initial and a final (in general non—specified)
instants of time.

We say that the system is locally controllable, if for any state z there exists a
neighbourhood U such that the system is controllable in U, i.e., any pair of states
in U may be joined with an appropriate control process (z(t),u(t)), satisfying
equations of motion.

" We say that the system is dimensionally controllable if, starting from an
arbitrary initial state and using appropriate control signals, we can attain n-
dimensional regions of the state space. This means, roughly speaking, that the m
variables u®, @ = 1,...,m, are sufficient to influence all the n state variables ',
i=l,..,n

This concept is nontrivial only if m < n; dimensionally non—controllable sy-
stems with m > n would be artificial (redundant control inputs). It is one of the
important tasks of control theory to minimize the number m of controlling inputs
as far as possible without violating dimensional controllability. Obviously, dimen-
sional controllability is a necessary, but not sufficient, condition of controllability
(without adjectives). Thus, it may be used as a primary test for controllabi-
lity. The point is that, for a wide class of systems, it may be decided on the
basis of purely local considerations. Particularly sxmple are system homogeneous—

multiplicative in controls:
5

& S hien, i, z- 5 fitene (1.2)

Their local controllability may be decided on the basis of the Chow’s lemma.

The corresponding criterion is based on the Lie brackets. Let us remind that
the Lie bracket [X,Y] of two vector fields on the state space is defined as a new
vector field with components:

oY )¢
%)

X YT = (X5~ Y55 (1.3)

The procedure based on the Chow lemma consists in taking the Lie brackets of
all vector fields f,, @ = 1,...,m, then the Lie brackets of so extended system,
etc. At every stage we obtain a system of vector fields f4, the label A running
over an appropriate domain. We calculate the rank of the matrix [ f:;]. The rank
obtained on each step exceeds or equals to the previous one. After a finite number
of steps the rank attains the maximal value — p. If p < n, then the system is
incontrollable. If p = n, it is dimensionally -controllable and there 1s a chance for
stronger controllability.

In practical applications we deal quite often with non-homogeneous— multipli-
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- cative controls

%’? = fo(@) 43 Sl e
o=l (1.4)
= @)+ X A,

a=1

The non-controlled term fq represents the background dynamics, and f,,
a = 1,...,m, are the basic modes of control.
In this case we can also use the Chow lemma, apply it to the system

(fﬂ) = (fo) fl) ---afm), n= 0, 1,...,172.

This means that we consider the system as a homogeneous one with an extra
constraint 4% = 1 imposed upon the contral variables. In the non-homogeneous
case the criterion is weaker, because the background term fy may be an obstacle
to the local controllability of a dimensionally controllable system.
In the case of linear control systems:

dz

— B ’ 1.

5 Az + By, (1.5)
A, B being, respectively, n x n and 5 x m matrices, the criterion based on the
Chow lemma reduces to the classical Kalman criterion of controllability (without
adjectives):

rank[B,AB,A’B,...,A""!B] = n. (1.6)
Similar ideas may be useful in the theory of nonlinear control systems:
dz | |
E = f(zvu)' (17)

Namely, we take into account all possible vector fields f, corresponding to fixed
values u of the controlling input,

fu(z) = f(zyu). (1.8)

Then, we take the linear shell of this system, i.e., the linear space of all vectorfields
of the form:

o _ 3 .
f(Z) = chf(z)uk)i (1'9)
k=1

N, ¢i’s, ux’s running over, respectively, the set of naturals, the set of real numbers,
and the set of all possible control vectors. Taking the Poisson-bracket extension
of this system and calculating the ranks of matrices just as in the case of multipli-
cative controls, we can verify dimensional controllability.
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2. Examples

As a preliminary step towards discussion of controlled motion of homogeneously
deformable bodies (finite elements) let us consider certain problems of control of
dynamical systems on matrix spaces.

Thus, we use the group GL*(n) of all positive-determinant matrices as a
manifold of states and consider the following models with multiplicative coutrols:

% = F(X)+ UX, |
(2.1)

dX

D~ R+ XU.

States of controlling inputs are represented by matrices U; controllability properties
of the system depend on the admissible range of them.
Let us quote a few examples relevant for our purpeses.

Ezample 1

As a set C of admissible controls U we take the space of symmetric matrices
Lyym(n) C L(n).

The criterion based on the Chow’s lemma tells us that the above systems are
dimensionally controllable. In the homogeneous case, when F = 0, they are simply
controllable. This is due to the fact that symmetric matrices do not form a Lie
algebra. Moreover, taking all their commutators we can generate the sl(n)-Lie al-
gebra of traceless matrices. Thus, the extended system coincides with L(n) — the
total algebra of all n X n real matrices. In other words, the manifold of nonsingu-
lar symmetric matrices is not a subgroup of GL(n). It generates the total G L(n),
i.e., composing linear transformations corresponding to symmetric matrices we can
obtain all posible linear transformations. Roughly speaking, homogeneous defor-
mations can produce rotations.

Ezample 2

As a set C of admissible controls we take so(n) C L(n) — the space of skew-
symmetric matrices. If F = 0 the systems (2.1) are evidently non—controllable. The
reason js that the space so(x) is closed under the commutator operation, i.e., it is
a Lie algebra. Every possible motion holds within the subgroup SO(n) C GL(n)
of proper orthogonal matrices or within its cosets (subsets of the form LSO(n)
or SO(n)L; L being an element of GL(n). On these submanifolds the system is
controllable. Therefore, there are In(n + 1) non—controllable parameters corre-
sponding to deformations, i.e., to symmetric matrices. Nevertheless, for a generic
non-vanishing F the system may be controllable because it may happen quite
easily that the Lie-bracket extension of the system of vectorfields F, Fyy (where
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- Fy = UX or XU and U € so(n)), has the rank n?, i.e., equals to the dimension of
the state space.

Ezample 3

As a set C of admissible controls we take si(n) C L(n) — the space of traceless
matrices. If F = 0, the systems (2.1) are non—controllable. The mechanism of
this non—controllability is the same as in example 2. Namely, the Lie-algebraic
structure of sl(n) implies that the Lie-bracket extension of the space of vector
fields Fyy (where Fyy = UX or XU, U € si(n)) coincides with the same ‘space.
The system moves within the group SL(n) of unimodular matrices or its cosets
LSL(n), SL(n)L, where L € GL(n). On these (n? — 1)}-dimensional surfaces the
motion is controllable. There is exactly one completely incontrollable parameter
corresponding to dilatations. Just as in example 2 this parameter may be made
controllable by switching on an appropriate non-homogeneous term F. These
examples illustrate in a very convincing way the mechanism of controllability of
N state variables with the help of m < N control inputs.

An interesting question is how to reduce the number of control parameters in
models (2.1) as far possible. The crucial problem is the minimization of inputs for
homogeneous models

dX dX

Tl UX, i XU, (2.2)
because in general the non—controllable background term F is a favourable factor
for controllability.

The problem of minimizing the manifold C of controls U in models (2.2) be-
longs to the realm of Lie algebras theory. Indeed, in purely geometric terms it
may be formulated as follows: find a minimal subspace C of the space L(n} of
n X n matrices, generating the total L(n)-space in the sense of commutator. By
generating in the sense of commutator we mean that taking C, the space [C,C] of
commutators of elements from C, next iterating this procedure, and at the end
taking the linear shell of resulting subspaces, we obtain the space L(r). In more
precise terms: we construct the sequence C; of linear subspaces of L(n) such:that:

Co :=C,
(2.3)

£ ]
Ciy1 = [C.', j 2 0 C_,'] = 5 2 0 [C:,C5).

L(n) is generated in the sense of commutator by € if there exists a natural number
p such that L(n) =
The commutatlon Lne algebra L(n) is the dlrect sum of sl(n), the semisimple
Lie algebra of traceless matrices, and the one~dimensional centre spanned by real
multiples of the identity matrix i. This reflects the fact that the proper linear group
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GL*(n) (the group of real matrices with positive determinants) is the direct sum
of the one—dimensional centre R*| (dilatations, positive multiples of the identity
matrix) and the semisimple Lie group SL(n) of matrices with determinats equal
to unity (pure shears and rotations).

As it follows from the bove examples, the subspace of symmetric matrices
generates the total L(n) in the commutator sense.

This is an infinitesimal counterpart of the fact that the manifold of symmetric
matrices with positive determinants generates the proper linear group GL*(n, R).
We are particularly interested in special cases: n = 2, n = 3, correspondmg to
planar an spatial finite elements, respectively.

If n = 2, then the space of symmetric matrices is a minimal space generating
L(n) in the commutator sense. This subspace may be spanned on the following

basic matrices:

o R D S P T L Y

| generates dilatations, and a, b are infinitesimal basic shears.
a generates elongations along the z axis accompanied by contractions along the
y axis (so'that the two—dimensional area is preserved), and b generates the two-
dimensional Lorentz transformations (hyperbolic rotations) in the (z,y)-plane.
Rigid rotations are generated by the skew-symmetric matrix

c=[‘1’ ‘;] (2.5)

It is clear tha_t
fa,b) = —2¢,

thus the space s/(2) is commutator-generated by the 2-dimensional space spanned
by a, b.

The total L(2) is generated by: |, a, b.

Let us mention that one can also use another system of generators, e.g., i, a,
¢, because b may be produced by commuting a and e.

However, the further reduction is impossible; one must always use three control
inputs for models (2.2) if they are to be controllable.

There is no input gzin if we are interested in controlling deformations. Three
deformational state variables must be controlled by three inputs if the dynamics
is ruled by equations (2.2).

Let us now consider the really physical dimension n = 3.

Obviously, as for any dimension n, the one-dimensional dilatation centre is
separated from shears and rotations. It is generated by the 3-dimensional unit

a
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- matrix

1 00
=10 10
0 01

One can show that the semisimple unimodular part si(3, R) may be generated
by the 3—dquen5ional space spanned on the following matrices:

[1 0 0 0

A=|0 -1 0= o,
(0 00 00 0
[0 1 0 I’o

. B=|100]|= 0], (2.6)

(000 00 0
[0 0 o 0007

C= 00—l=0‘ ,
(01 0 0

where symbols a, b, ¢ denote the basic 2 X 2 matrices introduced above. Thus, in -
three dimensions the group SL(3, R) of unimodular matrices may be generated by

two basic shears in a fixed two-dimensional subspace and by one planar rotation

of another two-dimensional subspace (non-identical with the previous one).

Thus, we conclude that the systems

X dX

i Ux, ' = XU, (2.7)
are controllable in the 9—dimensional state space GL(3) of nonsingular 3 X 3 ma-
trices if the controlling matrices U run over the 4-dimensional space spanned on
matrices |, A, B, C. The systems (2.7) are controllable in the 8~dimensional space
SL(3) of unimodular matrices if U runs over the 3~dimensional space spanned
on matrices A, B, C. Therefore, 8 degrees of freedom of an incompressible finite
element may be controlled by two purely deformative inputs, namely, the basic
planar shears and by one rotational parameter (provided that the rotation vector
is not orthogonal to the plane of shears).

The situation is pictured in the following figure 1.

The coordinate axis z is perpendicular to the figure plane.

The matrix A generates the one—parameter group which does not affect the z
variable and gives rise to elongations along the z axis a.ccompamed by the same
ratio contractions along y.

The matrix B also does not affect the z coordinate and generates the onepa-
rameter group of hyperbolic rotations in the (z,y)-plane. The "light cone” of the
corresponding "Lorentz transformation” is denoted by dotted straight lines.
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Fig. 1.

The matrix C generates the group of one—parameter rotations ou the z axis,
thus, the z variable is nonaffected, and the (y, z)-variables are subject to planar

rotations.
The controls spanned on matrices A, B, C are sufficient for controlling an

incompressible finite element.
| ensures the control of uniform dilatations; we must include the control input
represented by matrices of the form

ul,

where u denotes a time—dependent scalar factor.

3. Control of homogeneous deformations

Let us turn now to the proper description of dynamics.

In the aforementioned considerations we were dealing with dynamical systems,
i.e., first order ordinary diflerential equations in matrix spaces. This was a merely
preliminary step, because the dynamics of homogeneous elements is based on the
second-order ordinary differential equations in the matrix group GL(n) (or SL(n)
in the case of incompressible finite elements).

Let us remind briefly equations of motion for finite elements and rewrite them
to a few alternative forms convenient for controllability analysis.

Let the matrix X denote the deformation gradient (pla.cement) of a homoge-
neous element. Thus, spatial and material coordinates: z* and a¥, are related to
each other through the following relations:

7' = Xja¥. (3.1)

If we consider also translational motion of the centre of mass, this formula is to

be replaced by . _ .
2 = XiaX 40 (3.2)
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However, from now on we consider only rotational and deformative motion of finite
elements, thus we put & = 0.
Equations of the rotational-deformative motion have the form:
Fo4

XJ—dt_z = N,{ (3.3)
where J is a constant material matrix describing inertial properties of the finite
element with respect to the rotational and deformative degrees of freedom, and
the dynamical term N is an asymmetric moment of forces acting on the element:

JKL :=/_aKaLdM(a),
(3.4)

N :=/z‘Fj(z)dm(z),

dM denotes the element of mass in material representation (Lagrangian variables),
dm denotes the element of mass in spatial representation (Eulerian variables), and
F7 is the spatial density of forces per unit mass.

The quantity J is symmetric and equivalent to the usual inertial tensor I:

IKL = §opJOD§KL _ KL, (3.5)

The doubled antisymmetric part of N equals the usual moment of forces, respon-
sible for rotational dynamics.

The dynamics of deformative motion is ruled by the symmetric part of N.

In the case of internal contact forces we have:

N = - / iz, (3.6)

where o denotes the Cauchy stress tensor.

Let us stress an important point that equations of motion (3.3) involve only
forces being applied and are explicitly free of reactions responsible for constraints
" of approximately homogeneous deformability. The point is that although reactions
R are nontrivial, their asymmetric moment N vanishes due to the d’Alembert
principle.

To discuss controllability properties we should rewrite the system of n? =
9 second-order ordinary differential equations to a dynamical system, i.e., t0 a
system of 2n? = 18 first-order equations.

As usual, the simplest possibility is to introduce formally a new variable coin-
ciding with generalized velocity:

(3.7)

ST
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Then equations of motion have the form:

@ =V
(3.8)
il = NTXTJ,
. dt
where tilde denotes the operation of taking the reciprocal matrix:
=1, FF=1L (3.9)

Iy méy be also convenient to use canonical momenta instead of generalized velo-
cities.

One can show that expressing the kinetic energy through variables X, V, we

" have

T = -;-Tr(VTVJ). (3.10)
Thus, for systems ruled by classical Lagrangians
L=T-Ww(X), (3.11)

we have the following expression for canonical momentum P:
S
P=JvT. (3.12)

Thus, we have the following set of equations of motion:

dx .

_ T
at PJ .
(3.13)
dP -
i FN.

For models L = T — W(X) we have: N = —X(%‘%)T.

For certain reasons it may be convenient to use another, equivalent description.
Namely, instaed of the state variables (X,V) or (X,P) we can use the alternative
representations (X, E), (X,E), (X,K), (X,K), where E = VX! denotes the quan-
tity called by Eringen—gyration, and by others — affine velocity, K is called affine
momentum, and E, K are the co-moving representations of these quantities, thus

E=X"!EX=X"1V, K=XKX1 (3.14)

The mechanical meaning of E is that it represents a gradient of the Eulerian velocity
field within the homogeneous element,

vi(z) = E’;z’ (3.15)
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» The quantity K represent an asymmetric part of linear momentum
K= / ziv’ (z)dm(z), (3.16)

the doubled skew—symmetric part of K equals the angular momentum.
One can show that:

K

1l

XIVT = XIXTET = XP, :
(3.17)
K = JET

K describes a non-holonomic canonical momentum conjugate to non-holonomic
velocity E,

Tr(KE) = Tr(PV) = Tr(KE). (3.18)
The formula for the power of forces has the following form:
P = Tr(NE) = Tr(NE), (3.19)

thus N denotes the generalized force conjugate to non-holonomic velocity E and,
as we shall see, responsible for the balance of K. According to our notational
conventions N in the last formula is defined by: N = XNX.
Quantities K, K denote respectively, Hamiltonian generators of transformations
X— LX,
(3.20)
X — XL, ’

acting on the group GL(n).

The matrix L in these formulae creates an element of GL(n).

Interpretation of K, K as generators of the above described transformations is
important in the discussion of controllability.

Let us observe that formulae

N = XNX,
K = XKX, (3.21)
E = XEX, etc. '

transform the matrices N, K, E, etc. according to'the rule for mixed tensors.
In certain problems it may be convenient to use material tensor obtained from

N and K according to the transformation rule for twice contravariant tensors
- 5T
N = XNX,
(3.22)

K = XKX'.
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In general N # N, K # K.
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In the special case of a non—deformable (i.e., rigid) element, when XX = |,

both transformation rules coincide and N = N K=K o
However, we are interested in deformative processes, thus N, K must be care-

fully distinguished from ﬂ, K.

Let us quote a few formulae interrelating the above quantities:

T,

XJVT = XIXTET,
K,

JETG = KG,

(3-23)

where the matrix G represents the Green deformation tensor for the finite element,

G =X"X.

When rewriting our equations of motion as a dynamical systeni, we can use the
following equivalent forms differing in the state variables:

“(a)

(®)

(c)

(d)

(e)

X
i
N 1o
5 = WX,
X _rs
S =P1
P oo
5 = XN,
x _

d ~
dE

= -E2 4+ NT(X"IX),

di

dX__ To T3

i =K' X J,

dK AL

E-K (X IX)K + N,

X .

E-—XE’

% =B 4N TI=E 4R,

(3.24)
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aX 2T 7
) E{‘XK J
K oo o
— = —KIK+ A,
aX T_.T-
‘%=%W+& (6 =X"X).

The dynamical subsystem (second subsystem) of equations (d) has the form of a
balance law for affine momentum. Let us observe that even in the interaction free
case, when N = 0, this balance fails to be a conservation law. Restricting X to
orthogonal matrices, and taking the skew-symmetric part of the second subsystem
of (d) or (g) we obtain equations of rotational motion of a rigid body.

It is obvious that equations (e), (f), (g) resemble the structure of the Eu-
ler equations in dynamics of a rigid body. In the special case of constraints of
deformation—free motion they exactly reduce to the Euler equations.

The form (g) is the most geometric and enables one to discus controllability
and reduction of inputs on the basis of Lie-algebraic considerations quoted above,
especially when we combine it with (e):

E,

i
P

aX

(h) "
Gfi—E— = —GE' )4+ N
dt

The form (f) is not so geometric as (g) because the quantity K is not a Hamiltonian
generator of right regular translations: X ~— XL; nevertheless its analogy with
gyroscopic Euler equations is closest in that the non~dynamical term quadratic in
K is configuration-independent.

The main difference between equations for rigid bodies and finite elements is
that in the latter case the non—-dynamical term does not vanish even in the case
of spherical inertial symmetry (when J = al).

The asymmetric moments N, N in general consists of the background and
control terms. As a controlling agent the inertial tensor J may be used as well.

There are two kinds of control problems in the finite—elements—dynamics: the
inner problem and the outer problem.

The mathematical peculiarity of inner problems of steering is that one uses
co-moving Lagrangian components of controlling moments N or N as directly ma-
nipulated quantities. Thus, for example, when N = Ny + U (No denoting the
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background and U the control term) then in the inner problems U depends direc-
tly only on time (not through the state variables (X, K)

Such mathematical models describe situations where the controlling devxces
are frozen immovably in the material.

In out-steering problems there are spatial (Eularian) components of the con-
trolling moment N that are assumed to be directly manipulated quantities. Such
models describe situations where the control influences are produced by external
devices like pull rods, external fields, etc. '

Having in view developments of controlled flexible manipulator we are more
interested in the problem of inner steering of finite elements. Indeed, the most
appropriate and natural way of steering such beam-like-objects is to build up inte
their substance several local sources of stresses. These may be electromechanical
instruments released by electric signals. Another possibility is a magnetic influence
of solenoids winded around the body on ferromagnetic suspensions distributed in
an appropriate way within the material. To discuss controllability of a dynamical
finite element working in the regime of inner steering, we have to use equations (h)
and perform carefully the analysis of dimensional controllability, using the criteria
based on the Chow lemma. The above-quoted results concerning controllability of
systems

> (¥) %x_ = F(X) + UX,
t (3.25)
dX )
> F(X) + XU,

are very helpful in this analysis and provide us with effective guiding hints.

After rather long and unpleasant calculations of ranks and matrices one can
show that, as expected from the analysis of equations, the system may be effectively
controlled with the help of a 3—dimensional input. Let N = No + Nc, where No
denotes a background moment depending only on dynamical variables X, E and
perhaps on time, and N, denotes a controlling term depending on X, E and control

inputs u.
For simplicity we assume the model with multiplicative contrals, i.e., N de-
pending on values of u in a linear homogeneous way,

N = f: u*N,. ‘ (3.26)

a=1

Performing the Lie-bracket analysis we can show that:

e If basic control modes ﬁa run over the space of all symmetric tensors, then
the system (h), i.e., dynamical finite element, is dimensionally controllable
quite independently in the form of the background term N and the constant
matrix J.
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o If basic control modes N, run over the 3~dimensional space spanned by ma-

trices A, B, C quoted above, then the system is dimensionally controllable,
independently in the form of Ny and the inertial tensor J.

Let us observe in this connection that this result is stronger than the corre-
sponding statements for systems

dX
o = F+ UX,
dX
- = F + XU.

For these systems the space of controls spanned by A, B, C was sufficient for
dimensional controllability for SL(3), i.e., for incompressible finite element,
but not for the total GL(3). The reason for this additional gain is that
equations (h) are not invariant under dilatations. .

If the spectrum of J is non—degenerate (no coincidence of main inertial mo-
ments), then the system (h) is dimensionally controllable for any choice of
ﬂc, provided that the symmetric part of NC can not be diagonalized simul-
taneously with J. This is true even if we have only one control input. This
statement is true for a generic shape of the background tensor Np. The cha-
racteristic Eulerian term quadratic in E and appearing on the right hand
side of (h) is responsible for this controllability gain.

It is easy to see that these results resemble certain characteristic features of
controllability of a rigid body motion. Let us remind, for example, that if inertial
tensor is non—degenerate, then the rigid body mae be effectively controlled with
the help of only one control input like a single moment of forces produced by a
corrective motor, or by a single rotor, provided that the produced moment is:not
collinear with any principal axias of inertia.

Our results quoted above have the same origin, namely, structural properties
of the group GL(3) uderlying degrees of freedom of the finite element.
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Streszczenie

W pracy rozwaza si¢ zagadnienie sterowania ruchem elementu skoriczonego. Jest to
wstep do dalszych badan dotyczacych sterowania deformacjami. Uzywajac metod geo-
metrii rozniczkowej, opartych na pojeciach nawiasu 1 algebry Liego, sformulowano pewne
stwierdzenie dotyczace sterowalnosci 1 minimalizacji liczby wejsé.
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