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1. Introduction

In the mechanical vibrations, we can distinguish a rather broad class of the self-
excited systems with simultaneous parametric excitation [3,6,8,12]. In non-linear
systems there exists u mutual interaction between those ti/o types of vibrations,
which explains the lack of the superposition of "component” vibrations. Numerous
scientific monographs are concerned with the problems of synchronization (entra-
inment of frequency) in the self-excited systems with external excitation. The
cases of parametric and self-excited vibrations are considered in very few papers [1
+ 3,7 + 12]. A review of the papers in this field is contained in the monograph [6],
which presents the investigations of the interactions in the vibrating systems with
the sources of energy performing — so called — limited excitations. As in the case of
vibrations of the system with the extarnal excitation so in the case of parametric
excitation ~ under certain conditions — there exists a phenomenon of the drifting
frequency (7). :

The present paper presents an analysis of the vibratxons of the self-excited
and parametric model of non-linear characteristic of elasticity of the quadratic
type without the external excitation. In the real systems, this type of vibrations,
taking into account two mechanisms of excitation and the form of restitution force,
can occur in some automotive vehicles. It concern the vibrations with feedback
of a physical model of the car in which self-excted vibrations of the wheel [15]
rotating on the smooth surface and the periodically changing radial stiffness of the
tyre [13] and the pneumatic supension of the sprung mass are taken into account.
In this case the characteristic of elasticity of the suspension can be approximated
by a function of the second degree [13].

Although technical applications require the analysxs of real systems models with
many degrees of freedom, yet parametric self-excited systems vibrations ought to
be examined also in the basic variant. The aim of this work is the analysis of the
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effects of interaction between self-excited and parametric vibrations of the main
resonance. The development of investigations in this field is determined by the
specific kind of excitation of parametric vibrations in comparison with the external
. excitation, and the numerous mathematical models describing real mechanical
systems. Analytical, numerical and analogue methods have been applied. The
applications of different methods of investigation have not only given a wider
scope of information, but have also enabled the verification of some results.

Let us consider the vibrations described by the differential equation containing
Van der Pol and Mathieu differential equations terms, and non-linear restitution
force of the quadratic type:

m%; — (a — bx®)i; + (c — co cos wt)z; + 73 = 0, (1.1)

where: m — mass, a and b - damping Van der Pol’s coefficients, ¢ — average
stiffness, cp — amplitude of stiffness modulation, ¢; — non-linearity coefficient, w -
parametric excitations circular frequency. Introducing non-dimensional time:

T =wt,
and the following constants:
' ¢ ¢ mg
= — = - Zag = -,
m B= 0 c
a bz? €1Zg
a=—, ﬂ = _09 =
mp mp c
Ty P | dz
= — A = - r= —.
Io’ w’ dr

we obtain the non-dimensional form of the equation (1.1):

:lzl: ~Xa — Az?) :L +27[(1 - pcos2r)z + vz’ = 0. (1.2)

In the flollowing considerations it will be assumed that the parameters a, 8, 1,7
are small enough and positive.

2. Analytical investigations

If in the equation (1.1) we put a = b = 0, its solutions will describe parametric
non-damped vibrations, whereas for ¢ = 0 the solutions will concern only self-
excited vibrations. As the result of the co-existence of parametric excitation and
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self-excitation components in differential equation (1.1) we anticipate tha vibra-
tions of these kinds will appear together and we seek for an approximate solution
of equation (1.2) in the following form:

z(r) = A(1)cos 21 + By(7) cos T + By(r)sin T + D(1), (2.1)

where: A - self-excited vibrations amplitude, 2 — self-excited vibraions frequency,
B;, B; ~ component amplitudes of parametric vibrations, D — translation of vibra-
tions center. We assume also that functions A(r), By(7), Ba(7), D(7) are changing
slowly. The amplitude of parametric vibrations and phase difference are:

B
R=\/B}+ B}, ¢=arc tgﬁ.

Putting the solution (2.1) into the equation (1.2), ignoring second derivatives of
slowly changing functions, and terms including the products of the first derivatives
of those functions we get:

A[-022 + X¥(1+ 27D)] = 0, (2.2)
a4 _ 1 _ap2_Lal,a
= = JAADle - BD? - Zp(5A7 + B, (2.3)
dB, 1 1 1
- = ale- BD* - §ﬁ‘(:‘12 + 532)131 + |
H[=1+ X (1+ 2p+27D)Ba), (24)
dB, _ 1 1
- = i1+ A1 - Sh+ 2 D)]B +
+X[-a +BD* + 2f(4* + S F)Ba), (2.5)
D(Dy+1) + %y(ﬁ +RBY) =0. (2.6)

In equation (2.6) the term containing the first derivative of the vibrations centre is
neglected, such simplification can be found in analyses of vibrating systems with
non-symmetric characteristics [5]. When the above mentioned term is taken into
account, instead of equation (2.6) we obtain the following one:

dD

LT
= e e

2D(1 +vD)

s (2.7)

Let us investigate steady-state vibrations for which:

dA dB
< = Xo(4,B1,B3,D) =0, —— =X\(4,B,,B,,D) =0,

=
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dB dD
- -F’ = X3(4,B1,B3,D)=0, —— =X3(A, By, By, D)= 0.
From the differential equation (2.7) follows the relation obtained before (2.6).
The solution of equation system (2.2) — (2.6) for the steady-state case is called
trivial when A = R = D = 0, and non-trivial when A # 0, R#6, D # 0.
The solutions for A=0, R#0, D# 0and A#0, R=0, D # 0 is called

semi-trivial.

2.1. Semi-trivial solutions for R=0, A#0, D#0

In this case we get from the equations (2.2), (2.3) and (2.6):

-2 +21+2yD)=0, (2.8)
a-AD* - %ﬂA’ =g, (2:9)
+D*+ D+ -;-7A2 =0. (2.10)

For self-excited vvibrations amplitude in the real domain, from equations (2.9),

(2.10) we get the condition:

a

B

giving the negative value of the vibrations centre translation.
Taking it into account we obtaim:

D+ 2y<0,

D = %7(1 -1+ 8%72), (2.11)
A = 4%-7%( 1-1+8§¥r=) (2.12)
From the equation (2.8) we find the square of self-excited vibrations frequency:
| | 22 =22-,/1+ 8%7’), (2.13)
and for real (dimensional) time:

2 =p2-.[1+ 8%72). (2.14)



THE VIBRATIONS OF A SYSTEM 61

2.2. Semi-trivial solution for A=0, R#£0, D#0

In this case the equations (2.4), (2.5) and (2:6) assume the form:

4By _ 1[0 apr_ ) L1424 ) }-
> 2{A[a AD 4ﬂR’]Bl+[ 1+z\(1+2y+27D)]Bg =
= Yi(B1,Ba, D) = 0, (2.15)
= = “3{F1+ XA -G+ 2yD)Br+ A-a+ fD*+ [ R]By =
= Yy(By,Bs,D) =0, (2.16)
7D2+D+%7R’=Y3(Bl,Bg,D)=0, (217)

from which we get:
1 1 1
MYD(1 +9D) - g6* + 1N+ {[a+ 38D(Z ~ D) - 21+ HD)} ¥ + 1 =0.

The latter has the following roots:

, _A1+2yD)~[a+}DA-D)j 4

= , 2.18
1.2 24vD(1 + D) - Ip? +1] (2.18)

where:
: 1 1 2 2 ! 1,
A= {[a +38D( - DIF 201+ 2—10)} ~44yD(1 +7D) - 7u* + 1]

Let us consider solutions only in real range. Equation (2.17) implies that (except
the case B = 0,D = 0) for R # 0 and D < 0 such a solution correspond only to

one root: / TRE
p=_1% ;7‘273 . (2.19)

Putting (2.19) in (2.20), A}(R) can ne found.

23. Non-trivial solution for A#0, R#0, D#0
From equations (2.3) - (2.5) we get:

a— AD? - -;-ﬂ(%A’ + RY) =0, (2.20)

Aa - 8D* ~ %ﬂ(A’ + -;-Rz)]B, +[-14+ 221+ -;-,; 4+2yD)]|B; =0, (2.21)

4
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1 1
[-14+ 2%~ %p +2vD)]|B; 4+ A[-a + BD? + §[3(A'~’ + .2_122)]5'2 =0. (2.22)

Equa‘tions (2.2) and (2.6) are still valid.
From terms (2.6) and (2.20) we find:

A% = —4(% + —?). (2.23)

Hence it appears that self-excited vibrations disappear for:

a

D> -
- ﬂ 77
but they appear when:
D< ——27
g

This cogdition is fulfilled for:
el
5

Taking into account equations (2.2) and (2.23) we get the self-excited vibrations
angular frequency:

D'+ %(A2 + R >

Q= ,\\/1 —oyr(Z 4 Ly (2.24)
g 4
Putting into equation (2.20) expression D(A) we find:
1 a 1
R =22(1 - 292 = [(= + 292)A% + 27241
51— 37 (G+57)4+ 5747
Monotonic character of the non-linear function R(A) is defined by the derivative

5% < 0. Solving equation (2.29) in respect.to A? we get two roots, one of which
having the form:

g2 TGHET ViR

1.2
rid

fulfills the condition of existence of self-excited vibrations (of real solution) with:

a
=7%).

R <2%(1.— 3

Self-excited vibrations disappear when:

R? > 2%(1 - %72).
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The equality sign corresponds to the value of parametric vibrations of amplitude
A = 0. Self-excited vibrations amplitude for R = 0 is given by the formula:

e -G+ 50 +/i+257

1
272 .

Putting (2.23) and:

a
B
into equations (2.21) and (2.22) we get for B; # 0, and B; # 0:

1.2 _ D 2

B =25+ - D%, (2.25)
1 ' 1 3

1~ 26 +47D(1+ D) + {[2-a+ 38D = D) - 21+ 271))} M41=0,

hence we obtain:

o {{2a +18D(2 - D) - 201 +21D)} £ VA
Lz 201 - L1u2? + 4yD(1 + 7D)] ’

(2.26)

Using the solutions'in the real range we get from the equation (2.25) one of the
values of the vibratiens centre translation:

1~ ,/1+472(2% — 1 R?)
D= Vi . LI

From equations (2.17) and (2.25) we conclude that for semi-trivial solution R # 0
and A = 0 and non-trivial R # 0,A # 0 we get equal values of translation of the
vibrations centre:

(2.27)

[+
ﬂ‘y’

to which corresponds also the same values of parametric vibrations amplitude:

, a Qa
R = 23(1 ad -ﬂ—'yz).

Introducing (2.27) into (2.26) we find A?(R_). Then putting in this equation:

D=-

D= -7(§ + -}A’), (2.28)

we get A’(A).
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2.4. The stability of the solutions

Let us investigate by the analytical method the behaviour of approximated
solutions after small perturbations. According to Lapunow’s theory, the stability
condition will be satisfied when all of the roots of the characteristic equation for
the first approximation system have negative real parts. In the case of the semi-
trivial solution for A = 0, R # 0, D # 0, from equations (2.15) — (2.17) we get a
linear variational equations system leading to the characteristic equation:

agp® + a1p+ay = 0. (2.29)
The stability conditions for solutions at ag > 0 have the form:
a; >0, a32>0,

where:

o= [T, WO O (0 o))
. '~ |3D 8B, T 8D 0B, @D \8By ' 9B:/)s’

SRCAE T W T AN
8B, \8B, 0D 8D B,
Y, (0Y2 0Y3 08Y, 3Y; Y, f Y, 8Ys 0Ys 9Y;
8B, (55331 " 9B, a_u) E)) (aB, 8B, 8B, 3Bg)]o'
In these equations index 0 means that values of all partial derivatives are determi-
ned for By, B, D in the state of equilibrium. Introducing corresponding derivatives.
to (2.29), the stability condition a; > 0 can be written in the form of:

(2.30)

B> 2(% — D*){(1+ 29D). (2.31)

In the stability examinations the influence of the first derivative of the coordinate
of the vibrations centre displacement will be taken into account. From equation
(2.7) we get:

dD A 2D(1++D

2] [ R |

This expression performs the role (for A = 0) of equation (2.6), and in the

state of equilibrium is reduced to equation (2.17). For this case the characteristic
equation has the form:
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or after the expansion we obtain:
aop3 +a1p? + azp+az=0. (2.32)
Solutions stability conditions (at ag > 0) express the following inequalities:
a; >0, a3z > 0, ajag — agaez > 0.

Let us examine the stability of non-trivial solutions describing the nearly pe-
riodic vibrations. For this kind of vibration according to [16], we will determine
the roots of characteristic equation established for the variational system. In the
result we obtain:

Q
S
Q
S
Q
S
QD
e

-p

D
e
S
D
Sy

D
ot
@
B>
QD
St

D
ot
S
Q
S

and the characteristic equation of the form:

aop* + ayp® + azp® + azp + a4 = C. (2.33)
Partial derivatives are expressed as follows:

2%,
0A

dXo 1 _ 9Xo _ 1
831 - 2AﬂABl’ 832 == 2AﬂAB2,

8Xo _ X, 1
30 = —ABAD, il —-2-/\,6,431,

—.1_ — 2_1 §z 2
= 3Ma— BD? - 2B A + B,

6X1 = 1 i 1 2 1 2 2

35, = Ez\[a BD* - 5;34 4»6(331 + B3))

éx, _ 1 2 1 1

35, = 2[—-1 + X1+ gh+ 271?) - 2ﬂ/\3132],
84X,

0X; : 9X2 1
D - M9AB; - 8By D), P4 - 2/3/\1432,

0Xs _ 1 2, 1 1
35 = gA=1+2%(1 - 5p+ 29D) + SAAB By,
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Xy _ 1y o ara 1o 1.0, 2y
35, = 2)\[ a+ pBD +~2ﬂA +4ﬂ(31 +3B3)),
ax
35 = ~M7AB1 + DBy),

8X3 _ AMAD(1+1D) 8Xs _ 4AAB;D(1+1D)
8A = p(A*+ R 0B~ P(A?+ RY)?

X3 _ 4AB2D(1 + ‘)'D) 0X3 - —-2/\(_1 + 2‘7D)
0B, ~ p(A*+R¥)? ’ 8D ~ [(A?+ R?)

In considering the non-trivial solutions stability the equation (2.7) was taken
into account. Let us now perform the simplified investigation of the stability of
the above-mentioned solutions replacing the equation (2.7) by the approximate
equation (2.6).' Instead of the equation (2.33) we obtain now the characteristic
equation having the form (2.32), and the presented above three Routh-Hurvitz
stability conditions. In the last verse of the determinant related to equation (2.33)
the terms p vanish and the partial derivatives of X3 and Y3 are expressed as follows:

0Ys; 0Ys

= 134, 25 = "By,

94 9B,
9Ys _ 2 s _ 2 |
55 = h)\ (1+ 2yD), 3B, = 7A2B,. (2:34)

3. Investigation by the methods of numerical analysis and analogue
simulation; numerical examplés for certain values

In the stability examinations the numerical analysis and analogue modelling
methods were also used. The values of the coefficients of the equation (1.2) were
assumed according to the applications [3,4,8]. Six alternative sets of numerical
data were created, presented in table 1.

To obtain the diagrams of functions established previously by analytical me-
thods a microcomputer equipped with a plotter was used. Figure 1! shows dia-
grams of R(A?) and of D()\?) for semi-trivial solutions and for all possible sets
of values of the parameters. Figure 2 illustrates the value of phase displacement
©,(A?) for the variant I.

The diagrams corresponding to the respective functions show the influence of
different parameters on the shape of the amplitude curves and the value of the
vibrations centre translation. Especially the influence of the values of following

YAll figures at the and of paper
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Table 1.

Variant a Bl 7 I

1|0.06]002]|005]| 02
I | 0.06 | 0.02]001| 02]
I | 0.06 | 0.02 | 0.05 | 0.15
IV | 0.06 | 0.03 { 0.05 [ 0.2
V| 0.04]0.02]|005| 02
VI [0.01 | 0.05 | 0.01 | 0.1

parameters is remarkable: of the parameter g — on the width of resonance region,
of non-linearity coefficient 4 — on deflection of amplitude curves and the centre of
vibration translation value from the perpendicular, of the quotient aff — maximum
values of parametric vibrations amplitudes. For the solutions-of this kind the self-
excited vibrations amplitude A = 0. Beynod the resonance regions there exists
another semi-trivial solution, describing self-excited vibrations. The parameters of
those vibrations depend only on the constant coeffcients of the differential equa-
tions (2.11) — (2.14). In the figure 1a self-excited vibrations amplitudes for variant
I are shown by horizontal lines. For non-trivial solutions and numerical values of
variant I, figure 3 shows amplitudes A, R and vibrations centre translation D. In
the figure the fragments of amplitude curves and vibrations centre translation for
semi-trivial solution (fig.1) marked by Ro and Dy are presented.

Non-trivial solution first approximation exists for small frequency ranges of
parametric excitation A(A?) ~ 1073 in which there exist unique and ambiguous
solutions. Outside the points of intersection of amplitude curves A and R, inside
the range of ambiguous solutions, to amplitudes defined by the lower branch of
the curve R(A?) there correspond points of the upper part of the curve A(A?) and
inversely.

Differential equation (1.2) was examined with the analogue computer MEDA
43H. Analogue simulation was performed for values of variants I and VI. At the
automatically controlled change of A? parameter, the limit values of [X] were
registered; for one-frequency vibrations the smooth curve was sketched forming the
amplitude curve, and for two-frequency vibrations it was a plane figure. During the
sketching A? was alternately slowly increased and descreased continuously. Figure
4 shows results of variant I investigation, and figure 5 of variant VI. In both cases
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- extreme deflexions diagrams are situvated asymmetrically with respect to the A2
axis._ It implies that the locus of vibrations centres is situated below the axis of
abscissa. The parameter 7 is five times greater in variant I than in variant VI, it
is particularly visible in figure 4.

In the resonance region (fig.5) some points illustating results of semi-trivial
solutions are marked. Comparative analysis in the frequency entraiment range
shows good agreement of R and D vibrations parameters obtained by analytical
and analogue methods. This applies also to the width of frequency ranges where
self-excited vibrations do not exist. The results from analogue simulation show
that beyond the entrainment region, two-frequency steady vvibrations exist, and
this is a proof of the existence of the interaction between self-excited vibrations
and parametric vibrations, whose effects are noted beyond the resonance region.
As we move away from that region in either direction, the depth of amplitude
modulation for self-excited vibrations decreases. Practically, only self-excited vi-
brations¢ with the amplitude defined by (2.13) can be observed. Such a case is
equivalent to the assumption of the value of parameter g = 0 in equation (1.2).
Time functions registered by amalogue computer for variant I data are shown in
figure 6. Investigations were performed for six values of A? parameter. Figure
6a shows the appearance af beats as a phenomenon of two-frequency vibrations
near the synchronisation region. Figures 6b,ef illustrate periodic vibrations with
amplitudes corresponding to semi-trivial stable solutions inside the resonance re-
gion. It must be underlined that initial conditions of function z(7) for A? = 0.94
and A? = 1.11 are computed from non-trivial solutions. Different curves (fig.6c,d)
were obtained for X? =~ 0.93. Depending on the method of approaching that va-
lue (with increase or decrease of A? — signed by arrows) almost — periodic and
harmonic vibrations were registered. That indicates ambiguity of stable solutions.
Hysteresis seen on figure 4a (ten times magnified scale of A? comparing to basical
sketch) exists in an extremely small region of A? values placed on the boundary
of the entrainment frequency region. Approximated value of parameter A? = 0.93
results from limited accuracy of analogue modelling and the very small range of
existence of the two kinds of vibrations. Figure 7 presents the course of vibra-
tions in time obtained by IBM PC/AT computer. All courses concern variant I
data and three values of A? parameter. The first of them (fig.7a) was obtained
from equation (2.1) for steady-state vibrations. The values of vibrations parame-
ters calculated from analytical terms for non-trivial solutions were used. Next the
numerical integration of differential equation (1.2) by Runge-Kutt’s method was
performed. Figures 7b,c show the functions z(7) as a result of numerical integrra-
tion with initial conditions related to non-trivial solutions. In both cases almost
periodic vibrations were not obtained, as it follows from non-trivial solutions, but
vibrations with amplitudes consisient with steady-state semi-irivial solutions in
the resonance ranges. Numerical integration provided more accurate determina-
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Table 2.
Lp | A2 R P23 Type of singularity
P12 = —0.0184 + 0.03481 stable focus
1 |0.93|3.0774
p3 = —9.9365 stable focus-node
p,2 = —0.1106 £ 0.05691 stable focus
2 | 1.0 | 5.0464
ps = —3.6523 stable focus-node
. p1 = —0.2097, p2 = —0.0872 stable node
3 | 1.11 | 5.4916
p3 = —3.1897 stable node
= —0.0296, p, = 0.0582 saddle
4 [1.11 | 1.8033
p3 = —3.3200 saddle of the first order

tion of the value of X% , for which two steady-state solutions were established.
Figures 7d,e show the time-courses of corresponding vibrations for appropriately
determined initial conditions and A\? = 0.924. It is worth underling the similarity
of the almost-periodic vibrations obtained by analogue simulation and numerical
integration. In the fig.1a,b the vibrations center translations are marked by bre-
ken lines related to unstable solutions obtained for variant I. The boundaries of
the stability region are determined by the term (2.31) and by the principle of ver-
tical tangent taken from Routh-Hurvitz’s condition. The paratemtric vibrations
stability investigation included also the determination of the character of singular
points. To achieve this the roots of characteristic equations (2.29) and (2.32) were
calculated. The results of this investigation are given in table 2. In the last column
the first kinds of singularities correspond to the roots p; 2 and the second types of
singularities correspaond to three roots of the characteristic equation. The results
of stability investigation of non-trivial solutions for A? < 1 are shown in the fig.8a
and for A2 > 1 in the fig.8b. On the diagrams R(A), the labels show the type of
four roots of characteristic equation (2.33). The digits means: 1 — two comples co-
‘upled roots with positive real parts, two real roots less than zero; 2 — two complex
coupled roots with negative real parts, two real roots ~ one negative, one positive;
3 - all roots real, two positive and two negative; 4 — all roots real, three negative,
one positive. That implies that at least one real term of the calculated roots for
the whole range of that class off solutions is positive. That means that first order

.
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approximate non-trivial solutions are unstable. In simplified examinations of the
stability of non-trivial solutions stability for A2 > 1, the roots of characteristic equ-
ation of the third order were determined. As in [5] the first derivative of vibrations
centre translation was ignored. In this case for points ”5” placed in e - f range of
the R(A) curve (fig.8b) all three roots are real and less than zero. For the points
of the upper parrt of the curve, the instability is characterized by the saddle — the
focus of second order [5]. The results of investigations point out the instability of
solutions in e ~ f range of A and R amplitudes and translation D; they are drawn in
fig. 3c with continuous lines. The same kind of results of stability examination of
non-trivial solutions were obtained in [11], where, by the same analytical method,
identical parametric self-excited vibrations with cubic elasticity characteristic were
considered. What is different in comparison with quadratic characteristic is that
in cubic case the vibrations centre translation does not occur, so in [11] there did
not exist the problem of stability investigation. The stability examinations for
non-linear solutions of differential equations system (2.3) — (2.5) and (2.7) were
conducted also by mumerical integration method.

The integral curves are in space (R, A4, D, T).

Figure 9 shows the projections of phase trajectories into the R — A plane.
The results were registered by the plotter. Numerical integration for small per-
turbations of initial conditions corresponding to points in the phase plane lying
inside and outside certain spheres was performed. The examinations were done
for A? = 1.13, because for that value non-linear solutions exist; one of which is
situated inside the stable solutions region, which had been suggested by simplified
examinations. Steady-state non-trivial solutions are shown by coordinates of the
middle-point of spheres. All phase trajectories move away from their centres to
the point A = 0, R = 5.4, which corresponds to resonance value of parametric
vibrations amplitude. The results of examinations confirm also the instability of
non-trivial solutions. The investigations included numerical integration of equa-
tion (1.2) using the phase-trajectories method on stroboscope plane [5,7]. Fig.10
shows stable limit cycles — C; for A? = 0.9 and digital data for variant I (fig.10a)
and in the special case, when g = 0 (fig.10b). The different shape of limit cycles
shows the interaction effect between parametric vibrations and self-excited vibra-
tions in the neighbourhood of the synchronisation region. The type of singularity
points is differ in the two cases, related to trivial solutions. The equilibrium points
are unstable because we are dealing with the soft self-excitation. For parametric
self-excitation (fig.10a) the singular point turns to be wnstable node W, , and
without excitation — vnstable focus 0,, (fig.10b).

Figure 11 presents phase-trajectories for A2 = 1.11, Situation of singular points
W, — stable nodes, shows the translation of the centre of vibrations and, what is
more, -the existence of the saddle — §. The results of these examinations agree
with analytical methods (table 2). The results for A? = 1.13 (fig.12) prove the
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non-existence off non-trivial, stable solutions. Qualitatively the results for both
values of A\? parameter are identiccal. Figure 13 shows the results of examination
of the equation (1:2) for A> = 0.924. For that value, two stable solutions were
found. One of them is related to limit cycle — C, , the second to singular point -
-stable focus 0, . Its englarged neighbourhood is presented in the fig.13a.

The binding region of this solution is very small and is determined by separa-
trice — S, . The equilibrium pointis an unstable node. The value A? = 0.924 can
be assumed as bifurcation value of the parameter A%, hence at small detuning of
frequéncy there exists qualitative change in topological structure of phase trajec-
-tories. For A% = 0.922 (fig.14) we get only stable limit cycle and for A2 = 0.926
(fig.15) limit cycle disappears. Besides stable focuses, two saddles and one unstable
node exist characteristing non-trivial solutions. Further evolution on the frequency
entrainment boundary leads to the alternation of equilibrium points singularity.
Unstable node alternates with saddle (fig.16) for A? = 0.93.

Analogical examinations were done for variant VI data and for three values of
parameter A2 = A3 +¢, where bifurcation valuee A3 = 0.9523, and ¢ = 3x 1074, For
A% (fig.17) two compound singular points like saddle-node (SW) were obtained,
for A3 = 0.952 ~ stable limit cycle (fig.18), and for A? = 0.9526 the character off
singularities is represented by the saddle and stable node (fig.19). Fig.20 shows
the stable limit cycle for variant I and A? = 1.24. And in contradistinction to the
limit cycles at A? < 1 (fig.10a), the equilibrium point plave the role of unstable
focus and trajectories are evalving into cycle in the clockwise direction.

4. Conclusions

The effects of interaction between parametric vibrations and self-excited vi-
brations in the considered system, with non-symmetric characteristic of elasticity
are characterised by periodic and nearly-peripdic vibrations and by the vibrations
centre translation. In the main resonance region self-excited vibrations synchro-
nize with parametric vibrations. Resonance amplitudes, however, depend on pa-
rameters of Van der Pol’s model. This influence, seen in a.nalytlca.l relations of
~.semi-trivial solutlons, was verified by analogue simulation.

The influence of systems parameters on the shape of amplitude curves and
vibrations centre, as well as the width of synchronisation regions was investigated.
Qutside the frequency entrainment region there exist nearly. periodic vibrations
with depths decreasing amplitude modulation, when we move away from the re-
‘sonance region almost-periodic vibrations, to which correspond stable limit-cycles
point out the influence of parametric excitation on the self-excited system also in
two regions adjoining the frequency entrainment regions. The analytical solution
was approximated by the sum of three functions presenting self-excited behaviour,
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parametric vibrations and vibrations centre translation. Basing on different me-
thods it was settled that two-frequency non-trivial solutions are unstable and they
exist in the very narrow spectrum of frequency. From the simplified examination
of the stability for the solutions above, ignoring the ﬁrst derivate of vibrations
centre, similar stable solutions were obtained.

The situation of non-trivial solutions with respect to beats existing on the
boundaries of frequency entrainment region proves that non-trivial solutions are
not entirely adequate as a model for two-frequency vibrations. This conclusion is in
agreement with [11], where by the same analytical method vibrations of the same
type of parametric — self-excited system with cubic non-linearity were investigated.

It is worth mentioning that for vibrations of the system with non- symmetric
elasticity characteristic the discrepancy between non-trivial solution and the re-
sults of simulation built on the basic mathematical model is even greater. Applied
analytical method was successfully used in vibrations analysis off self-excited sy-
stems with external excitation [4]. Therefore, the results of stability investigation
of non-ttivial solutions can be useful in the analysis for such interactions existing
in the systems with non-symmetric elasticity characteristic. It is worth emphasi-
zing that in the vibrations stability examinations the numerical analysis coupled
with stroboscope method of phase plane were particularly useful. It concers first
of all the determination of bifurcation points in the transition regions between
entrainment vibrations and almost-periodic vibrations.
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Streszczenie

W pracy poddano analizie drgania uldadu samowzbudnege 2 wymuszeniem parame-
trycznym i nieliniowy charakierystyky sprezystoda typu kwadratowego. Badania przepro-
wadzono pavy sastoscwanin jednej T metod analitycznych, symulacii analogowej 1 analizy
%0@@0 preydatnoét sastosowanej metody ana.btyane) w badaniach drgan
tego typu anpatnt;x;:tagadmem statecznodci rozwigzai, mtalalj‘gc przy tym
wuwém prrametru cegelodcl, kiorych nastepuje jekoéciowa zmiana strruktury topolo-
gicxnej tregektort fazowych.

Peaowe

B pafiore npoaraimzosano xosefanne caMopsbynasomnel cHCTEMI ¢ NapAMETpHEYC-
cxuM posfympennem B BerEReligodl yUpYrod XapakTepECTEEON KBAJPATHOTO THIA.
Hccnenosaang NMposeneHD OPEMERAN OAFH HS AHANATHHECKHAX METOAOB, AEANOIGBOrO
MOASTAPOBAHBA @ NHCHCHEONO asanmss. OReBEHBAETCS TPHIOAHOCTL UPHMEHIEMOro
SHANETEMECKOND NMEYONA B BUCAeAobaHESX kojelammil cEcTem storo Tuma. Pac-
CMOTPERD NpoSuoMy FCrofwABoCTA pellleHRi, YCTAHORES NpA STOM 3HAYEHHS HADA-
METPA RACTOTH, LUFGPLLX BACYYTIACY AMBMEHeHWe KANCCTBEHHON XADTHHH (a3oBhIX

Pracs updyngla do Redakc)i duin $ czerwea 1988 roku
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