ANALIZA SPRZĘŻEŃ TERMODYFUZYJNYCH NA PRZYKŁADZIE ROZWIĄZANIA PEWNEGO ZADATAŃ POCZĄTKOWO–BRZEGOWEGO W WARSTWIE

MAREK WRÓBEL

Wyższa Szkoła Inżynierska, Opole

W pracy przeprowadzono dyskusję wzajemnych sprzężeń termodyfuzyjnych i wpływu tych sprzężeń na pole naprężeń, na przykładzie rozwiązania pewnego zadania początkowo–brzegowego sprzężeń termodyfuzji w warstwie. Rozpatrzone szesnaście przypadków zadań rozprężonych i częściowo sprzężonych. Przeprowadzono również dyskusję założeń upraszczających, poczynionych w trakcie rozwiązywania zadania brzegowego. Rozważania ilustrowano rysunkami i zestawieniami tabelarycznymi.

1. Wstęp

Analiza naprężeń technologicznych wywołanych przez przepływy cieplno–dyfuzyjnymi sprzężonymi z polem mechanicznym występuje w opisie wielu współczesnych problemów technologicznych takich jak obróbka ciepło–wilgotnościowa betonu, naprężenia w konstrukcjach korodujących, gruntach ekspansywnych, czy też nakładaniu powłok ochronnych w metalach. Dla potrzeb budownictwa istotny jest pierwszy przypadek, kiedy wzajemnie oddziaływające na siebie przepływy wilgoci i ciepła oraz poła przemieszczeń determinują późniejsze własności betonu i konstrukcji wykonanych z tego materiału. W pracy podjęto próbę ilościowego oszacowania wpływu sprzężeń między tymi polami, oraz wpływu tych sprzężeń na pole naprężeń na przykładzie rozwiązania pewnego zagadnienia sprzężeń termodyfuzji w warstwie w zakresie sprężystym [24] i lepkosprężystym [25]. Oprócz dyskusji wyników otrzymanych w cytowanych powyżej pracach przeprowadzimy tu również krótką analizę przyjętych w trakcie rozwiązywania założeń upraszczających i ich wpływu na te rozwiązania. Wydaje się, że taka analiza sprzężeń może być celowa, gdyż autorzy niewielu publikacji z zakresu termodyfuzji sprężystej i lepkosprężystej skupiają uwagę na teoretycznych podstawach problemu [7,16,17 18,36,38]. Znane są rozwiązania pewnych zagadnień brzegowych [3,5,8,11,23], lecz brak jest tam przykładów liczbowych obrazujących rozważane procesy i mogących posłużyć do szerszej analizy sprzężeń rozpatrywanych wielkości polowych.
2. Sformułowanie zadania, założenia upraszczające, metoda rozwiązania

Należy wyznaczyć pola temperatury, koncentracji i przemieszczeń oraz odkształceń i naprężeń w warstwie o grubości \(h \), zdeterminowane przez zadane na brzegach wartości temperatury i koncentracji, oraz określić wpływ wzajemnych sprzężeń między rozpatrywanymi polami na ich rozkład.

Rys. 1. Warstwa z polem temperatury, koncentracji i przemieszczenia

Rozpatrywano więc warstwę o grubości \(h \), w której występuje pole temperatury \(\Theta \), koncentracji \(C \) i przemieszczenia \(U_i \) (rys.1). Zauważono dalej, że rozpatrywane zagadnienie jest jednowymiarowe, tzn. że wszystkie pola zależą od jednej zmiennej przestrzennej \(x_3 \), oraz że ośrodek jest izotropowy, brak w nim źródeł ciepła i masy oraz sił masowych. Warunki brzegowe podano w temperaturze i koncentracji:

\[
\Theta(\pm \frac{h}{2}, t) = \Theta_b H(t), \quad C(\pm \frac{h}{2}, t) = C_b H(t),
\]

(2.1)

natomiast za warunki początkowe przyjęto wartości przyrostów entropii i koncentracji ponad stan naturalny na całej grubości warstwy równe zero:

\[
C(x_3, 0) = 0, \quad \rho S(x_3, 0) = 0.
\]

(2.2)

W pracy [24] zbudowano funkcjonal dla zadań sprzężeń termodyfuzyjnych lekkoosprzężystych, który dla tak sformułowanego problemu brzegowego przyjmuje postać:

\[
\mathcal{F}[\Theta, C, U_3] = \int_{-h/2}^{h/2} \left[\frac{1}{2} E_{3333} * dU_{3,3} * dU_{3,3} - \varphi_{33} * dU_{3,3} * d\Theta + \right.
\]

\[
-\frac{1}{2} n * dC * dC - \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
-\frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
-\frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
-\frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]

\[
+ \frac{1}{2} m * d\Theta * d\Theta - \frac{1}{2} K \Phi_{33} * \Phi_{33} * dU_{3,3} * dU_{3,3} + \]
\[+ K \Phi_{33} \ast l \ast dU_{3,33} \ast d\Theta_{33} - K \Phi_{33} \ast n \ast dU_{3,33} \ast dC_{33} - \frac{1}{2} KL \ast l \ast \]
\[*d\Theta_{33} \ast d\Theta_{33} + KL \ast n \ast d\Theta_{33} \ast dC_{33} - \frac{1}{2} K n \ast n \ast dC_{33} \ast dC_{33} + \]
\[+ C_0 (\Phi_{33} \ast dU_{3,3} - l \ast d\Theta + n \ast dC) + \rho S_0 H \ast d\Theta + \]
\[- \frac{R}{2} \ast \frac{k}{T_0} \ast \Theta_{33} \ast d\Theta_{33} \]
\[dz_3. \]

W funkcjonalnej powyższym podano miejsca występowania odpowiednich funkcji sprzegających, które zostaną dalej zdefiniowane i posłużą do analizy wzajemnego oddziaływania pól.

Powyższe zadanie początkowo-brzegowe rozwiązano zmodyfikowaną metodą bezpośrednią Ritza [37] przyjmując cosinusowe funkcje bazy dla koncentracji i temperatury, oraz sinusową funkcję bazy dla przemieszczeń. W pracy [24] rozważano postawiony problem brzegowy w zakresie sprzężystym, kiedy to funkcja relaksacji materiału warstwy jest stała w czasie:

\[G(t) = EH(t). \]

(2.4)

Z kolei w pracy [25] rozważano to zadanie przyjmując, że materiał warstwowy podlega zjawiskom reologicznym opisywanym teorią Arutuniana [29], w której przyjmuje się, że jądra w całkowitych równaniach fizycznych są nieinwariantne względem przesunięć skali czasowej. Natomiast wraz z upływem czasu materiał taki może być opisywany równaniami liniowej lepkosprężystości o jądrach typu splotu (por. [1, 10, 19, 20, 30]). Funkcja relaksacji ma wtedy postać:

\[G(t) = \frac{E_0}{1 + E_0 C_0} \left[E_0 C_0 \exp[-\gamma(1 + E_0 C_0) t] + H(t) \right]. \]

(2.5)

Szczegóły dotyczące rozwiązania tak postawionego zadania znaleźć można w cytowanych pracach [24, 25], za którymi przyjęto tu i dalej następujące oznaczenia:

- \(U^*, P^* \) — wektory przemieszczeń i sił zewnętrznych zadane na brzegach \(A_u \) i \(A_v \) ciała \(B \),
- \(\rho F_i \) — siła masowa jednostki objętości ciała,
- \(T_1, C_1 \) — odpowiednio temperatura i koncentracja w chwili \(t \),
- \(T_0, C_0 \) — odpowiednio temperatura i koncentracja stanu naturalnego \(\Theta = T_1 - T_0, \ C = C_1 - C_0 \),
- \(k_{ij}, K_{ij} \) — odpowiednio tensorsy przewodności cieplnej i dyfuzyjnej,
- \(E_{ijkl}, \varphi_{ij}, \Phi_{ij} \) — tensorsy funkcji relaksacji,
3. Wyprowadzenie funkcji sprzęgających. Wstępna charakterystyka wyników

Z analizy funkcjonału danego zależnością (2.3) wynika kilka funkcji sprzęgających pola termiczne, dyfuzyjne i mechaniczne, które po uwzględnieniu związków pomiędzy funkcjami materiałowymi można przedstawić w postaci (por. [24,25]):

1. funkcja sprzęgająca pole mechaniczne z cieplnym związanym z przepływem ciepła

\[\kappa_{c_1} = \frac{3}{2} \alpha_T, \]
(3.1)

2. funkcja sprzęgająca pole mechaniczne z cieplnym związanym z przepływem masy

\[\kappa_{c_2} = \frac{3}{2} K \alpha_c, \]
(3.2)

3. funkcja sprzęgająca pole mechaniczne z dyfuzyjnym

\[\kappa_T = \frac{3}{2} D_c \alpha_c, \]
(3.3)

4. funkcja sprzęgająca pole cieplne z dyfuzyjnym

\[\kappa_U = D_c l. \]
(3.4)
Wobec przyjętego w pracach [24,25] założenia o stałości w czasie funkcji materiałowych \(l, m, n \):

\[
l(t) = lH(t), \quad m(t) = mH(t), \quad n(t) = nH(t),
\]

funkcje sprzężające (3.1) – (3.4) redukują się do roli współczynników sprzężających (stałych w czasie).

Analizowane dalej wyniki liczbowe otrzymano z obliczeń numerycznych przeprowadzonych na następujących wartościach odpowiednich współczynników i funkcji materiałowych dotyczących dojrzewającego betonu (po przeprowadzeniu do jednostek układu SI):

- współczynniki dyfuzji \(D_c \) [6,28,31] i przewodności cieplnej \(D_T \) [4,12]

\[
D_c = 6 \cdot 10^{-6} [\text{m}^2/\text{h}], \quad D_T = 4 \cdot 10^{-2} [\text{m}^2/\text{h}],
\]

(3.6)

- współczynniki rozszerzalności cieplnej \(\alpha_T \) [4,12] i dyfuzyjnej \(\alpha_c \) [6,10]

\[
\alpha_T = 4.7 \cdot 10^{-6} [1/\text{K}], \quad \alpha_c = 1.25 \cdot 10^{-5} [\text{m}^3/\text{kg}],
\]

(3.7)

- współczynniki materiałowe \(m \) [4,12], \(n \), \(l \) [33,34]

\[
l = 1305.4 [\text{J/kgK}], \quad m \approx 7862.5 [\text{J/m}^3\text{K}^2],
\]

(3.8)

\[
n = 134.2 [\text{J/m}^3\text{kg}^2],
\]

- współczynniki \(\tilde{C}_0 \) i \(\gamma \) [6,10]

\[
\tilde{C}_0 = 9.75 \cdot 10^{-9} [\text{m}^2/\text{N}], \quad \gamma = 12.46 \cdot 10^2 [1/\text{h}],
\]

(3.9)

- moduł sprężystości podłużnej \(E_0 \) [12] i współczynnik Poissona \(\nu \) [10]

\[
E_0 = 2 \cdot 10^{10} [\text{Pa}], \quad \nu = \frac{1}{6}[-],
\]

(3.10)

- warunki brzegowe w temperaturze \(\Theta_b \) [4] i koncentracji \(C_b \) [10]

\[
\Theta_b = 40.0 [\text{K}], \quad C_b = 10.8 [\text{kg/m}^3].
\]

(3.11)

W toku rozwiązania postawionego problemu początkowo–brzegowego poczy- niono szereg założeń upraszczających. Najistotniejsze z nich to pominięcie źródeł ciepła i masy, oraz przyjęcie funkcji materiałowych określających własności fizyczne betonu za stałe w czasie. Okazuje się, że w pewnych sytuacjach zaniedbanie źródeł ciepła i masy jest uzasadnione. Ma to miejsce wówczas, gdy zmiany tempera- tury i koncentracji wywołane reakcjami hydratacji cementu są małe w porównaniu do zmian tych wielkości spowodowanych przepływami ciepła i masy. Przyjęcie

W sensie tak wprowadzonych założeń upraszczających, oraz przyjętych zlina-
aryzowanych równań termodyfuzji lepkosprężystej ((2.1)–(2.16) w [24]) wyniki nu-
meryczne analizowanego zadania nabierają znaczenia jako wyniki ilościowe, słuszne dla podanych w literaturze danych.

Wyniki obliczeń numerycznych przedstawiono w postaci graficznej. Rozwiąza-

Ze względu na symetrię zadania (rys.1) na wykresach przedstawiono jedynie wyniki przebiegu procesów dla połowy rozpatrywanej warstwy. Aby umożliwić lepszą analizę ilościową prezentowanych wyników, oprócz zmiennych występujących w zadaniu wprowadzono zmienne bezwymiarowe. W zmiennych tych poziomem odniesienia dla temperatury i koncentracji są ich wartości zadane na brzegach, natomiast dla naprężeń – poziom ustalonych naprężeń w warstwie sprężystej:

\[
\xi = \frac{x_3}{h}, \quad \Theta = \frac{\Theta}{\Theta_b}, \quad \zeta = \frac{C}{C_b}, \quad \sigma = \frac{\sigma}{\sigma_b}.
\]

(3.12)

Przedstawiony w pracy problem początkowo-brzegowy obejmuje szesnaście zadań tworzonych przez wszystkie możliwe kombinacje współczynników sprężają-
cych (3.1) ÷ (3.4) względem ich wartości równych lub różnych od zera:

<table>
<thead>
<tr>
<th>1. (\kappa_U = 0)</th>
<th>2. (\kappa_U \neq 0)</th>
<th>3. (\kappa_U = 0)</th>
<th>4. (\kappa_U \neq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T \neq 0)</td>
<td>(\kappa_T \neq 0)</td>
</tr>
<tr>
<td>(\kappa_{C_2} = 0)</td>
</tr>
<tr>
<td>(\kappa_{C_1} = 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. (\kappa_U = 0)</th>
<th>6. (\kappa_U \neq 0)</th>
<th>7. (\kappa_U = 0)</th>
<th>8. (\kappa_U \neq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T \neq 0)</td>
<td>(\kappa_T \neq 0)</td>
</tr>
<tr>
<td>(\kappa_{C_2} \neq 0)</td>
</tr>
<tr>
<td>(\kappa_{C_1} \neq 0)</td>
<td>(\kappa_{C_1} = 0)</td>
<td>(\kappa_{C_1} = 0)</td>
<td>(\kappa_{C_1} = 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. (\kappa_U = 0)</th>
<th>10. (\kappa_U \neq 0)</th>
<th>11. (\kappa_U = 0)</th>
<th>12. (\kappa_U \neq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T = 0)</td>
<td>(\kappa_T \neq 0)</td>
<td>(\kappa_T \neq 0)</td>
</tr>
<tr>
<td>(\kappa_{C_1} = 0)</td>
<td>(\kappa_{C_2} = 0)</td>
<td>(\kappa_{C_2} = 0)</td>
<td>(\kappa_{C_2} = 0)</td>
</tr>
<tr>
<td>(\kappa_{C_1} \neq 0)</td>
</tr>
</tbody>
</table>
13. \(\kappa_U = 0 \) 14. \(\kappa_U \neq 0 \) 15. \(\kappa_U = 0 \) 16. \(\kappa_U \neq 0 \)
\(\kappa_T = 0 \) \(\kappa_T = 0 \) \(\kappa_T \neq 0 \) \(\kappa_T \neq 0 \)
\(\kappa_{c_2} \neq 0 \) \(\kappa_{c_2} \neq 0 \) \(\kappa_{c_2} \neq 0 \) \(\kappa_{c_2} \neq 0 \)
\(\kappa_{c_1} \neq 0 \) \(\kappa_{c_1} \neq 0 \) \(\kappa_{c_1} \neq 0 \) \(\kappa_{c_1} \neq 0 \)

Tablica 1. Względna maksymalna różnica naprężen % dla poszczególnych kombinacji współczynników sprzęgających w odniesieniu do tej wartości, dla której jest ona liczona. Warstwa sprężysta.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>29</td>
<td>25</td>
<td>28</td>
<td>18</td>
<td>29</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>*</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>24</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>9</td>
<td>*</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>*</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>29</td>
<td>26</td>
<td>31</td>
<td>25</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>*</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>22</td>
<td>27</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>27</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>*</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>23</td>
<td>30</td>
<td>25</td>
<td>28</td>
<td>23</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td>*</td>
<td>7</td>
<td>*</td>
<td>7</td>
<td>20</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>9</td>
<td>*</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>*</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>29</td>
<td>26</td>
<td>31</td>
<td>25</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td>*</td>
<td>7</td>
<td>*</td>
<td>7</td>
<td>20</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>22</td>
<td>33</td>
<td>28</td>
<td>29</td>
<td>25</td>
<td>33</td>
<td>25</td>
<td>*</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td><1</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>22</td>
<td>41</td>
<td>37</td>
<td>43</td>
<td>33</td>
<td>41</td>
<td>33</td>
<td>9</td>
<td>*</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td><1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>32</td>
<td>36</td>
<td>29</td>
<td>33</td>
<td>28</td>
<td>36</td>
<td>28</td>
<td>9</td>
<td>*</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>*</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>31</td>
<td>45</td>
<td>39</td>
<td>38</td>
<td>39</td>
<td>45</td>
<td>39</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>*</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>22</td>
<td>33</td>
<td>28</td>
<td>29</td>
<td>25</td>
<td>33</td>
<td>25</td>
<td><1</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>*</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>22</td>
<td>41</td>
<td>37</td>
<td>43</td>
<td>33</td>
<td>41</td>
<td>33</td>
<td>9</td>
<td><1</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>*</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>32</td>
<td>36</td>
<td>29</td>
<td>33</td>
<td>28</td>
<td>36</td>
<td>28</td>
<td>9</td>
<td><1</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>*</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>28</td>
<td>43</td>
<td>37</td>
<td>34</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>*</td>
</tr>
</tbody>
</table>

Tablica 2. Względna maksymalna różnica naprężen % dla poszczególnych kombinacji współczynników sprzęgających w odniesieniu do tej wartości, dla której jest ona liczona. Warstwa lepkosprężysta.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td><1</td>
<td>7</td>
<td>2</td>
<td>12</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>*</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td><1</td>
<td>6</td>
<td>10</td>
<td>22</td>
<td>38</td>
<td>22</td>
<td>40</td>
<td>22</td>
<td>38</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>11</td>
<td>*</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>26</td>
<td>31</td>
<td>27</td>
<td>32</td>
<td>27</td>
<td>31</td>
<td>26</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>*</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><1</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>*</td>
<td>7</td>
<td>2</td>
<td>12</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td><1</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>*</td>
<td>6</td>
<td>10</td>
<td>22</td>
<td>38</td>
<td>22</td>
<td>40</td>
<td>22</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>*</td>
<td>12</td>
<td>27</td>
<td>34</td>
<td>27</td>
<td>34</td>
<td>27</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>11</td>
<td>7</td>
<td><1</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>28</td>
<td>22</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td>27</td>
<td>36</td>
<td>28</td>
<td>38</td>
<td>27</td>
<td>38</td>
<td>28</td>
<td>*</td>
<td>15</td>
<td>6</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>52</td>
<td>44</td>
<td>39</td>
<td>42</td>
<td>52</td>
<td>51</td>
<td>39</td>
<td>17</td>
<td>*</td>
<td>19</td>
<td>9</td>
<td>28</td>
<td><1</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>27</td>
<td>37</td>
<td>28</td>
<td>38</td>
<td>27</td>
<td>38</td>
<td>28</td>
<td>6</td>
<td>16</td>
<td>*</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>58</td>
<td>47</td>
<td>39</td>
<td>45</td>
<td>58</td>
<td>51</td>
<td>39</td>
<td>24</td>
<td>10</td>
<td>26</td>
<td>*</td>
<td>36</td>
<td>10</td>
<td>22</td>
<td><1</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td>27</td>
<td>36</td>
<td>28</td>
<td>38</td>
<td>27</td>
<td>38</td>
<td>28</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>26</td>
<td>*</td>
<td>22</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>42</td>
<td>52</td>
<td>44</td>
<td>39</td>
<td>42</td>
<td>52</td>
<td>51</td>
<td>39</td>
<td>17</td>
<td><1</td>
<td>19</td>
<td>9</td>
<td>28</td>
<td>*</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>51</td>
<td>35</td>
<td>28</td>
<td>38</td>
<td>51</td>
<td>38</td>
<td>28</td>
<td>5</td>
<td>13</td>
<td>5</td>
<td>18</td>
<td>9</td>
<td>13</td>
<td>*</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>45</td>
<td>58</td>
<td>47</td>
<td>39</td>
<td>45</td>
<td>58</td>
<td>51</td>
<td>39</td>
<td>24</td>
<td>10</td>
<td>26</td>
<td><1</td>
<td>36</td>
<td>10</td>
<td>22</td>
<td>*</td>
</tr>
</tbody>
</table>

Aby w sposób kompleksowy podać pewne wyniki miłościowe sporządzono zestawienia tabelaryczne względnych maksymalnych różnic w wartościach naprężeń.
dla zadań opisanych przez (3.13).
I tak, tablice 1 i 2 obrazują te różnice w odniesieniu do tych wartości naprężeń, względem których są one liczone; odpowiednio dla rozwiązania w warstwie sprężystej (tab.1) i lepkosprężystej (tab.2). Z kolei tablica 3 przedstawia te same różnice, ale w odniesieniu do poziomu ustalonych (t → ∞) naprężeń w warstwie sprężystej (7.75 MPa). W trakcie dyskusji wyników te ostatnie wartości różnic (z tab.3) będziemy podawali w nawiasach. Wartości podawane bez nawiasów dotyczą będą tablic 1 i 2.

Tablica 3. Względna maksymalna różnica naprężeń % dla poszczególnych kombinacji współczynników sprężających w odniesieniu do ustalonych naprężeń w warstwie sprężystej.

<table>
<thead>
<tr>
<th>WARSTWA SPRĘŻYSTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

WARSTWA LEPKOSPRĘŻYSTA

Przy wyznaczaniu różnic wykorzystujemy wzory na maksymalne odchylenia naprężeń w przedziale < 0; 0.5 > (rys.2).
I tak, względy maksymalne różnice naprężeń w odniesieniu do tych wartości, dla których są one liczone określamy z zależności:

\[
100\% \cdot \frac{\max |\sigma^\alpha - \sigma^\beta|}{|\sigma^\alpha|}, \quad 100\% \cdot \frac{\max |\sigma^\alpha - \sigma^\beta|}{|\sigma^\beta|}, \quad (3.14)
\]

zaś względy maksymalne różnice naprężeń w odniesieniu do ustalonych naprężeń w warstwie sprężystej obliczane są zgodnie z formułą:

\[
100\% \cdot \frac{\max |\sigma^\alpha - \sigma^\beta|}{|\sigma^\nu|}, \quad (3.15)
\]

Ponieważ rozkład naprężeń typów określonych przez (3.13) wydaje się być najbardziej istotnym aspektem postawionego problemu, więc właśnie jemu poświęca się większą część wykresów zarówno tutaj jak i w cytowanych wcześniej pracach.
Zanim przystąpiemy do dyskusji wyników omówimy jeszcze pokrótce sposób korzystania z załączonych tablic dla kombinacji zadań przy różnych typach sprzężeń określonych przez szesnaście zadań danych przez (3.13).

Przyjmiemy więc, że **wiersze i kolumny w poszczególnych tablicach oznaczają będziemy przez np. tab.1,w4, tab.2,k6, (w10), (k2), co odpowiednio oznacza: wiersz 4 w tablicy 1, kolumna 6 w tablicy 2, wiersz 10 w tablicy 3, kolumna 2 w tablicy 3. Natomiast poszczególne elementy w tablicach będziemy oznaczać przez np. tab.1{w4,k2}, tab.2{w6,k10}, (w 8,k12}) lub krótko przez : tab.1{4,2}, tab.2{6,10}, (k8,12}) co odpowiednio oznacza element 4-go wiersza i 2-żej kolumny z tablicy 1, element 6-go wiersza i 10-tej kolumny z tablicy 2 i element 8-go wiersza i 12-tej kolumny z tablicy 3.

Przykład

Chcemy określić względną maksymalną procentową różnicę naprężeń w warstwie sprężystej dla zadań, w których uwzględnia się sprzężenia ciepło-dyfuzyjne przy braku innych sprzężeń w porównaniu

(a) z innymi zadaniami,
(b) z zadaniem w pełni niesprzężonym,
(c) z zadaniem w pełni sprzężonym.

Zadaniu, w którym uwzględnia się jedynie sprzężenie ciepło–dyfuzyjne przy pominięciu innych sprzężeń zgodnie z definicjami (3.1)÷(3.4) odpowiada zad.2 z zestawu (3.13).

ad.(a) Przeszukujemy więc wszystkie elementy z tab.1 w2 i znajdujemy maksimum 24% dla (2,11), (2,12) i (2,15), a dalej mając na uwadze definicję (3.14) przeszukujemy również wszystkie elementy z tab.1 k2 i znajdujemy maksimum 32% dla (11,2). Wracając ponownie do zad.11 z zestawu (3.13) i definicji (3.1)÷(3.4) możemy stwierdzić, że względna maksymalna procentowa różnica naprężeń dla zadań, w których uwzględnia się sprzężenie ciepło–dyfuzyjne i brak jest innych sprzężeń występuje w stosunku do zadania, w którym nie uwzględnia się tego sprzężenia ($\kappa_U = 0$) i nie uwzględnia się sprzężenia pola mechanicznego z dyfuzyj-
nym \((\kappa_T \neq 0)\) i pola mechanicznego z cieplnym związanym z przepływem ciepła
\((\kappa_{ct} \neq 0)\) i różnica ta wynosi 32%.

ad.(b) Korzystając z definicji (3.1) \((3.4)\) i zestawu zadań (3.13) znajdujemy
odpowiednio, że element tab.1 \(\{2,1\}\) ma wartość 9%, a mając na uwadze definicję
(3.14) znajdujemy również, że element tab.1 \(\{1,2\}\) ma wartość 8%. Tak więc
poszukiwana wartość maksymalnej różnicy naprężeń dla tego przypadku wynosi
9%.

ad.(c) Korzystając z definicji (3.1) \((3.4)\) i zestawu zadań (3.13) znajdujemy
odpowiednio, że element tab.1 \(\{2,16\}\) ma wartość 22%, a mając na uwadze definicję
(3.14) znajdujemy również, że element tab.1 \(\{16,2\}\) ma wartość 28%. Tak więc
poszukiwana wartość maksymalnej różnicy naprężeń dla tego przypadku wynosi
28%.

Oczywiście otrzymane w przykładzie wyniki można w przybliżeniu otrzymać
za pomocą prostych rachunków po wykorzystaniu rys.13.

Analogiczne postępowanie na tab.2 doprowadza do poszukiwanych wyników
w warstwie lepkosprężystej (które można również w przybliżeniu otrzymać po ra-
chunkach z wykorzystaniem rys.19), zaś na tab.3 po uwzględnieniu def.(3.15) w
warstwie sprężystej lub lepkosprężystej, ale w odniesieniu do pewnego wspólnego
poziomu odniesienia, za który przyjęto poziom ustalonych naprężeń w warstwie
sprężystej.

Szczegółową dyskusję wyników poprzedzić powinno – zdaniem autora – podanie
odpowiednich równań konstytutycyjnych termodyfuzji lepkosprężystej, w których to
równaniach w sposób jawny występowałyby odpowiednie funkcje (współczynniki)
sprężające.

Posłużą nam do tego celu przedstawione w rozdziale 4 spłotowe kryteria podo-
bieństwa.

4. Spłotowe kryteria podobieństwa

Różnorodność możliwych zadań brzegowych wynikająca z kombinacji typów
sprzężeń powoduje, że należy przeprowadzić ich klasyfikację. Pozwalają na to me-
tydy używane w teorii modelowania i podobieństwa. W analizowanym przez nas
problemie przestrzeni rozwiązań zadania brzegowego można rozbić na 16–cie pod-
przestrzeni. Postępowanie takie pozwala uproszczyć rozważania i przeprowadzić obli-
czenia numeryczne pozwalające na ilościowe oszacowanie wpływu sprzężeń. Jest
to też celem naszego postępowania. Należy przy tym w pierwszej kolejności podać
kryteria podobieństwa dotyczące analizowanych zadań początkowo–brzegowych.

Wykorzystując metodykę postępowania przedstawioną w pracach [32,35] za-
piszemy teraz związki fizyczne termodyfuzji lepkosprężystej (2.1) \((2.3)\) z pracy
- [24] w formie:

\[
\sigma_{ij} = A_{\sigma}^{-1} * A_E * A_\varepsilon * E_{ijkl} * d\varepsilon_{kl} - A_{\sigma}^{-1} * A_\varphi * A_\Theta * \varphi_{ij} * d\Theta + \\
+ A_{\sigma}^{-1} * A_\varphi * A_C * \Phi_{ij} * dC,
\]

\[
\rho S = A_S^{-1} * A_\varphi * A_\varepsilon * \varphi_{ij} * d\varepsilon_{ij} + A_S^{-1} * A_m * A_\Theta * m * d\Theta + \\
+ A_S^{-1} * A_l * A_C * l * dC,
\]

\[
M = A_M^{-1} * A_\varphi * A_\varepsilon * \Phi_{ij} * d\varepsilon_{ij} - A_M^{-1} * A_l * A_\Theta * l * d\Theta + \\
+ A_M^{-1} * A_n * A_C * n * dC.
\] \hfill (4.1)

\hfill (4.2)

\hfill (4.3)

Między wprowadzonymi w (4.1) ÷ (4.3) operatorami podobieństwa zachodzą następujące kryteria podobieństwa:

- wynikające z niezmienniczości związków fizycznych

\[
A_E * A_\varepsilon = A_\varphi * A_\Theta = A_C * A_\Theta,
\]

\[
A_\varphi * A_\varepsilon = A_m * A_\Theta = A_l * A_C,
\]

\[
A_\varphi * A_\varepsilon = A_l * A_\Theta = A_n * A_C,
\] \hfill (K1)

\hfill (K2)

\hfill (K3)

- wynikające z symetrii operatora równań problemu

\[
A_\sigma * A_\varepsilon = -A_S * A_\Theta = A_M * A_C.
\] \hfill (K4)

Oznaczając odpowiednie iloczyny operatorów podobieństwa:

\[
A_{\sigma}^{-1} * A_E * A_\varepsilon * E_{ijkl} = E_{ijkl}, \\
A_{\sigma}^{-1} * A_\varphi * A_\Theta * \varphi_{ij} = \kappa_{c_{1ij}}, \\
A_{\sigma}^{-1} * A_\varphi * A_C * \Phi_{ij} = \kappa_{t_{ij}}, \\
A_S^{-1} * A_\varphi * A_\varepsilon * \varphi_{ij} = \kappa_{c_{1ij}}, \\
A_S^{-1} * A_m * A_\Theta * m = m, \\
A_S^{-1} * A_l * A_C * l = \kappa_U, \\
A_M^{-1} * A_\varphi * A_\varepsilon * \Phi_{ij} = \kappa_{t_{ij}}, \\
A_M^{-1} * A_l * A_\Theta * l = \kappa_U, \\
A_M^{-1} * A_n * A_C * n = n.
\] \hfill (4.4)

Otrzymujemy operatory opisujące pewne sprzężenia pomiędzy analizowanymi wielkościami polowymi. Równania fizyczne (4.1) ÷ (4.3) po uwzględnieniu (4.4) można zapisać w formie:

\[
\sigma_{ij} = E_{ijkl} * d\varepsilon_{kl} - \kappa_{c_{1ij}} * d\Theta + \kappa_{t_{ij}} * dC,
\]

\[
\rho S = \kappa_{c_{1ij}} * d\varepsilon_{ij} + m * d\Theta + \kappa_U * dC,
\]

\[
M = \kappa_{t_{ij}} * d\varepsilon_{ij} - \kappa_U * d\Theta + n * dC.
\] \hfill (4.5)

\hfill (4.6)

\hfill (4.7)

Oczywiście operatory leżące na przekątnej tzn. E_{ijkl}, m, n nie będą dalej analizowane w zadaniach brzegowych, gdyż nie opisują typów sprzężeń.
5. Dyskusja wyników

5.1. Wpływ sprzężeń na pole cieplne

W oparciu o dokonaną analizę numeryczną, można stwierdzić, że pole cieplne jest najmniej wrażliwe na wpływy pola dyfuzyjnego i mechanicznego. Zauważamy tu następujące prawidłowości:

- Rozkład pola temperatur jest praktycznie taki sam dla zadania niesprzężonego jak i dla poszczególnych zadań sprzężonych (różnice < 1%).

- Rozkład ten charakteryzuje się monotonicznym wzrostem od wartości zeroowej \((t = 0)\) do wartości stanu ustalonego \(\Theta/\Theta_b = 1\), w każdym wewnętrzny punkcie warstwy.

- Proces ustalania się pola termicznego przebiega bardzo szybko, ponieważ stan ustalony zostaje osiągnięty już pomiędzy ósmą a szesnastą godziną (rys. 3 i 6).

Małe oddziaływanie pozostałych pól na pole termiczne ma następujące uzasadnienie:

- Gęstość wilgoci ma małe wartości w stosunku do gęstości betonu.

- Pole cieplne rozwija się znacznie szybciej niż pole dyfuzyjne (współczynnik przewodności cieplnej jest o 3-y rzędy większy od współczynnika dyfuzji). Zatem faza intensywnej migracji wilgoci, czyli względnie szybkich zmian pola koncentracji ma miejsce wówczas, gdy pole temperatur jest już w znacznym stopniu ustalone.

Powyższe fakty pozostają w zgodności z wynikami otrzymanymi także w innych pracach (por.[3,5,28,31]).

5.2. Sprzężenie pola cieplnego z polem mechanicznym

Wpływ pola termicznego na pole mechaniczne ujęto w rozwiązaniu problemu w formie dwóch składowych: wpływu pola temperatur wynikającego z przepływu ciepła na pole mechaniczne (współczynnik \(\kappa_{c_1} \)), oraz wpływu pola termicznego załączanego z przepływem masy na pole mechaniczne (współczynnik \(\kappa_{c_2} \)). W przypadku tych sprzężeń zauważamy następujące prawidłowości:
• Rozkład pól przemieszczeń i odkształceń jest "wypadkową" pola termicznego i dyfuzyjnego dla przyjętych w zadaniu warunków brzegowych (rys.6). Stąd łatwo już przewidzieć charakter pola naprężeń, które jest superpozycją pól temperatury, koncentracji i odkształceń.

• Jeżeli chodzi o pierwszą składową analizowanego sprzężenia (κ_{c_1}) to odpowiada ona zadaniom w ramach klasycznej teorii termosprężystości lub termolekpoksprężystości. Współczynnik κ_{c_1} występuje wtedy jawnie w związkach fizycznych na tensor naprężeń i entropię lub temperaturę, oraz potencjał chemiczny. W dalszej części dyskusji będziemy często powoływać się na zadania, w których nie jest on równy zeru (zad. 9 ÷ 16).

• Jak wynika z rysunków i zestawień tabelarycznych wpływ sprzężenia reprezentowanego przez κ_{c_1} jest dość istotny i osiąga wartość do 27% tab.1 {9,1}, (do 17% {1,9}) względnych różnic wartości naprężeń w warstwie sprężystej, oraz do 38% tab.2 {9,1}, (do 16% {9,1}) – w warstwie lepkoksprężystej w stosunku do zadania niesprężonego. Przy innych kombinacjach zadań określonych przez (3.13) wpływ tego sprzężenia sięga 33% tab.1 {9,3} i tab.1 {9,7}, (16% {5,9}) – w rozwiązaniu sprężystym i 38% tab.2 {9,5}, (16% {5,5}) – w rozwiązaniu lepkoksprężystym. Uzyskane wyniki są tu w dobrej zgodności z badaniami prowadzonymi w pracach [13,14,15,21,22].

• Druga składowa ujmująca wpływ pola cieplnego na pole mechaniczne (κ_{c_2}) jest tą częścią pola cieplnego, która jest ściśle związana z polem migrującej względem szkieletu wilgoci. W przypadku braku bodźców powodujących intensywny przepływ masy (np. dużego gradientu temperatury) ta część pola cieplnego wynika praktycznie z procesów hydratacji.

• Przyjęcie założeń upraszczających o rozważaniu tej fazy obróbki betonu, dla której można pominać procesy hydratacji, oraz fakt, że rozwój pola koncentracji odbywa się przy praktycznie ukształtowanym polu termicznym (braku dużych gradientów temperatury) znalazły swoje odbicie w uzyskanych wynikach. Względna różnica naprężeń między zadaniem uwzględniającym to sprzężenie ($\kappa_{c_2} \neq 0$), a zadaniem niesprężonym ($\kappa_{c_2} = 0$) wynosi bowiem najwyżej 3% tab.1 {1,5} i tab.1 {5,1}; (2% {1,5}) – w warstwie sprężystej i mniej niż 1% tab.2 {1,5} i tab.2 {5,1} (<1% {5,1}) – w warstwie lepkoksprężystej. Potwierdza to w pełni poczynione założenia i pozostaje w zgodności z eksperymentem [27,34].

5.3. Wpływ pola cieplnego na pole koncentracji

Analizować będziemy z kolei wpływ pola cieplnego na pole koncentracji i na-
przeżeń w przypadku sprzężenia przepływów ciepła i masy, oraz niezależnego od-
działywania obu pól. Współczynnikiem odpowiedzialnym za to cieplno-dyfuzyjne
sprzężenie w zadańach (3.13) i funkcjonale (2.3) jest współczynnik \(\kappa_r \). Zauważone
w tym przypadku prawidłowości są następujące:

- Z zestawień tabelarycznych wynika, że uwzględnienie oddziaływania pola cieplnego na
 rozkłady masy (zad.2) wywołuje 9%, tab.1 \{2,1\} (5% \{1,2\}) -
 względnych różnic naprężeń w warstwach sprężystej i lepkosprężystej.

- Łączny wpływ tego sprzężenia, ze sprzężeniem reprezentowanym przez
 współczynnik \(\kappa_c \) (zad.10) jest rzędu 40%, tab.1 \{10,1\} (17% \{1,10\})
 - w zadaniu sprężystym i 42%, tab.2 \{10,1\} (17% \{10,1\}) w zadaniu
 lepkosprężystym. Wynik ten jest konsekwencją porównania z zadaniem
 rozprężonym (zad.1).

- Analogicznie różnice te wynoszą do 9%, tab.1 \{10,9\} (do 3% \{9,10\}) i do
 17%, tab.2 \{10,9\} (do 5% \{10,9\}) w stosunku do zadania, w którym pomija
 się wpływ pola cieplnego na pole dyfuzyjne (zad.9). Uzyskane rezultaty są
 zgodne z wynikami badań otrzymanymi w pracach [3,5,9].

5.1. Sprzężenie pola mechanicznego z polem koncentracji

Sprzężenie to określone jest w funkcjonale (2.3) i w zestawieniu zadań (3.13)
przez współczynnik \(\kappa_r \), zaś wpływ pola mechanicznego na rozwój pola koncentracji
zilustrowano na rys.5 i 6. Zauważmy tutaj następujące prawidłowości:

- Sprzężenie to (zad.3) daje do 11%, tab.1 \{3,1\} (10% \{1,3\}) - wartości
 względnych różnic naprężeń w warstwie sprężystej i do 10%, tab.2 \{3,1\} (4% \{3,1\})
 w zadaniu lepkosprężystym w stosunku do zadania niesprężonego
 (zad.1).

- Jeżeli uwzględnić powyższe sprzężenie łącznie ze sprzężeniem realizowanym
 przez współczynnik \(\kappa_c \) (zad.11) to odpowiednio różnice te wynoszą w sto-
sunku do zadania niesprężonego 33%, tab.1 \{11,1\} (22% \{1,11\}), oraz 38%,
 tab.2 \{11,1\} (15% \{11,1\}) - por.[26].

- Pominięcie sprzężenia pola mechanicznego z polem koncentracji, ale dla pro-
 cesów, w których uwzględnia się wpływ pola cieplnego na pole mechaniczne
 (zad.9) daje odpowiednio 9%, tab.1 \{11,9\} (6% \{9,11\}), oraz 6%, tab.2
 \{9,11\} i tab.2 \{11,9\} (3% \{11,9\}) - względnych różnic naprężeń w warstwie
 sprężystej i lepkosprężystej - por.[26].
Podsumowując przeprowadzoną tutaj dyskusję wyników analizy numerycznej 16-tu zadań szczególnych problemu stwierdzamy, że:

- Względna różnica naprężeń dla zadań sprzężonych i niesprzężonych może dochodzić do 43%, tab.1 {16,3} i tab.1 {16,7} (22% {5,16}) – w warstwie sprężystej i do 58%, tab.2 {16,2} i tab.2 {16,6} (18% {12,1} i inne) – w warstwie lepkosprężystej.

- Między zadaniem niesprzężonym (zad.1) i w pełni sprzężonym (zad.16) różnice te wynoszą odpowiednio 32%, tab.1 {16,1} (21% {1,16}), oraz 45%, tab.2 {16,1} (18% {16,1}).

- Jeżeli z kolei rozpatrzeć względne różnice napężeń pomiędzy zadaniami częściowo sprzężonymi (pewne kombinacje współczynników sprzęgających określone przez zadania 2 ÷ 15), to mogą one sięgać 45%, tab.1 {12,3} i inne, (23% {1,12} i inne) – w zadaniu sprężystym i 58%, tab.2 {12,2} i inne, (18% {12,1} i inne) – w zadaniu lepkosprężystym.

Nasuwa się tu w sposób naturalny wniosek, że dla pewnych typów zadań brzegowych należy uwzględnić sprzężenia pomiędzy rozpatrywanymi polami.

![Rys. 3. Rozkład temperatury w warstwie dla przypadku: \(\kappa_U = \kappa_T = \kappa_{CG} = \kappa_{CL} = 0 \)](image_url)
Rys. 4. Rozkład koncentracji w warstwie dla przypadku: \(\kappa_u = \kappa_r = \kappa_{c_2} = \kappa_{c_1} = 0 \)

Rys. 5. Rozkład koncentracji w warstwie sprężystej dla przypadku: \(\kappa_u \neq 0; \kappa_r \neq 0; \kappa_{c_2} \neq 0; \kappa_{c_1} \neq 0 \)

Rys. 6. Rozkład wielkości polowych w warstwie sprężystej przy wartości \(\xi = 0.1 \) dla przypadku: \(\kappa_u \neq 0; \kappa_r \neq 0; \kappa_{c_2} \neq 0; \kappa_{c_1} \neq 0 \)
Rys. 7. Rozkład naprężeń w warstwie sprzężnej dla przypadku:
\[\kappa_u = \kappa_T = \kappa_c = \kappa_c = 0 \]

Rys. 8. Rozkład naprężeń w warstwie sprzężnej dla przypadku:
\[\kappa_u \neq \kappa_T \neq 0; \kappa_c = \kappa_c = 0 \]

również do wpływu sprzężeń na inne pola. Prawidłowość tę można wytłumaczyć wpływem pamięci materiału [1,2,3,7,26].

(ii) W otrzymanych wynikach brak jest efektu zjawiska tzw. spiętrzenia koncentracji i spiętrzenia naprężeń spotykanego czasami w literaturze przedmiotu (np.[3,34]). Zjawisko to polega najogólniej na tym, że krzywa rozkładu koncentracji po osiągnięciu w pewnym punkcie obszaru poziomu stanu ustalonego przekracza go i nadal wzrasta, aż do osiągnięcia maksimum. Efekt ten występuje w pewnej klasie zadań sprzężonych i jest konsekwencją zgodności gradientów temperatury i koncentracji. Gradient pola temperatury powoduje wówczas wzrost koncentracji ponad poziom stanu ustalonego i dopiero jego zanik – w momencie osiągnięcia stałego pola temperatury – powoduje odpływ wilgoci z obszaru do poziomu stanu ustalonego. Natomiast zjawisko spiętrzenia naprężeń jest konsekwencją spiętrzenia
koncentracji i nie wymaga komentarza. W cytowanych powyżej pracach podano warunki przy jakich może dojść do spiętrzenia, a w pracy [3] przeprowadzono ponadto dokładną analizę wpływu parametrów zewnętrznych i wewnętrznych na efekt spiętrzenia. Z której wynika, że:

- stopień spiętrzenia jest rosnącą funkcją wartości skoku temperatury na brzegu rozpatrywanego obszaru, przy czym spiętrzenie pojawia się przy temperaturach wyższych od pewnej wartości granicznej – wartość ta dla analizowanego przez nas problemu mieści się w przedziale $\Theta_b \in (60^\circ C \div 80^\circ C)$;

- wzrost wartości skoku temperatury przyspiesza moment wystąpienia spię-
Rys. 10. Rozkład naprężeń w warstwie sprężystej dla czasu \(t = 720 \, \text{h} \)

Rys. 11. Warstwa sprężysta. Rozkład naprężeń w czasie dla przypadku:

\[\kappa_u = \kappa_r = \kappa_{c2} = \kappa_{c1} = 0 \]
Rys. 12. Warstwa sprężysta. Rozkład naprężeń w czasie dla przypadku:
\[\varepsilon_U \neq \varepsilon_T \neq \varepsilon_{C1} \neq \varepsilon_{C2} \neq 0 \]

Rys. 13. Warstwa sprężysta. Rozkład naprężeń w czasie dla \(\xi = 0.3 \)
Rys. 14. Rozkład naprężeń w warstwie lepkosprzężystej dla czasu $t = 384$ h

Rys. 15. Rozkład naprężeń w warstwie lepkosprzężystej dla przypadku:

$$\kappa_U = \kappa_T = \kappa_{C2} = \kappa_{C1} = 0$$

Dla $t = 96$ h pojawiają się zauważalne różnice między naprężeniami w warstwach sprężystej i lepkosprzężystej.
Rys. 16. Rozkład naprężeń w warstwie lepkosprężystej dla przypadku:

\[\kappa_U \neq \kappa_T \neq 0; \quad \kappa_{c2} = \kappa_{c1} = 0 \]

Rys. 17. Warstwa lepkosprężysta. Rozkład naprężeń w czasie dla przypadku:

\[\kappa_U = \kappa_T = \kappa_{c2} = \kappa_{c1} = 0; \]
Linią przerywaną oznaczono poziom ustalonych naprężeń \((t = 2880)\) w warstwie sprężystej

18. Warstwa lepkosprężysta. Rozkład naprężeń w czasie dla przypadku:

\[\kappa_U \neq \kappa_T \neq \kappa_{c2} \neq \kappa_{c1} \neq 0; \]
Szywaną oznaczono poziom ustalonych naprężeń \((t = 5760 h)\) w warstwie sprężystej
Rys. 19. Warstwa lepkosprężysta. Rozkład naprężeń w czasie dla $\xi = 0.3$

trzenia rozumiany jako czas przekroczenia przez koncentrację poziomu stanu ustalonego;

- występuje zanik efektu spiętrzenia (nawet przy spełnionych powyższych warunkach) w materiałach ze współczynnikami dyfuzji mniejszymi conajmniej o dwa rzędy wielkości od współczynnika przewodnictwa cieplnego. Tłumaczy się to tym, że w takich przypadkach składnik dyfundujący napotyka pole cieplne w znacznym stopniu ukształtowane (por. rys.3 $\div 6$).

Przytoczone powyżej uwagi odnoszące się do efektu spiętrzenia koncentracji w kontekście z numerycznym sformułowaniem problemu $(3.6) \div (3.11)$ tłumaczą brak tego efektu w rozwiązaniach podjętych zadań.

6. Podsumowanie

Zestawienie i analiza otrzymanych wyników przemawiają za koniecznością uwzględnienia sprzężeń dla pewnych zadań określonych przez (3.13). Wiek bowiem mamy do rozwiązania konkretny problem początkowo-brzegowy, za-wsze stoimy wobec alternatywy: rozwiązanie prosteiego zadania bez uwzględnienia
sprzężenia pól (czesto bez świadomości błędu jakim obarczone jest rozwiązanie), lub rowią zanie bardziej złożonego zadania sprzężonego. Wydaje się, iż mimo znacznych uproszczeń jakie poczyniono w rozwiązywaniu postawionego problemu powyższa analiza wraz z zestawieniem tabelarycznym (tabl. 1, 2 i 3) mogą się oka wać pomocne w rozstrzygnięciu tej kwestii. Jest to możliwe również dlatego, że zbieżność otrzymanych wyników numerycznych z wynikami eksperymentalnymi i wynikami innych autorów przemawia za poprawnością wyników uzyskanych na podstawie bardzo uproszczonego modelu i obejmuje również opis procesu prowadzony w aspekcie jakościowym.

Literatura

3. GAJDA P., Sprzężenie cieplno–dyfuzyjne w ciałach lepkosprężystych, dysertacja doktorska, Poznań 1983
4. GRUDZIŃSKI F., Procesy ciepłne w technologii betonów, PWN, Warszawa 1976
6. KASPERKIEWICZ J., Dyfuzja i deformacje skurczowe w betonie, PWN, Warszawa 1972
7. KUBIK J., Analogie i podobieństwo w liniowych ośrodkach odkształcalnych, Z.N. Pol. Śl. Bud. 38, 1975
8. KUBIK J., WRÓBEL M., O rozseparowaniu równań termodyfuzji lepkosprężystej, Mech. Teort. i Stos. 1, 26, 1988
9. LEWANDOWSKI J., Wpływ gradientu temperatury i naprężeń cieplnych na dyfuzję wodoru w ciele stałym, Prace IPPT 23, 1972
10. MITZEL A., Reologia betonu, Arkady, W-Wa 1972
11. MOKRYK R., OLESIAK Z., Termodyfuzja w zagadnieniu kontaktu warstwy i pół przestrzeni sprężystej, Mech. Teort. i Stos. 3–4, 20, 1982
13. NOWACKI W., O pewnym zagadnieniu przestrzennym termosprężystości, Rozpr. Inż. 3, 5, 1957
14. NOWACKI W., O pewnym quasi–ustalonym zagadnieniu termosprężystości, Rozpr. Inż. 3, 5, 1957
15. NOWACKI W., Ustalone naprężenia cieplne w łyżach, Rozpr. Inż. 1, 7, 1959
18. NOWACKI W., Termodyfuzja w ciele stałym, Mech. Teoret. i Stos. 2, 13, 1975
19. OLESIAK Z., Dynamiczne zagadnienia ciało o własnościach lepkosprężystych, Rozpr. Inż. 3, 9, 1961
20. PIEKARSKI Z., Szefler G., Pełzanie półplaszczyzny przy mieszanych warunkach brzegowych, Rozpr. Inż. 4, 18, 1970
21. STEFANIUK J., Zagadnienie rozmieszczenia się fal w nieograniconym ośrodku lepkosprężystym przy uwzględnieniu sprężenia termomechanicznego, Rozpr. Inż. 1, 15, 1967
22. STEFANIUK J., Naprężenia, przemieszczenia i temperatura w nieograniconym ośrodku sprężystym przy uwzględnieniu sprężenia termomechanicznego, Rozpr. Inż. 1, 16, 1968
23. STEFANIUK J., JANKOWSKI J., Plaskie fale harmoniczne i dyfuzja w ciele stałym, Mech. Teoret. i Stos. 3, 18, 1980
25. WRÓBEL M., Przepływy termodyfuzyjne sprężone z polem naprężeń w lepkosprężystości, Mech. Teoret. i Stos. 3, 26, 1988
27. ALEKSANDROWSKI S.W., Raszbiet betonowych i żelazobetonowych konstrukcji na temperaturze i ważności przede wszystko dla konstrukcji, Strojizdat, Moskwa 1966
28. ALEKSANDROWSKII S.W., Raszbiet betonowych i żelazobetonowych konstrukcji na izotermie, temperatury i ważności przy zmianach poluzości, Strojizdat, Moskwa 1973
29. ARUTUNJAN N.H., Niektóre wpływy teorii poluzości, Moskwa 1952
31. WOLOJSAN L.JA., Tęplo i masaobmienne przy termoobrobce betonowych i żelazobetonicznych stali, Minsk 1973
33. LYKOW A.W., Teoreticzeskie osnowy strojelnej fizyki, Izd. A.N. BSSR, Minsk 1961
34. MALININA L.A., Tepłowniezwistnaja obrabotka tiażelogo betona, Moskwa 1977
35. MONACHENKO D.W., Modeliowanie izotermicznych zadań linijnych naodstawowym teorii poluzości, Mech. Tward. Tela 1, 1972
36. PODSTOPIAKCZ J.A.S., SZEWCZUK P.R., Wariacyjne forma równania termofizyjnych procesów w deformiruemym tle, Prikl. Mech. i Mat. 33, 4, 1969
37. COJ P.W., Metody rasczeta oteldonnych zadań termodyfuzyjnej, Moskwa 1971
38. SZWEC R.N., DASZUK J.A.M., O wariancjnych teorematiky termodyfuzii deformiruemych tworowych tle, Mat. Fiz. 22, 1977
Summary

A discussion of reciprocal thermodiffusion couplings and their influence on the strain field solving a certain initial-boundary problem in a layer is presented in the paper. Some sixteen cases of decoupled and partially coupled problems are considered. An analysis of some simplifying assumptions used for the solution is also given here. The considerations are illustrated in figures and tables.

Praca upłynęła do Redakcji dnia 10 maja 1989 roku