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The semi-inverse method is used to examine the reflection-refraction pro-
blem for a finite amplitude oblique shock wave propagating in an unbounded
medium consisting of two joined half-spaces, filled with two different neo-
Hookean elastic materials. The incident shock is assumed to be a transverse,
horisontally polarised, plane shock. In such a case the solution pattern can
be assumed in a form of single reflected and refracted shock wave, which re-
lative strengths follow the similar pattern and values as that of infinitesimal
SH waves. The complex values of the amplitude in the linear theory (total
reflection, grazing incidence) give occasion to existence of Stoneley interfacial
waves but In nonlinear theory the likeness does not exist, and such solutions
suggest rather the change of solution pattern.

1. Introduction

Wright in his paper [1] on reflection of an oblique finite elastic shock wave
at a plane boundary of a nonlinear elastic solid presented a semi-inverse method,
based on strictly mechanical considerations, of finding the reflected waves. In
this method a reflection pattern is assumed: the reflected waves form a family of
plane simple waves (or shocks) centered on a moving line of contact between the
incident wave and the boundary. Each reflected wave connects a fixed state ahead
of the wave with a one parameter family of states behind the wave. In anisotiopic
solids there are three possible families of reflected waves so that a sequence of
such waves connects the state behind the incident shock with a three parameter
family of states adjacent to the boundary. In general, there are three independent
boundary conditions from which the parameter specifying the reflected waves can
be determined. The assumed pattern reduces the reflection problem to au initial-
boundary value problem for a system of ordinary differential equation governing
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the variation of the deformation gradient and velocity fields in the regions of simple
waves. Its solution determines the wedge shaped regions of simple waves and
the distribution and strengths of the wavelets within each wave. If the assumed
reflection pattern fails the admissibility test, it is modified to include shocks as
well; for shocks, the reflection problem is then reduced to solving a system of
algebraic equations for the direction of propagation and strength of the reflected
shocks.

The reflection-refraction problem for a shock incident on a plane interface jo-
ining two elastic solids is exactly analogous, but now there will be three reflected
waves and three refracted waves, so there will be six parameters to be found from

six continuity conditions for the displacements and stresses at the interface. In

some cases of a particular material property there may be less than six reflected
and refracted waves. ’

We will apply the semi-inverse method to examine the reflection-refraction pro-
blem for a plane shock wave propagating in an unbounded medium consisting of
two joined half-spaces, filled with two different nonlinear elastic materials. The
medium initially is unstrained and at rest. Bearing in mind the complexity of the
analysis of finite amplitude waves in nonlinear solids we select the simplest nontri-
vial case for which a detailed discussions is conducted. We assumethat both ma-
terials are homogeneous, incompressible and isotropic, and both are characterised
by the neo-Hookean strain energy function but with different material constants.
Since incompressible solids transmit transverse waves only, the incident shock is
assumed to be a transverse shock; we asseme further that this shock is horisontally
polarised. Such waves have the displacement components in one direction only.
In such a case the reflection-refraction solution pattern can be assumed in a form

of singlesimple reflected wave and a single simple refracted wave both centered on

the line of incidence at the interface. .
Section 2 contains a summary of necessary theory and derivation of the pro-

pagation condition for shocks and simple waves in incompressible- materials. In

sections J and 4 geometric and analytic description of the incident shock and the
solutien pattern are given. The analysis of the solution for shock reflection-refrac-
tion in neo-Hookean elastic material are presented in section 5. The results are
illustrated graphically. '

2. Basic equations

The motion of the continuum is given by z; = z;(X,,t) where z; and X, are
the Cartesian coordinates of a material particle in the present conﬁguration B
and the reference configuration Bp respectively, and the reference configuration
is given by z; = §;,X,. The deformation gradient z;,, , its inverse X,; and the
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velocity are defined by

0z; 1124 0z
Te=gx, Ne= g mEwWS 21
It is assumed that the material is homogeneous, elastic and incompressible. The
incompressibility constraint requires .
J = det(z;y) = 1. (2.2)

The Piola-Kirchhoff stress tensor for such material is

do

Tia = pr + pXai, (2.3)

31,‘,
where o denotes internal energy per unit mass in Br, p = pr is the density and
p(X4) is a pressure field to be determined in each problem.

If the stress and velocity fields are differentiable, then the equations expressing
balance of momentum and moment of momentum are

T“ava = pu, Iia]-:ia = IjaT‘ia- (2.4)

" If the functions z; = z;(X,,t) are continuous ewerywhere but have discontinu-
ous first derivatives on some propagating surface S(X,,t) = 0, the equations (2.4)
must be replaced by the jump conditions on this surface

a) [Tia)No = —pV[ui),
‘ (2.5)
b) [zia] = @iNg,  [ui] = —aiV.

Such a surface is called a shock wave. The vector N, is a material unit normal to
the wave, V is the speed of propagation along N, and a; is the amplitude vector of
the jump. The double square brackets indicate the jump in the quantity enclosed
across §; thus -

[ ] = ( )B - ( )F9

where the letters F' and B refer to the limit values taken in front and rear sides of
S respectively.

Eliminating the velocity jump [u;] from egs.(2.5) we obtain the equation for the
shock speed, the following propagation condition

V2= p#[ﬂa]a,-Na, (2.6)

where m = |a| is the shock strength.
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it is known (cf{6]) that the constraint of incompressibility (2.2) restricts the
directions of propagation to transversal directions only. This means that shocks
in incompressible continua are transverse waves.

Simple waves [1] are defined to be regions of space time in which all field quan-
tities are continuous functions of a single parameter, say A = 9¥(X4,t). Regions of
coustant )\ are propagating surfaces, called wavelets, with unit normal and normal
velocity in Bgr given by

wa _12’
N AN ===, UN)=-=H.
N=ma "V
The equation of motion (2.4) and the compatibility condition in, the region of
simple wave are B

2.7)

B2z I8P = PUYs  Tiph = g, (28) -
where the prime indicates differentiation with respect to . If ¢ # 0 egs.(2.8) can
be rewritten to obtain the propagation condition for simple waves (cf.[1]) and the
compatibility condition in the form

(Qi; — pUzﬁ,-j)uj =0, Uzjp+u;Ng =0, (2.9)
where T
Qi = aszNaNg (2.10)

is the acoustic tensor. For simple waves to propagate it is necessary that the
eigenvalues of Q;; are real monotone funciions of the wave parameter (cf:[1]).

3. Incident shock

Consider an unbounded medium consisting of two elastic incomr pressible, iso-
tropic half-spaces of different material properties, joined rigidly along the plane
z9 = 0, and initially unstrained and at rest. Suppose that a plane, horisontally
polarised transverse shock wave of strength mg propagates in the half-space z > 0
with speed Vj, and approaches the interface z; = 0 at an angle 6 (fig.1). Thus,
this propagating discontinuity surface belongs to a one-parameter family of parall-
lel planes, with normals

No = (sinBg, - cosQo,O), 0< 6 < g 3.1)

Such waves have displacement coraponents in the z3 — direction only.
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A=0

Fig. 1. Incident shock and assumed reflection and refraction pattern

Since the amplitude vector a is parallel to the z3 axis and the medium in front
of the incident shock is unstrained and at rest, the jumps (2.5) become now

3) [1'31] = (331)3 = mgpsin 90,- [132] = (1‘32)3 = —myg cos Oy,

(3.2)
b) ' [us] = (u3)® = —moV4,
where mg = @ is the shock strength. Eq.(2.6) for the shock speed is
1 : '
Voz = m [T31] sSin 90 - [T32] cos 90) (33)

The state behind the propagating shock (region 1 in fig.1) is now completely spe-
cified by the angle of incidence Og and the shock strength my. Eqs.(3.2) determine
the deformation gradient and its inverse

1 00 1 0 0
(zi)2=]0 1 0, (Xu)=| 0 10 (3.4)
vy vy 1 -0 -v2 0
and particle velocity
u = (0,0,u) (3.5)

in this state. We denoted here v; = (231)B, v = (232)B, v = (u3)5.
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For isotropic incompressible materials the internal energy o is a function of

I;, I, and S, where
1
L =By, §L= E(B;,-BJ'J- -~ Bi;Bi;)

are the invariants of the left Cauchy-Green strain tensor B;j, and S is the entropy

(per urit volume in Bpr).
The components of the stress tensor T;, required in this paper, are now

Tn = 2p{o1+02(2+93)}+p, Tha = —2posvy — poy,
Ty = 2,0{0’1 + 0’2(2 + ’U%)} +p, T3 = 2,0(0’1 + 0’2)‘01,

Tss = 2p{o1+202}+p, T3 = —2poave — pva, (3.6)
Ty = Ta1 = —2poavyvy, T3 = 2p(01 + 02)v2,
where s s
o o
Ul‘——a—Il, 0'223—12, 11=Ig=3+v¥+v§.

4. Reflection-refraction pattern

When the incident shock wave strikes the interface z; = 0, part of it is reflected
and part transmitted across the interface, in a form of plane reflected and refracted
waves centered on the line of contact with the boundary z2 = 0 (point @ in fig.1),
and propagating away from the interface. The point ¢ moves along the boundary
(z1 — axis) with speed

Y .
: . 4.1
sin 9 (4.1)
It is also assumed that both the reflected wave (region 2 in fig.1) and the refracted
wave (region 2) are simple waves connecting the front and rear regions of constant

state. Since all waves are centered on (J, we have for the reflected wave

a) N(A)=(sinB(}), —cos0(A), 0), F<O<m,

(4.2)
b) U(A) = Upsin@(A),
and for the refracted wave
a) N(u)=(sin&(n), —cosO(u), 0), 0<O<%,
(4.3)

U

= ——,.h——
b) U = s,
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where © and @ denote the angle of reflection and refraction (ref. fig.1), and
U, A\, U, p are the normal speed and parameter of the reflected and refracted
wave, respectively. The material region ahead of the refracted wave (region 0) is
unstrained and at rest. The deformation gradient z;,(¢) and the velocity u(x) in
region 2) assume an analogous to (3.4) and (3.5) form.

It is required that the displacement vector and the stress vector are continuous
at the interface o = 0. This means that the system of the incident, reflected and
refracted waves must satisfy four continuity conditions for the velocity and stress
fields in both media at 2, = 0,

u=1, Tog=Ts i=1,23. (4.4)

Since regions 0 and  are unstrained and at rest, conditions (4.4) at the interface
joining these two regions are, for the suitably chosen pressures py and pg, satisfied
identically.

The constant values of region 3 and 3 adjacent to the remaining part of the
interface are the final values of region 2 and 2 corresponding to the final values
X and i of the wave parameters A and u. Substitution into (4.4) gives a system
of four independent equations involving two unknown terminal values of the wave
parameters. In general system (4.4) has no solution in X and fi. A solution may
exist, however, if some additional restrictions on ¢ or on the incident shock are
imposed.

5. Reflection and refraction in neo-Hooken material

For rubber-like materials under moderate stram, the strain energy function W
can be approximated by [7,8]

W(h, k) = po(I,I;) = Ci(h - 3) + Co(I2 - 3) + 03(112 -9). (5.1)

The components (3.6) of the stress tensor T;, are now

Tz = 2Canvs,
Tz = c*(1+n(v] +03))y, (5.2)
Tn = c(1+n(v]+03))+2C0] +p,
where i
*=2C1+C2+6Cs), 1=

The other field quantity required here the static pressure p(X,), is given in the
region of simple wave by (cf.[9])

p(A) = —4Ca[v}(X) + v3(N)] + po. (5:3)
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The requjrement' that u is continuous on z2 = 0 implies continuity of v as
well. Indeed, substituting (4.2),(4.3) into the compatibility condition (2.9) and
integrating the first equation with boundary conditions (3.2) and conditions for
region ( we obtain

Upvi +u =0, Uph + 2 =0,

substracting these equations for the final values of the simple wave parameters
X, i (regions 3,3), Up[vr — %1 + [u — v] = 0 on =2 = 0, where U}, is the apparent
speed of the line of contact of the waves with the interface (fig.1). It is obvious
that if u = @ then also

vy=9 on z2=0. (5.4)
Substituting (5.2) and (5.3) into (4.4), and using (5.4) and the relation pg — pg =
é2—¢? connecting the constant pressures of region 0 and 0, we obtain the conditions
of continuity in the following form

=i, (”l = i’l)’

(Cav2 = Cag)ny = 0, : (5.5)
[1+ (o] + o])]v2 = E[1 + (57 + 87)]0n,
(C2 — C2)v? = 0.

It is evident that system (5.5) reduces to two independent nontrivial equations
for v; = 0, i.e. for shocks travelling in the direction normal to the interface zo = 0
(cf.[10,11]). It also reduces to two equations if the medium is characterised by the
neo-Hookean strain-energy function, i.e. when the constants C; and C3 in (5.1)

are zero (we take Cy = C).
Let us assume that the strain-energy function is

W= pO'(I_]) = C(I] - 3). (5.6)-

In such materials the shock speed (3.3) is independent of the direction of propa-
gation (3.1) and of the deformation gradient (3.4)

v=2c (5.7)
p
and the transverse shocks propagate with constant speed, without change in the
form. Hence,the propagation of transverse shocks waves in a neo- Hookean material
follows the same pattern as that of small amplitude waves in a homogeneous linear
isotropic elastic solid.
We also note that the components 9T;,/8z;s in the acoustic tensor (2.10) are
constant. Since the characteristic equation for the propagation condition (2.9a)
for simple waves can be written in the form

det(g{—%ﬁaﬁp - Uké;;) =0, (5.8)
J
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where N U
N - = t =
(1, -7, 0), T=cotO(N), Uy s

T sin@(A)
and the speed Uy of the point Q (ref.4.1) is constant, we conclude that the cha-
racteristic roots of (5.8) that define speed U(A) of the reflected simple waves (and
by a similar argument speed U(u) of the refracted simple waves) are independent
of the wave parameter and that the wave speed is constant across the wave; hence
according to the admissibility criterion (cf.[1]), such solutions do not represent
simple waves.

We modify the solution pattern assuming now that region 2 is a plane shock
wave centered on @, with strength m and direction of propagation
N = (sin®, —c0s0, 0). An analogous assumption applies to region 2. Eqgs. of
motion (2.4) are now replaced by the jump conditions (2.5) connecting the corre-
sponding quantities in regions 1 and 3 across the wave. From (3.3) we calculate
the reflected shock speed

) 2
Ve = o (5.9)
which is exactly the speed of the incident shock.
Since by (4.2b) V = Uisin®@ = Vysin@/sin B, the equality V = Vp can be
-satisfied only if
6 =7x — By. (5.10)

The constant state of region 1 is defined by equations (3.2) (3.4) and (3.5).
Applying (5.10) in the jump conditions (2.5) across region 2 we obtain the constant
values of region 3

le_ = (mo+em)sin90,
v? = (—mg+ em)cos By, ) (5.11)
w? = ~(mo+em)Vs,

where ¢ is +1 or -1, depending on the orientation of the reflected shock
polarisation vector & with respect to the z3 — axis.
The speed of the refracted shock is V2 = 2C /p.
Since by (4.3b) V = Uxsin © = Vo sin O/ sin O, we find that
AV :
5in © = — sinBq. (5.12)
. Vo
Applying (5.12) in the jﬁmp conditions (2.5) across region 2 we obtain the constant
values of region 3

LV
v = Em—‘/; sin 90,
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"'/ 2
82 —ém 1—(—) sin? O, (5.13)

where é = 1. )
The requirement that the solution of equation (5.12) for © must be real imposes

on &g the condition
sin Oy < —AO, 5.14
(VIS ( )

which may restrict, depending on the material constants in both semi-spaces, the
interval of variation of the angle of incidence.

Fig. 2. Incident, reflected and refracted shocks a) for V < V; and 0 < 6 < Z; b) for
V<Voand90=%;c)forf’)Voand0<90<9¢;d)forV>Voa.nd90=9¢

Relations (5.10),(5.12) and (5.14) have a simple geometrical interpretation.
Though the speeds V and V' (= V;) depend on the material constants only, the
correspouding directions of propagation depend on the angle of incidence as well.
Let Qo and @ identify the position of point of contact of the incident, reflected
and refracted wave on the z; — axis at the instant { = 0 and ¢ = 1, respectively;
the distance from Q to Qo is then equal Uy (ref.(4.1)). Let K and K be two
semicircles with centre at Qq, and radius # = V, r = V, and U, be large enough
for Q to be outside of K and K (fig.2). The tangents to K and K issuing from
Q form with the z, ~ axis the angles © aud 6 (fig.2a) that satisfy eqs.(5.10) and
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(5.12). The position of point @ changes with angle of incidence @y, thus forming
two one-parameter families of tangents which represent the families of reflected
and refracted waves at unit time after passing through Qo. The semicircles K and
K are envelopes of these two families; they are called wave curves.

V< Vo, the point Q moves toward K as Op increases to 7. For ¢ = 3
(grazing incidence) the incident and reflected wave coincide, and the refracted wave
assumes its extreme position, its angle @, given by the equation sin @, = V/Vo
(fig.2b).

If V > Vj, the angle of refraction @ is greater than the angle of incidence @
(fig.2c). The point @ moves toward K with increasing ©¢ and meets K when
©p = O.; we have then a "grazing refraction” (fig.2d). The critical value @, of the
angle of incidence is given by the eq. sin @, = Vo/V (ref.5.14).

The remaining two unknown quantities, the strengths of the reflected and re-
fracted shock m and 7, will be found from the boundary conditions (5.5) con-
necting the constant states of region 3 and 3 across the interface. Analysing the
jump conditions (5.11),(5.13) and the relation (5.12) it is easy to see that if &4 = u
then also #; = v, as for the pattern in the form of the simple wave. Conditions
(5.5) are now reduced to two nontrivial equations involving the components of the
particle velocity and deformation gradient in both half-spaces as function of m
and 7 (ref. also (5.4))

u=i=> (v =%), Cvy=Ciy at 22=0, (5.15)

with an additional equation po — fo = C - C relating the constant pressures of
region 0 and 0. Solving eqs.(5.15), with the aid of (5.11) and (5.13), for m and

B cos Op — /B — sin Oy
mo
BcosBo + \/E—sin2 6o

Eem =

(5.16)
26+/B cos Op

Em = mg,

B cosBOo + \/ﬂ ~sin? Gy

completes the reflection-refraction solution in the assumed form. Since speeds V
and V are constant throughout the medium, the solution satisfies Lax’s stability
criterion (cf.[3]) for shocks; henced, the .eflected and the refracted wave are shocks,
and they are represented by the families of planes (ref.(4.2)) defined by

sin@g z1 —cos@gpzz —Vpt =0 (5.17)

sin Og zl—\/(%)z—sinzeo zo— Vot =0 (5.18)

and by
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respectively.

We note here that eqs.(5.16) agree with the expressions obtained for the am-
plitude rations in the reflection-refraction problem for SH waves in linear theory
(cf.[5],page 184).

Inspection of eqs. (5.16) leads to the following observations.

1 — The incident shock is completely refracted if m = 0. The corresponding

equation

B%cos? Oy — ﬂ(f) +sin?@g =0, f= %, (5.19)

shows that a combination of material properties and angle of incidence is possible
for which there is no reflected wave. If p = g and C # C, such a combination is
particularly simple

C _
8= G = tan? @y, (5.20)
2 — The strength m of the reflected shock is a monotone function of @y, 0 <

6Oy < O, s0 em changes the sign in the neighbourhood of its zero (fig.3), thus
changing the direction of polarisation. 3 - The expression for ém is positive for

Pailt

i

/ — et
P )

-1 K%H-~4——- e — -~
o w0 20 o

Fig. 3. Relation between the reflected shock strength and incident angle. For the
interface characterised by 8 > 1 and $,(1/0) the strength is the same for the incident
angle 63, 63(6,)

all 69 € (0,6.), hence £ = 1; it also shows that reflection without refraction is
not possible.
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Fig. 4. Relation between the refracted shock strength and incident angle for somse values
of the parameter 8 (p = §)

4 — The strengths of the incident, reflected and refracted shocks are connected

by the formula
(mo + em)Vp = V. (5.21)

For "grazing incidence” (fig.2b) we have mg = —em and the superposed incident
and reflected shocks produce zero displacement the reflected wave also disappears.
For grazmg refraction” (fig. 2d) when @y = O., we have m = mg, hence

6. Concluding remarks

The geometry of the reflected shock wave is given by (5.17); the shock travels
through the half-space 23 > 0 with a constant speed V' (= V;) in the direction
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© = 7 — 6p. The direction of polarisation and strength of this shock depend
on the material constants C and C and the incident shock parameters 6y and
my. Equation (5.17) (for p = p) determines the incident angle O for which there
is no reflection. Since (Vp/V)? = C/C = tan?@y, such an angle is within the
admissibility interval (0,0.) defined by (5.12). If C > C, the reflection ratios
R = em/mg is a decreasing function of O, and it is positive for Gg € (O, 0.).
Hence,the reflected wave is a shock propagating into a deformed body while:

(a) - increasing the strain level if @y € (0, 8s),

(b) - decreasing the strain level if O € (0p,0.). The situation is reversed for
C<C.

1

2R

\\k
==
A

@ e e v e — e ——

-

4 )

Fig. 5. Relations between the reflected shock strength, critical angle and the parameter 8 )

The family F of curves representing the reflection ratio R = em/mg as a
function of @ for various values of the parameter g = (C/C) is shown in figure
3. It can be seen that the family curves intersect at some points, thus indicating
that a given incident shock combined with two different composite materials may
produce the same reflected shock. Indeed, if a family curve 8 passes through a
point (6p, R) then the curve B; defined by

Bsin? &,
ﬂ - S'Hl2 90 ’

b = (6.1)
also passes through this point; since B1 — sin? @ = sin? @¢/(8 — 5in?6p) > 0,
condition (5.14) is satisfied, thus confirming that the curve $; belongs to family

F. In the trivial case of § = 1 the ratio R = em/myg is zero for arbitrary Og; from
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(6.1) we find the parameter $; defining the associated curve to be §; = tan? @y,
and the point of intersection is (@, 0) (ref.(5.17)).

Suppose now that 8y = 1/8. From (6.1) it follows that the curves defined by
B and B; = 1/B intersect at (O, R) if and only if

2 _ B
sin® @g = T3 57 (6.2)
eq.(6.2) has a unique solution &g for arbitrary § > 0. Since in this case sin @y <
1/v2, @y is restricted to the interval (0,7 /4]. Hence for an arbitrary imcident
angle @ € (0,7/4] a medium characterised by the ratio 8 = C/C can be found
such that the reflected shock wave in this medium and in the medium composed
of the same materials but in the reverse order are the same (figure 5).

The locus of points at which two ”neighbouring” family curves 8 and 5, =

B+ dB, df — 0, intersects forms an envelope of F
R = —tan?(Qo — -}), (6.3)
with the family parameter 8 constrained by
B = 2sin? Q. (6.4)

This curve has a specific property that to each of its points there corresponds one
and only one combination of incident shock and material properties. Moreover,
since on this curve the derivative dR/8f8 = 0, eq.(6.3) gives the minimum values
of the reflection ratio R = em/myg for fixed @p and varying S.

The refracted shock (5.19) travels through the half-space z; < 0 with a constant
speed V, in the direction @ defined by (5.12); its strength is given by eq.(5.16)2,
and it propagates into an unstrained medium, loading the material.

The family F of curves representing the refraction ratio B = 1i/mg as a func-
tion of @ for various values of 3 is shown in fig.4. The curves intersect at some
points, thus indicating that different combinations of material properties and angle
of incidence are possible for which the refracted shock is the same. The analytic
expression of such combinations, however, is more complex than in the case of
reflection (ref.(6.1)), as here the refraction angle © depends on both the incident
angle @g and the material ratio 8.

On the other hand, it is easy to show that for the combinations that produce
equal reflected shocks, the corresponding refracted shocks are not equal. Indeed,
by (5.12), for a fixed @¢ the refraction angle & is a monotone function of 3, thus
assuming different values for different values of 8. This means that different ma-
terial combinations lead to a given shock being refracted in different directions.” A
similar conclusion concerning the shock strength i can be derived from expression
(5.21). Denoting by R the reflection ratio corresponding, for a fixed Og, to 8 and
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B, related by (6.1) ;md by R and R, the associated refraction ratios, we obtain
from (5.21)

(1+RWB = R,
(1+ BB = R, (6.5)
eliminating R we get
R, = Ry, %‘ (6.6)

Since by assumption f; # 8, it follows that 7, # .

In the special case of total refraction the corresponding refraction angle and
refracted shock strength are @ = 7/2—0 and 1 = /Fmg. Of course, in the trivial
case of identical materials (8 = 1) there is also a total (apparent) refraction: m = 0
for arbitrary value of @y, the "refracted” planes (4.2) become extensions of the
"incident” planes (3.1) and the shock travels throughout the medium unobstructed.

The other special case refers to the reflected shocks represented by the envelope
(6.3). Substitution from (6.4) into (5.12) gives the refraction angle ©® = /4.
Hence, the refracted shocks associated with the reflected shocks given by (6.3) and
(6.4) have a fixed direction of propagation g = 7/4; strength 7 of these shocks
is given by

' = V2mg iin ©ysin 20, - ‘ (6.7)
cos?(@p — 1)

The method of solution used in this paper is based on an assumption that
solutions must be real. For this reason it is required that the incident angle ©p -
satisfies the condition: 0 <.@¢ < O, where O, is a certain critical angle determined
by the material properties of the composite medium. We have @, <.7/2 for
B <1and @, = r/2 for § > 1. The case of total reflection when B¢ exceeds its
critical angle leads to a complex solution and is beyond applicability of the present’
method. In linear theory.the solution for this case is composed of infinitesimal
waves and Stoneley waves. For 8 > 1, the case of "grazing incidence” is illustrated
in fig.2b; the corresponding reflection and refraction shock strengths are m = my
and 7 = 0, and the case represents a zero motion. The technique used in [12] to
derive a special solution for this case through a limit procedure is not applicable
here, since, the solution waves have finite amplitudes. To include these particular
cases in the problem considered here it would be necessary to modify the assumed
reflection-refraction pattern.
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Streszczenie

W pracy zastosowano metode pdlodwrotna do badania zjawiska odbicia-zalamania
ukos$nej fali uderzeniowej o skoriczonej amplitudzie propagujacej sie w osrodku zlozonym z
dwéch sztywno polaczonych polprzestrzeni sprezystych. Polprzestrzenie wypelnione sg

neo-Hookeanem o réznych wlasnodciach spreiystych. Zalozono, ze fala padajaca jest

poprzeczna poziomo spolaryzowany faly uderzeniowa. W tym przypadku rozwiazanie
sklada si¢ z pojedyniczej odbitej i zalamanej fali uderzeniowej. Wzgledne amplitudy tych
fal pozostaja w podobnym stosunku jak w przypadku infinitezymalnych fal typu SH w
liniowej teori. Zespolone wartosci wzglednych amplitud w liniowej teorii prowadza do
wystepowania fal Stoneleya. Rozwiazania zespolone w teorii nieliniowe]j sugeruja raczej

inna niz zalozong konfiguracje fal odbitych i zalamanych.
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