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We discuss differences between mechanical and mathematical variational pro-
blems concerning nonholonomic constraints, i.e., between the d’Alembert.
principle and the procedure based on the Lusternik theorem of conditio--
nal extrema. As a technical example of application we discuss the frictional
speed reducer. Although it is the d’Alembert principle that is applicable to
realistic nonholonomic systems, we show that the mathematical variational
problem and the Lusternik procedure are convenient heuristic tools in some
mechanical problems of a control and a programme motion, respectively. The
point is that the realistic and formally convenient models of controlling forces
and controlling agents are being suggested.

1. D’Alembert and Lusternik principles

Let us consider a mechanical system with the Lagrange function L(g,§); ¢' and
¢', i = 1...n, denote generalized coordinates and velocities respectively. Configu-
ration space, i.e., the n~dimensional manifold of all admissible values of ¢, will- be
denoted by Q. On the obvious assumptions, the variational problem é [ Ldt = 0
with fixed ends in the space of variables (¢, ..., ¢',...) (i-e., in the configuration
space—time of the problem) leads to the well-known Euler-Lagrange equations of
motion:

doL_ oL _
dtd¢ O¢
Besides interactions represented by L, we can take into account the additional

ones, represented by covariant vectors ®(q,q) of generalized forces conjugate to
variables ¢*; the resulting equations of motion have the form

4oL oL _ 4
dtd¢ o8¢ "

i=1,..,n (1.1)

i=1,..,n. (1.2)
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For example, the standard description of frictional phenomena is based on the
phenomenological dissipative forces in the form of

&; = —a;j(g,9)¢, (1.3)

where the matrix [a,;] is symmetric and has such a form that the equation

oL | =0, (1.4)

det [a-- - A ] =
Yo T 04 0¢9
has only the non-negative solutions for A {the positive values of A would corespond
to the "anti—frictional” self-acceleration; the vanishing values of A correspond to
the lack of friction in certain directions). \
Let us consider the following constrained variational problem:

6/Ldt =0, Fi(g,¢) =0, a=1,..,m. (1.5)

The Lusternik theorem implies the following system of differential equations in
functions ¢'(2):

a) 4oL 9L _p i=1.,n
dt 3¢ Oq' ’ (1.6)
b) Fa(qa q) = 0, a=1,.,m,
where
a aFa d aaFﬂ, _ a 62Fa =3
Ri = w055 = —=(w 5e) = Ogap5t +

oF, ..0F,

() 2 Fe i 4 po i 1.7
“.#()WQ'F#U)@T-—#T (1.7)

g’
¢’ denoting generalized accelerations and u® — Lagrange multipliers.

Equation (1.6) together with the "constitutive relation” (1.7) create a system
of (n + m) differential equations with regard to (n + m) functions ¢'(¢), u®(t).
The system is of second differential order with respect to ¢ and of first differential
order with respect to p. When considering the real mechanical problems, we are
interested in ¢' alone while the u® are to be eliminated.

A similar scheme may be formulated for the differential constraints of higher
order Fu(q,§,{,...,g"™) = 0, or even for more general functional constraints.

If constraints (1.6b) are holonomic, i.e., F, do not depend on velocities ¢*, then
R; = p®0F,/dq', and equations (1.6) coincide with those obtained by applying
the d’Alembert principle to mechanical systems defined by L and subject to ideal .
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- holonomic constraints described by Fy = 0, @ = 1,...,m. If some non-Lagrangian
interactions are present, the whole system of equations of motion has the form

d 0L 4L «0Fa

e XY

dtd¢* dq¢* oq¢t
The quantities R; = u®dF,/dq¢" are called reaction forces, they are responsible for
realization of the programme of motion given by conditions Fy = 0, a = 1,...,m.
At the same time they do not affect the along—constrairts modes of motion (the
splitting into along—constraints directions and vertical directions is understood: in
the sense of the metric 8>L/8¢'0¢’).

Let us now assume that constraints are non-holonomic, i.e., functions F, de-
pend on velocities in an essential way; by nonessential dependence we mean such
one that

oG, .;

Fa(g,9) = K%Gi(q) = Ki(g,9) 5 270

where the matrix K is non-singular and depends smoothly on its arguments. It
turns out that constrained variational conditions (1.5) are non-adequate in mecha-
nical problems with non-holonomic constraints arising due to the contact—friction
mechanism (e.g., non-sliding rolling of rigid bodies). In principle, all.realistic non—
holonomic constraints of this class are linear in velocities, i.e., their equations can
be reduced to the form

F, =0. (1.8)

Fa(qa q.) = wai(q)q.i =0. (1‘9)
Holonomic¢ (or rather semi-holonomic) constraint. G5 = const may be formally
represented in this form by putting
0G, . e _ G,

3' , le., Wai =

For realistic mechanical problems with constraints (1.9), equations of motion are
derived from the d’Alembert principle, i.e., from the assumption that reactions R,
are dual to admissible velocities, i.e., R;ju' = 0 if wyyu' = 0. This principle leads
to equations of motion:

Py, =

(1.10)

d oL 9L
a T = A%t (11}
) dtdg¢ 9q X(ep (1.11)
b) weif* = 0,

A’s being Lagrange multipliers. If there are non-Lagrangian interactions, then
the right-hand side of (1.11a) should be complemented by adding an appropriate
generalized force ®;(q, §).

At the same time, the constrained variational problem:

5 / Ldt=0, wa(a)d =0, (1.12)
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leads to the following Euler-Lagrange equations:

dOL 0L _ . 8ws Owui\. ..
a) E—a—q."' - '37; =B ( aq, an )q', B Wai, (1.13)

b) waid' = 0,

y;s being Lagrange multipliers.

The difference between (1.11) and (1.13) is obvious. The righthand side of
(1.11) can be identified with the second term of the right-hand side of (1.13a) by
putting A® = —j%, however, the first, curl-like, term on the right band side of
(1.13.a) has no analogue in (1.11). Variational reactions

R = p* (c_vaj,.' - wu.-.,')é" — B%wai, (1.14)

do not work along actual velocities ' compatible with constraints, R (g, §)¢* = 0,
however, they fail to be dual to all possible virtual velocities satisfying (1.13.b),
R™(q,¢)u' # 0. In other words, R**" affects also the along—constraints motion.

Let us observe that in some sense the system (1.13) has more degrees of free-
dom than (1.11), because it contains both u’s and their time derivatives j, thus,
Lagrange multipliers cannot be eliminated in an algebraic way.

The difference between (1.11) and (1.13), and the non-variational character of
(1.11) have been a subject of many discussion and speculations, Although (1.11),
(1.13) are evidently different, one can not apriori exclude the possibility that for
realistic systems and in realistic range of phenomena (i.e., in certain range of initial
conditions) their quantitative predictions will be comparable, and, incidentally,
there are examples of situations where certain families of motions ruled by (1.11)
and (1.13) coincide. This was our idea in [6]. However, it turns out that it is just
in realistic technical problems where the predictions of variational equations (1.13)
are drastically different from those based on the d’Alembert principle (1.11).

2. Example

As a typical example let us quote the system pictured in figure 1; it is prac-
tically used as an element of the frictional speed reducer [4] and other similar
intstruments. Rotation axes of rotors A, B are co—planar and mutually perpendi-
cular. Besides of the rotational motion around its axis, the rotor B can undergo
translational motions along the axis. The boundary of the rotor B is tangent to
the target of the rotor A, and at the moving contact point the usual conditions
of non-slidind rolling are satisfied. We assume that both rotors are symmetric,
rotate about their vertical symmetry axes, and the centres of mass are placed on
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I

Fig. 1.

rotation axes. Let a, b denote the inertial moments of circles A,/ B, m - the mass
of B, and r - the radius of the circle B. Let us assume that rotations are free
and the only forces are those acting along the z—axis, i.e., along the translational
degree of freedom of B.Thus, Lagrangian has the form:

L=T-V(z)= §¢2 + g;iﬂ + -’;3? - V(2). (2.1)
Equations of non-holonomic constraints have the form
F=zp-rp=0.
D’Alembert principle leads to equations of ﬁoﬁon

a) ap = =z,

) by 2.2)
¢) mi = -V'(z), .

d) - zp—rP=0.

Translational dynamics (2.2.c) is autonomous. We can easily eliminate X using
(2.2.b),

b -
A= —;1[) ' (2.3)
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Substituting this to (2.2.a) and making use of (2.2.d) we obtain:

/

b . .
(e- ﬁ22>tp —zp = 0. . (2.4)

When (2.2.c) is solved, this becomes a closed time—dependent equation for ¢ and
can be in principle solved. Then % is found from

. §¢~= 0. (2.5)

Variational equations have the form:

d
a) E;(a¢ +ap) =0,
d. .
b —(byp + =0,
) by ) 26)
c) mi + V'(z) - pp =0,
d) zp—rih = 0.

The dynamics of z is non-autonomous and if p # 0, there is a rether strange helical
force pu¢ acting along the z-axis. And equations (2.6) imply that with a possi-
ble exception of some trivial situations, 4 does not vanish. Namely, integrating
(2.6.a,b) and using (2.6.d) we obtain

. A
a) ap+zp = A, (2.7)

b) ga:c,'o+ru = B.

A, B being integration constants. Performing a few eliminations of variables, based
on (2.7), we can reduce the system (2.6) to the following sequence of equations:

b(A—-ga:)Z_BA——g:c
b

a) m:?:-+-V'(:t:)-+-1_—2 P ?a—;b;:c?:O’
b) (a - %22)(# + ga: = A,
(2.8)
) =10,
d) u= g - —;—2—:¢.

(2.8.a) can be independently solved, and substituting its solution to {2.8.b,c,d;
we solve the problem. Only for the special choice of angular constants of mation
‘A = B = 0, translational equation (2.8.a) coincides with (2.2.c). However, there
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- are no rotational motions in this case, ¢ = const, 1 = const. If z = :}:rﬁ happens
to be an equilibrium point of V', then (2.8.b, ¢) do not imply the constancy. of ¢,
1, however, the time dependence of ¢ is completely nondetermined. If zg is an
equilibrium point of V and A, B are chosen in such a way that Ar — Bzg = 0,
then there are also stationary solutions z = zg, ¢ = const, ¥ = const.

Obviously, it is (2.2), not (2.6), what is compatible with experimental data.
It is not only the very existence of the non-observed helical force in (2.6.c). what
decides that the variational approach is non-realistic. Much more-important is
that the helical term is strongly singular. Thus, phase portraits of (2.2), (2.6) are
completely different, topologically non—equivalent.

Although variational model (1.13) is more convincing from the-point of view
of mathematical aprioric ideas, it is d’Alembert model that provides:am:adequate
description. of realistic non-holonomic problems of the sliding—free rolling.

A deep mathematical analysis of certain differences between variational and
mechanical (i.e., d’Alembertian) models of nonholonomic constraints may be found
in [8], [2].

3. Constraints nonlinear in velocities

If non—holonomic constraints are non-linear in velocities, then:variational pro-
blem (1.5)is still well-defined, however, there is no automatic generalization of the
d’Alembert principle. Obviously, in practical problems with constraints generated
by the direct contact mechanism, this has no practical meaning, because such con-
straints are always linear in velocities. Nevertheless, there were certain academic
speculations concerning nonlinear nonholonomic constraints arising in a consequ-
ence of certain singular limit transitions from linear nonholonomic: problems; the
mentioned singularity consists in disappearing of certain degrees:of freedom (Ha-
mel’s system). Besides, there is a motivation for such discussions from the theory
of programme motion and control theory. When we investigate artificial systems
of automatic regulation, in particular, systems stabilizing the absolute value of
velocity or angular velocity of satellites and other spatial objects, the question
concerning possible generalizations of the d’Alembert principle appears in a rather
natural way, at least as a question of heuristic nature.

The most popular in literature nonlinear generalization of d’Alembert principle,
namely, so~called Appell-Tshetajev principle, leads to the following equations of
motion:

d 0L 0L JO0F;
a) Ea—d.--a—q,-—if.'+f\ ik

b) Fa(9,9) = 0,

(3.1)
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A%(t), @ = 1,...,n denote Lagrange multipliers. Equations (3.1) reduce to (1.11)
if constraints are linear in velocities, Fy = wqi(q)¢'. They reduce to (1.8) for
holonomic constraints represented in anholonomic form,

OF,

—¢' = 0. 3.2

o 3.2)
The Appell-Tshetajev principle is a natural generalization of the d’Alembert prin-
ciple. In any case, it has a well-defined geometric meaning. Namely, let for a fixed
configuration ¢ € @, V; C T,Q denote the manifold of all virtual velocities at g,
compatible with constraints, i.e., satisfying conditions: .

Fa(Qy v) = 0. (3.3)

Obviously, V, is an (n — m)—dimensional surface in the n—dimensional linear space
- T,Q of all non—-constrained virtual velocities at g¢. The Appell-Tshetajev principle
states that for any ¢ € Q and for any v € Vj, the reaction force R;(q, v). maintaining
constraints F, = 0is dual to TV, C T,Q, i.e., to the linear subspace of T, Q tangent
to the surface V,, i.e., R(g,v);u' = 0 for any u € T,V,. This means exactly that
A
5q~71
i.e., equations of motion have the form (3.1).

Comparing (3.4) with (1.6), (1.7) and putting A* = —® we again conclude that
the Appell-Tshetajev reactions is a natural part of the Lusternik reaction (1.7)
corresponding to the constrained variational problem (1.5). However, Lusternik
reaction constains also three additional terms.

For example, let us consider the system with Lagrangian L = %g;j(j‘gj -V{(g),
gi; being constants; and constraints stabilizing the absolute value of velocity,
F=1g¢¢ - % (c~constant). Lusternik equations (1.6), (1.7) have the form

Ri=2° (3.4)

5y iy OV
a) (m+u)q + 44" +¢7 55 =0,
q (3.5)
b) i i'¢ —c*=0.
The corresponding Appell-Tshetajev equations read:
) mif ~ 2\ 44997 =0,
¢ (3.6)
b) gij'¢ -2 =0.

Even if we identify A with —g, it is clear that there is an important difference of
qualitative nature between (3.5) and (3.6). Namely, besides of the frictional reac-
tion force ig*, (3.5) contains the additional inertial term u§'. Lagrange multiplier
enters in (3.5) in a first~order differential way.
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As mentioned, for natural systems with linear non-holonomic constraints,
the Appell-Tshetajev—d’Alembert maintaining forces (reactions) are confirmed by
experiment, whereas the Lusternik variational reactions turn out to be completely
non—physical. Nevertheless, the formulas (1.7) are useful and provide some kind
of heuristic guiding hints, when we go over to artificially generated constraints
(servo—constraints), control problems and programme motion.

Namely, the problem is then formulated as follows: we have a system which
under "natural” conditions moves according to equations (1.1) or (1.2), and’ we
want to force it to move according to the programme described by certain sclero-
nomic, F,(q, ) = 0, or rheonomic, F,(g,¢,t) = 0, conditions; a = 1,...,m.

If m = n and the dependence of F, on the time variable is nontrivial, this
means that our demands are maximal, i.e., the system is to move along a fixed,
prescribed trajectory. .

The programme conditions F, = 0 are in general incompatible with equations
of motion and we must introduce certain additional programme forces R, which,
when added to the right-hand side of (1.2), make equations (1.2), (1.6.b) compa-
tible, or at least compatible to a certain degree of accuracy, with our programme
conditions. Variational scheme based on (1.6), (1.7) is one of infinitely many po-
ssiblities. However, its main value is not the particular form (1.7) of R, but rather,
its general structure as a superposition of certain characteristic expressions with
the specific tensorial structure and physical interpretation.

The first term, —p2(6%F,/0¢'0¢°)§’, suggested that one of possible ways of
controlling mechanical motion is to introduce the controlling input into inertial
properties of the bady, i.e., to use controlling forces of the form

P;#, " (3.7)

where the matrix P depends on time directly (and then the coefficients P;; them-
selves are control parameters) or through certain additional degrees of freedom [7].
This method is practically used, e.g., to stabilize the angular velocity of engine
shafts.

The second term of (1.7) and the first term on the right hand side of (1.13.a)
suggest controlling forces of the form

R;#, S;d, RT=R, §T=-§,- (3.8)

where again the matrices R, S serve as inputs of controlling influences. R,;¢’
descibes damping forces if eigenvalues of R are negative. The term S;;¢’ describes
controlling influences based on "gyroscopic”, or "magnetic” forces. They are dual
to velocity vectors and do not influence the energy balance. The remaining terms
of (1.7) have no special structure as tensorial functions of (g, ¢); they suggest the
direct controlling influences of the form F(t).
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Streszczenie

Przedyskutowano réznice miedzy mechanicznymi a matematycznymi zagadnieniami
wariacyjnymi z wiezami, tzn., miedzy zasada d’Alemberta a procedura oparta na twierdze-
niu Lusternika o ekstremum zwiazanym. Rdznice te zilustrowano przy pomocy przykladu
technicznego, jakim jest reduktor predkosci. Zwrécono uwage, ze chociaz wariacyjna za-
sada Lusternika nie da sie zastosowa¢ w dynamice realistycznych ukladéw nieholonomicz-
nych, to jest ona heurystycznie uzyteczna w zagadnieniach ruchu programowego i stero-
wania w mechanice. Rzecz w tym, ze dostarcza ona pewnych sugestil odnoénie wyboru
realistycznych i wygodnych matematycznie modeli sil 1 czynnikéw sterujacych.

Praca wplyn¢la do Redakcji dnia 80 maja 1990 roku



