ZASTOSOWANIE KWATERNIONÓW W ALGORYTMACH WYZNACZANIA ORIENTACJI PRZESTRZENNEJ OBIEKTÓW RUCHOMYCH

JANUSZ GAJDA
Instytut Lotnictwa, Warszawa

1. Wprowadzenie

Orientację przestrzenną obiektu ruchomego, tzn. położenie układu $Oxyz$ związanego z obiektem względem układu normalnego ziemskiego $Ox'y'z'$, określa się poprzez podanie trzech kątów (rys. 1): ψ — odchylenia, Θ — pochylenia oraz Φ — przechylenia, przy czym zakresy tych kątów są następujące:

$$
\psi \quad - \quad 0^\circ \div 360^\circ,
\Theta \quad - \quad -90^\circ \div 90^\circ,
\Phi \quad - \quad -180^\circ \div 180^\circ.
$$

Wyznaczenie wartości tych kątów następuje na drodze całkowania różniczkowych równań ruchu. Z mechaniki klasycznej znanych jest wiele metod wykorzystywanych do rozwiązania tego zagadnienia, m.in.:

3-parametrowe metody:
— kąty Eulera
 — nutacji θ, precesji ψ i właściwego obrotu φ,
 — odchylenia ψ, pochylenia Θ i przechylenia Φ,
— forma wektorowa,

4-parametrowe metody:
— parametry Eulera ε, λ,
— parametry Cayley - Klein’a,

9-parametrowe metody:
— cosinusy kierunkowe.
W zależności od przyjętej metody oraz stosowanej postaci równania (wektorowej lub macierzowej) wspomniane równania przyjmują różną formę, np.:

postacie wektorowe

klasyczna forma wektorowa:

\[\dot{\xi}_i = \xi_i \times \omega, \quad i = 1, 2, 3, \] (1.2)

parametry Eulera:

\[\dot{e} = \frac{1}{2} e \times \omega + \frac{1}{2} [\omega - (\omega e)e] \text{ctg} \frac{\chi}{2}, \quad \chi \neq 2k\pi, \]

\[\chi = \omega \times e, \] (1.3)

wektor skończonego obrotu:

\[\dot{\Theta} = \frac{1}{2} \Theta \times \omega + \frac{1}{2} (\omega \Theta) \Theta + \omega, \] (1.4)

gdzie:

\[\Theta = 2e \text{ ctg} \frac{\chi}{2}, \chi \neq (2k + 1)\frac{\pi}{2}, \]

postacie macierzowe

cosinusy kierunkowe:

\[\dot{\xi}_{in} = U(\omega_n)\xi_{in}, \quad i = 1, 2, 3, \] (1.5)
gdzie:

\[U(p) = \begin{bmatrix} 0 & p_3 & -p_2 \\ -p_3 & 0 & p_1 \\ p_2 & -p_1 & 0 \end{bmatrix}, \]

oraz

\[\xi_{in} = [a_{1i}, a_{2i}, a_{3i}]^T, \]

\[\sum_{i=1}^{3} a_{ij}^2 = 1, \quad i = 1, 2, 3, \]

\[\sum_{j=1}^{3} a_{ij} a_{kj} = 0, \quad i, k = 1, 2, 3, \quad i \neq k, \]

kąty Eulera

\[\mathbf{\delta} = \mathbf{B} \omega_n, \quad (1.6) \]

gdzie:

\[\delta = [\Psi, \Theta, \Phi]^T, \]

\[\mathbf{B} = \begin{bmatrix} 0 & \sec \Theta \sin \Phi & \sec \Theta \cos \Phi \\ 0 & \cos \Phi & -\sin \Phi \\ 1 & \tan \Theta \sin \Phi & \tan \Theta \cos \Phi \end{bmatrix}, \quad \Theta \neq \frac{\pi}{2} + k\pi, \]

\[\omega_n = [\omega_x, \omega_y, \omega_z]^T. \]

Przedstawione metody, mimo iż dotyczą tego samego zagadnienia, różnią się znacząco pracochłonnością obliczeń, przy czym mniejsza pracochłonność uzyskiwana jest za cenę pojawienia się miejsc osobliwych równań. Metody (1.2)–(1.5) wymagają ponadto dodatkowych równań służących do wyznaczenia kątów orientacji. Z tego względu korzysta się często z równania (1.6) zawierającego bezpośrednio kąty Eulera. Wadami tego algorytmu są: istnienie punktu osobliwego (dotyczącego przypadku lotu pionowego), niedokładności pojawiające się podczas obliczeń dla znacznych wartości kąta \(\Theta \) oraz konieczność sprowadzenia wyliczonych wartości kątów orientacji do wymaganych zakresów (1.1).

2. Zastosowanie kwaternionów do wyznaczenia orientacji przestrzennej

2.1. Równanie ruchu

Kwaternionem \(\mathbf{A} \) nazywamy liczbę o postaci:

\[\mathbf{A} = A_1 i + A_2 j + A_3 k + A_4, \quad (2.1) \]
gdzie:

\[i, j, k \quad \text{wersory urojone}, \]
\[\Lambda_i \quad \text{liczby rzeczywiste}, \]

przy czym zasady mnożenia wersorów urojonych wynikają z poniższych zależności:

\[i^2 = j^2 = k^2 = -1, \]
\[ij = -ji = k, \]
\[jk = -kj = i, \]
\[ki = -ik = j. \quad (2.2) \]

Równanie ruchu przyjmuje, przy wykorzystaniu kwaterionów, postać:

\[\vec{\Lambda} = \frac{1}{2} \vec{A} \odot \vec{\theta} \quad (2.3) \]

gdzie:

\[\vec{A} \quad \text{kwaterion opisujący orientację}, \]
\[\vec{\theta} = \omega_x i + \omega_y j + \omega_z k, \]
\[\odot \quad \text{symbol mnożenia kwaterionów}. \]

Rozwiązaniem tego równania jest kwaterion

\[\vec{\Lambda} = \vec{\Lambda}_0 \odot e^{\frac{\vec{\theta}}{2}}, \quad (2.4) \]

przy czym:

\[\vec{\Lambda}_0 \quad \text{kwaterion reprezentujący położenie początkowe}, \]
\[\odot \quad \text{symbol mnożenia kwaterionów}, \]
\[\vec{\theta} = \Theta_1 i + \Theta_2 j + \Theta_3 k, \quad (2.5) \]

gdzie:

\[\Theta_1 = \int \omega_x dt, \quad \Theta_2 = \int \omega_y dt, \quad \Theta_3 = \int \omega_z dt, \quad (2.6) \]

\[e^{\frac{\vec{\theta}}{2}} = (\Theta_1 i + \Theta_2 j + \Theta_3 k) \frac{\sin(\frac{\Theta_o}{2})}{\Theta_o} + \cos(\frac{\Theta_o}{2}), \quad (2.7) \]

gdzie:

\[\Theta_o = \sqrt{\sum_{i=1}^{3} \Theta_i^2}. \quad (2.8) \]
2.2. Zależności pomocnicze

2.2.1. Macierz cosinusów kierunkowych

Niech:

\(0xyz\) — położenie układu przed obrotem,

\(0x^*y^*z^*\) — położenie układu \(0xyz\) po obrocie o kąt \(\lambda\) wokół osi \(\nu\),

\(l, m, n\) — cosinusy kierunkowe osi \(\nu\) w układzie \(0xyz\).

Wówczas macierz cosinusów kierunkowych \(\mathbf{B}\) reprezentującą dany obrót można zapisać w postaci:

\[
\mathbf{B} = \begin{bmatrix}
(1 - \cos \lambda)l^2 + \cos \lambda & (1 - \cos \lambda)ml + n \sin \lambda & (1 - \cos \lambda)nl - m \sin \lambda \\
(1 - \cos \lambda)lm + n \sin \lambda & (1 - \cos \lambda)m^2 + \cos \lambda & (1 - \cos \lambda)mn + l \sin \lambda \\
(1 - \cos \lambda)ln + m \sin \lambda & (1 - \cos \lambda)mn - l \sin \lambda & (1 - \cos \lambda)n^2 + \cos \lambda
\end{bmatrix},
\]

przy czym:

\[
[z^*, y^*, z^*]^T = \mathbf{B} \times [x, y, z]^T.
\]

Tę samą macierz można zapisać za pomocą kątów orientacji \(\psi, \theta, \phi\) odpowiadających położeniu układu \(0x^*y^*z^*\) względem układu \(0xyz\):

\[
\mathbf{B} = \begin{bmatrix}
\cos \psi \cos \theta & \sin \psi \cos \phi & -\sin \theta \\
-\sin \psi \cos \phi + \cos \psi \sin \theta \sin \phi & \cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi & \cos \theta \sin \phi \\
\sin \psi \sin \phi + \cos \psi \sin \theta \cos \phi & -\cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi & \cos \theta \cos \phi
\end{bmatrix}.
\]

Macierz cosinusów kierunkowych można wyrazić również w zależności od składowych kwaternionu odpowiadającego obrotowi o kąt \(\lambda\) wokół osi \(\nu\):

\[
\vec{p} = (p_1, p_2, p_3, p_4) = ip_1 + jp_2 + kp_3 + p_4,
\]

gdzie:

\[
p_1 = l \sin \frac{\lambda}{2}, \quad p_2 = m \sin \frac{\lambda}{2},
\]

\[
p_3 = n \sin \frac{\lambda}{2}, \quad p_4 = \cos \frac{\lambda}{2}.
\]

Przykładowo:

\[
\mathbf{B}(1, 1) = (1 - \cos \lambda)l^2 + \cos \lambda = (\sin^2 \frac{\lambda}{2} + \cos^2 \frac{\lambda}{2} - \cos^2 \frac{\lambda}{2} + \\
+ \sin^2 \frac{\lambda}{2} \frac{p_1^2}{2 \sin^2 \frac{\lambda}{2}} + \cos^2 \frac{\lambda}{2} - \sin^2 \frac{\lambda}{2} = 2p_1^2 + 2 \cos^2 \frac{\lambda}{2} - 1 =
\]
\[B(2,1) = (1 - \cos \lambda) n l + n \sin \lambda = 2 \sin^2 \frac{\lambda}{2} \frac{p_2}{\sin \frac{\lambda}{2}} + \frac{p_1}{\sin \frac{\lambda}{2}} + \frac{p_3}{2} 2 \sin \frac{\lambda}{2} \cos \frac{\lambda}{2} = \]
\[= 2(p_1 p_2 + p_3 p_4), \]

natomiast cała macierz \(B \) przyjmie postać:
\[
B = \begin{bmatrix}
2(p_1^2 + p_2^2) - 1 & 2(p_1 p_2 + p_3 p_4) & 2(p_1 p_3 - p_2 p_4) \\
2(p_1 p_2 - p_3 p_4) & 2(p_2^2 + p_4^2) - 1 & 2(p_2 p_3 + p_1 p_4) \\
2(p_1 p_3 + p_2 p_4) & 2(p_2 p_3 - p_1 p_4) & 2(p_3^2 + p_4^2) - 1
\end{bmatrix} \quad (2.13)
\]

2.2.2. Mnożenie dwóch kwestionów

W celu obliczenia kwestionu \(\tilde{A} \) z równania (2.4) należy znać wartość iloczynu dwóch kwestionów, która wynosi:
\[
\tilde{p} \odot \tilde{q} = (i p_1 + j p_2 + k p_3 + p_4) \odot (i q_1 + j q_2 + k q_3 + q_4) =
\]
\[
= -p_1 q_1 - p_2 q_2 - p_3 q_3 + p_4 q_4 + i(p_4 q_1 + p_1 q_4 + p_2 q_3 - p_3 q_2) + (2.14)
\]
\[+ j(-p_1 q_3 + p_3 q_1 + p_2 q_4 + p_4 q_2) + k(p_1 q_2 - p_2 q_1 + p_3 q_4 + p_4 q_3). \]

2.2.3. Kwestion opisujący położenie

Kwestion reprezentujący położenie układu obróconego o kąty \(\Psi_0, \Theta_0, \Phi_0 \), względem układu \(0xyz \) można obliczyć jako złożenie trzech kwestionów odpowiadających kolejnym obrotom:
\[
\tilde{t} = \tilde{p} \odot \tilde{q} \odot \tilde{r} \odot \tilde{s}, \quad (2.15)
\]
gdzie:
\[\tilde{p} = (0, 0, 0, 1) \] — położenie dla zerowych wartości kątów orientacji,
\[\tilde{q} = (0, 0, \sin \frac{\Psi_0}{2}, \cos \frac{\Psi_0}{2}) \] — odpowiada obrotowi o kąt \(\Psi_0 \) (\(l = 0, \ m = 0, \ n = 1 \)),
\[\tilde{r} = (0, \sin \frac{\Theta_0}{2}, 0, \cos \frac{\Theta_0}{2}) \] — odpowiada obrotowi o kąt \(\Theta_0 \) (\(l = 0, \ m_1 = 0, \ n = 0 \)),
\[\tilde{s} = (\sin \frac{\Phi_0}{2}, 0, 0, \cos \frac{\Phi_0}{2}) \] — odpowiada obrotowi o kąt \(\Phi_0 \) (\(l = 1, \ m = 0, \ n = 0 \)).

Po wykonaniu działań (2.14) otrzymano wartości składowych kwestionu \(\tilde{t} \):
\[
t_1 = \cos \frac{\Psi_0}{2} \sin \frac{\Theta_0}{2} \sin \frac{\Phi_0}{2} - \sin \frac{\Psi_0}{2} \cos \frac{\Theta_0}{2} \cos \frac{\Phi_0}{2},
\]
\[
t_2 = \cos \frac{\Psi_0}{2} \sin \frac{\Theta_0}{2} \cos \frac{\Phi_0}{2} + \sin \frac{\Psi_0}{2} \cos \frac{\Theta_0}{2} \sin \frac{\Phi_0}{2},
\]
\[
t_3 = \sin \frac{\Psi_0}{2} \cos \frac{\Theta_0}{2} \cos \frac{\Phi_0}{2} - \cos \frac{\Psi_0}{2} \sin \frac{\Theta_0}{2} \sin \frac{\Phi_0}{2},
\]
\[
t_4 = \cos \frac{\Psi_0}{2} \cos \frac{\Theta_0}{2} \cos \frac{\Phi_0}{2} + \sin \frac{\Psi_0}{2} \sin \frac{\Theta_0}{2} \sin \frac{\Phi_0}{2}, \quad (2.16)\]
2.3. Algorytm wyznaczania orientacji przestrzennej obiektu

W omawianym algorytmie, służącym do wyznaczania orientacji obiektu na podstawie składowych prędkości kątowej obiektu $\omega = [\omega_x, \omega_y, \omega_z]^T$ (2.4) równania (2.3). Załóżono stałość prędkości obrotowej ω w krótkich odstępach czasu Δt, a zatem równania (2.6) przyjęły postać:

$$\theta_i = \omega_i \Delta t,$$

natomiast algorytm sprowadza się do cyklicznego obliczania kwaternionu reprezentującego orientację obiektu zgodnie z równaniem

$$\tilde{R} = \tilde{P} \circ \tilde{Q}$$

gdzie:

- \tilde{P} — kwaternion reprezentujący orientację obiektu w chwili t,
- \tilde{Q} — kwaternion reprezentujący obrót obiektu w czasie Δt,
- \tilde{R} — kwaternion reprezentujący orientację obiektu w chwili $t + \Delta t$.

Rys. 2. Schemat blokowy algorytmu.
W algorytmie wydzielono pięć etapów obliczeń (rys.2), przy czym wyłącznie trzy (o numerach 2,3 i 5) są wykorzystywane w pętli. Etap nr 1 jest liczony tylko na początku obliczeń, natomiast etap nr 4 wyłącznie w razie konieczności wyznaczenia kątów orientacji. Brak konieczności obliczeń etapu nr 4 w pętli wynika z faktu, iż informacja o bieżącej orientacji obiektu zachowana jest pod postacią składowych kwaternionu.

Kolejne etapy algorytmu obejmują:
1. obliczenie na podstawie równań (2.16) kwaternionu \(\vec{P} = (p_1, p_2, p_3, p_4) \) reprezentującego położenie początkowe obiektu (obróconego o kąty \(\psi, \Theta, \Phi \) względem układu \(0x_g y_g z_g \));
2. obliczenie kwaternionu \(\vec{Q} = (q_1, q_2, q_3, q_4) \) reprezentującego obrót obiektu w czasie \(\Delta t \):

 a) \(\omega = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2} \)

 b1) dla \(\omega > 0 \)
 \[\begin{align*}
 \varphi &= \omega \cdot \Delta t, \\
 q_1 &= \frac{\omega_x}{\omega} \sin \frac{\varphi}{2}, \\
 q_2 &= \frac{\omega_y}{\omega} \sin \frac{\varphi}{2}, \\
 q_3 &= \frac{\omega_z}{\omega} \sin \frac{\varphi}{2}, \\
 q_4 &= \cos \frac{\varphi}{2},
 \end{align*} \]

 b2) dla \(\omega = 0 \)
 \[\begin{align*}
 \varphi &= 0, \\
 q_1 &= 0, \\
 q_2 &= 0, \\
 q_3 &= 0, \\
 q_4 &= 1.
 \end{align*} \]

3. obliczenie na podstawie równań (2.14) kwaternionu \(\vec{R} = (r_1, r_2, r_3, r_4) = \vec{P} \odot \vec{Q} \), reprezentującego orientację obiektu po czasie \(\Delta t \);
4. obliczenie kątów orientacji \(\psi, \Theta, \Phi \) na podstawie porównania elementów macierzy cosinusów kierunkowych (2.10) i (2.13):
 a) \(B(3,1) = 2(r_1 r_3 - r_2 r_4) \),
 \[\Theta = \arcsin[-B(3,1)]; \]
 b) dla \(\cos \Theta \not\equiv 0 \) (dokładność uzależniona jest tutaj od rodzaju mikrokomputera) położenie obiektu jest pionowe, przy czym dla \(B(3,1) < 0 \) obiekt jest skierowany do góry, natomiast dla \(B(3,1) > 0 \) do dołu. W tym przypadku wartości kątów \(\phi \) i \(\psi \) są nieoznaczone;
 dla \(\cos \Theta \neq 0 \):
 \[XM = \cos \Theta + B(3,3), \]

 \[\Phi = \begin{cases}
 180^\circ & \text{dla } XM = 0 \\
 2 \arctg \frac{B(3,2)}{XM} & \text{dla } XM \neq 0
 \end{cases} \]
\[XN = \cos \Theta + B(1,1), \]
\[
\Psi = \begin{cases}
180^\circ & \text{dla } XN = 0 \\
\Psi^* & \text{dla } XN \neq 0 \text{ i } \Psi^* \geq 0 \\
\Psi^* + 360^\circ & \text{dla } XN \neq 0 \text{ i } \Psi^* < 0
\end{cases}
\]
gdzie:
\[
\Psi^* = 2 \arctg \frac{B(2,1)}{XN},
\]
5. podstawienie \(\vec{P} = \vec{R} \) — końcowe położenie po obrocie jest początkowym dla kolejnego \(\Delta t \).

3. Wnioski

Do podstawowych zalet przedstawionego algorytmu należą:

a) brak punktów osobliwych — algorytm umożliwia wyznaczenie orientacji obiektu dla dowolnego położenia przestrzennego;

b) dokładność — błąd numeryczny wyznaczenia kątów orientacji jest praktycznie niezależny od położenia kątowego obiektu i znacznie mniejszy w przypadku dużych wartości kątów orientacji niż dla innych metod. Lepsza dokładność uzyskiwana jest poprzez efekt "normalizacji" wynikający z zakresu wartości składowych kwaternionu \((p_i \in \langle -1;1 \rangle) \). Ponadto dla innych metod błąd obliczenia wartości funkcji tangens (lub dzielenia przez cosinus) powoduje kumulowanie się błędu wyznaczenia kątów orientacji w kolejnych krokach, natomiast w omawianej metodzie błąd ten dotyczy wyłącznie jednorazowego wyznaczenia orientacji i nie wpływa na dokładność dalszych obliczeń, gdyż kąty orientacji nie są wykorzystywane w kolejnych krokach obliczeń;

c) duża szybkość — czas obliczenia jednej pętli wraz z wyznaczeniem kątów orientacji dla najbardziej niekorzystnych położeń obiektu nie przekracza, dla programu w języku FORTRAN liczonego na mikrokomputerze kompatybilnym z IBM PC/XT (8 MHz) z koprocesorem, 4 ms.

Przedstawiony algorytm może być wykorzystany do symulacji cyfrowej ruchu obiektów (szczególnie złożonych figur akrobacji lotniczej) oraz w układach bezwładnościowych orientacji i nawigacji typu AHRS.

Literatura

1. H. Fujii, Review of Strapdown Systems (Kinematics, Alignment and State Estimation), UTIAS Technical Note No.217, Institute for Aerospace Studies, University of
Toronto, March 1978
2. А.Ю.Ишлинский, Механика относительного движения и силы инерции, Наука, Москва 1981
4. С.М.Онищенко, Применение гиперкомплексных чисел в теории инерциальной навигации, Автономные системы, Наукова Думка, Киев 1983

Summary

The effective algorithm of spatial attitude determining of moving objects on the base of angular velocity components has been presented. This algorithm is faster and more accurate than others, and it allows, to determine orientation at the arbitrary spatial attitude of an object. These advantages have been achieved by the use of quaternions. The algorithm could be used for the inertial navigation and reference systems.

Резюме

Представлено эффективный алгоритм назначения пространственной ориентации подвижных объектов на основе составляющих угловой скорости. По сравнению с другими алгоритмами он отличается большой скоростью и точностью, а также возможностью назначения ориентации для любого пространственного положения. Эти преимущества получено благодаря применению кватернционного исчисления. Алгоритм возможно использовать в цифровой симуляции движения летающих объектов, а также в инерциальных системах ориентации и навигации.

Praca wpłynęła do Redakcji dnia 12 października 1988 roku