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1. Historical remarks

The history of multimodal optimization of structural elements began in
1976 when Olhoff & Rasmussen (1976) proved incorrectness of the Tadj-
bakhsh & Keller (1962) solution obtained for a clamped-clamped column and
arrived at the correct one. The lowest critical force of the o§t1m51 co-
lumn occured to be a double eigenvalue corresponding to two fundamental
forms of in-plane buckling. This discovery -one of the most significant
in structural optimization- opened new field for theoretical investiga-
tions and detailed numerical solutions.

Some corresponding observations have been made by Kiusalaas (1973) who
optimized a beam on elastic foundation and by Szelag & Mroz (1979) who
considered the optimal design of vibrating beams with unspecified a prio-
ri support action. Additional light has been brought to the'problem by
Masur & Mroz (1979,1980) who showed that a singular (non- differentiable)
optimization problem arises here. At the same time Prager & Prager (1979)
demontrated that the singular behaviour assoclated with repeated eligen-
values may appear for even a very simple finite-dimensional model of
clamped - clamped colunmn.

In 1978 M. Zyczkowskl suggested that the bimodality in structural op-
timization should be expected in more natural way for the optimal design
of arches with respect to its stability. Further research activities in
that direction have been undertaken by several of his collaborators. Re-
sults obtained by them are presented in the next chapters:
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2. Nature of the problem

In general, the aim of the structural optimization is minimization of
a functional which con;ists. as a rule, of three elements: material, ma-
nufacturing and exploitational costs. If the manufacturing costs are not
particularly essential then the volume of the structural element consti-
tutes a reasonable criterion for the cost as a design objective. Constra-
ints imposed on the lowest buckling load ‘of perfect structures corres-
ponding to the first buckling mode or on the lowest natural frequency of
free vibration belong to the case of eigenvalues as constraints. Varia-
tion of the shaﬁe of a structure in an optimization process affects also
all other eigenvalues and may result in the lowering of a higher-order
eigenvalue bellow the first one. Then the result of unimodal optimal de-
sign (i.e. with respect to single eigenvalue) is false and multimodal op-
timal design should be employed. i

Sometimes a constraint (e.g. the lowest eigenvalue) may be interchan-
ged with the design objective (e.g. volume - V) and the design problem
may be stated as:

max [min (P,)], i=1.. o, V=const., (2.1)

¢(x) 1 1

where ¢(x) denotes a design variable (control function), Pi-the set of
eigenvalues.

This max - min problem is non-differentiable, however. To avoid this
difficulty Olhoff (1987) used a band formulation given by Bendsee, Olhoff
& Taylor (1983/1984) and Taylor & Bendsee (1984). It consists in introdu-
cing an extra parameter P which ensures that one can formulate a standard
differen- tiable problem even if repeated eigenvalue occurs. The problem
(2.1) can be transformed into the problem of maximizing a bound P subject
to the constraints PizP, i=1. . .

Such approach connected with the mathematical programming method is
also presented by Olhoff (1989, 1990).

Some general remarks dealing with the multimodal optimization of stru-

ctural elements are presented in monographs by: Haug,Choli & Komkov
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(1986), Banichuk (1986), Gajewski & Zyczkowski (1988), Rozvany (1989) and
2yczkowski (1990).

3. Methods of the solution of multimodal optimization problems

The basic method is connected with the modified calculus of varia-
tions. The appropriate non-stationary optimality conditions are derived
by Olhoff & Rasmussen (1976) for conservative stability problems and by
Masur & Mroz (1979) for conservative and non-conservative problems as
well. The second method, widely used here, uses the Pontryagin's maximum
principle. It leads to the same optimality conditions as obtained in pre-
vious papers (Blachut & Gajewski (1980)). The third and the most power-
full method, i.e. the sensitivity analysls, consists in computation of
directional derivatives of a repeated elgenvalue. The theoretical aspects
of this method were developed - by Chol & Haug (1981 a,b,c), Haug & Rous-
selet (1981), Rousselet (1981 a,b) and Zoléslo (1981).

4., Multimodality in conservative stability problems

4.1.General remarks. Behaviour of loading in the course of buckling is
an important factor both from the physical and mathematical point of
view. In some cases the boundary value problems which determine the cri-
tical loading parameters are self-adjoint. In such cases the behaviour
of loading 1is conservative and its critical value can always be determi-
ned by the static criterion of stability. The conservative stabllity con-
straints should protect the structure agalnst any possible form of loss
of stability i.e. the bifurcation and/or snap-through.

4.2.Columns. The classical bimodal solution of the optimization pro-
blem of clamped-clamped column has been found by Olhoff & Rasmussen
(1976). It was generalized by Bochenek & Gajewski (1984) for the column
elastically clamped with different flexibilitles at each end. Prager's
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model have been used by Gajewski (1981) to demonstrate the bimodal opti-
mization in a more general case, namely with respect to the frequency of
transverse vibrations under axial compression. The analytical  exact
solution of the Olhoff-.Rasmussen problem has been found by Séyranian
(1983, 1984) and Masur (1984).

An optimally designed column for (x,y) in-plane buckling may loose its
stiffness in the perpendicular (x,z) plane and Subsequentfy may buckle in
the secbnd plane. In such cases qptimization for buckling in two planes
is necessary - it leads to multimodal optimization with a number of si-
nmultaneous modes equal to 2,3 or 4, depending on the mode of supports and
additional geometrical constraints. Here we can talk about the bimodal
optimization in each plane and the simultaneous mode design in two pla-
nes. Both, optimal design with respect to one control function and opti-
mal design with respect to two control functions (width and depth) are
possible. The numerical solutions to the problems under discussion were
obtained by Bochenek (1987) and Bochenek & Nowak (1988).

Some other related probleﬁs were presented by Olhoff & Niordson
(1979), Haug (1980,1982), Choi & Haug (1981,1982), Lam, Haug & Choil
(1981), Olhoff (1981), Choi, H;ug & Lam (1982), Banichuk & Barsuk
(1983a,b,c), Teschner (1983a,b), Bratus & Seyranian (1983,1984), Olhoff
(1987,1990), Parbery (1987), Gajewski (1990a).

4.3. Columns in elastic medium. The necessity of multimodal optimiza-
tion is more visible for a column in an elastic medium; Iindeed, even for
prismatic columns the number of half-wavelengths is-a priori ﬁnknown and
the occurence of two equally probable buckling modes may often be encoun-
tered. The bimodal optimization of a beam on Winkler’s foundation was in-
vestigated for the first time by Kiusalaas (1973) (FEM) and next by Repin
(1979) and Larichev (1982). A generalization given by Gajewskl (1985)
consists of an examination of two different mathematical approaches: Pon-
tryagin’s and sensitivity analysis. The ranges of validity of the unimo-
dal and bimodal formulations in terms of the lower geometrical constra-
' lnté and foundation coefficlient were determined. The problem was studied
by Plaut, Johnson & Olhoff (1986) for columns of an idealized sandwich
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cross-section and various boundary conditions. Quite recently, Shin,
Plaut & Haftka (1987) used simultaneous analysis and design for the opti-
mum design of a beam-column supported by an elastic foundation for the
maximum buckling load. A similar problem was considered by Shin et
al. (1988).

4.4. Arches. Problems of the optimal design of plane arches under sta-
bility constraints require the consideration of various forms of instabi-
lity especially those due to bifurcation and snap-through. Moreover, the
instability may occur in the plane of the arch and/or out of the plane.
Therefore, multimodal formulation of the optimization problems should be
considered here, as a rule. '

Blachut and Gajewski (1981a) drew attention to the necessity of bimo-
dal formulation for clamped-clamped funicular arches. Both symmetric and
antisymmetric buckling modes were considered and the ranges of applicabi-
1ity of unimodal and bimodal optimization were found debending on geome-
trical constraints and on the steepness paramete}. Many other examples
were also presented by Olhoff (1982) and Olhoff & Plaut (1983).

Unimodal and bimodal optimization of extensible arches under snap-
through, bifurcation and vibration constraints was carried out by Biachut
and Gajewski (1981b) and Blachut (1982}.

Additionally, if out-of-plane buckling is allowed for, then even bimo-
dal formulation may be insufficient. This problem was discussed in detail
by Bochenek & Gajewski (1986) for an inextensible clamped-clamped cir&p-
lar arch; three- and four-modal solutions were obtained.

All the above-mentlioned papers employed the magnitude of the cross-
section as a design variable. Bochenek & Gajewski (1989) and Bochenek
(1988) have tackled new and more complicated problems, namely the optimal
design of arches for which both the depth and width of a rectangular
cross-section were treated as two independent design functions. The ar-
ches were optimized with respect to in-plane and spatial buckling and
their axes were assumed to be inextensible.

The thin-walled box-section circular arches loaded by a radial pres-

sure were optimized by Bochenek (1989). Beside the overall both in-plane
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and out-of-plane buckling the local web and flange instability were taken
into account. The bound formulation of the min-max problem and the
mathematical programming method were used to the optlnlzaplbn of
I section prismatic circular arch by Bochenek & Zyczkowski (1988, 1990).

Recently Wroblewski & Zyczkowski (1989) has generalized previous pro-
blems introducing a nonlinear behaviour of the arch material. They consi-
dered the multimodal optimization against in-plane and spatial creep buc-
kling.

Some related elastic optimization problems were also discussed by
Btachut (1983), Btachut & Gajewski (1983), Bochenek & GaJjewski (1983),
Zyczkowskl & Gajewski (1983), Blachut (1984), Bochenek (1984), Gajewski &
Zyczkowski (1987, 1988).

4.5. Frames. Kiusalaas (1973) pointed out that the optimization of the
portal clamped-clamped compressed frame with two elastic supports at both
ends of the beam (of constant cross-sections of both columns and of the
beam) leads to a bimodal solution. Bochenek & Gajewski (1982, 1983) -intro-
duced functional design variables for columns and beam. They applied Pon-
tryagin's principle and proved bimodality of the solution within a cer-
tain intervals of width to height ratio for simple portal frame without
any additional elastic supports. This solution suggests that in cases of
more complex frames the multimodal solutions should appear as a rule. Si-

milar problem was considered by Szyszkowski, Watson & Fletkiewicz (1988).

4.8. Plates. The FEM technique was used by Szyszkowski, Watson & Flet-
kiewicz to derive the optimal condition for multimodal optimal design of
rectangular plates. The number of modes affecting the optimal design was

determined automatically during the iterative procedure.

4.7. Shells. Some primary observations on multimodal optimization of
cylindrical shells were made by Medvedev (1980) and extended by Medvedev
& Totsky (1984). Plaut & Johnson (1984) pointed out the possibility of a
bimodal solution in the shape optimization of shallow shells with circu-
lar boundary. Quite recently Skrzypek & Bielski (1989) discussed both
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unimodal and bimodal optimization of elastic toroidal shells subject to
buckling under external pressure. Geometrically nonlinear theory of fini-
te displacements but small strains was applied. For some geometry parame-
ters the optimal shape of the shell corresponds coalescense of bifurca-~
tion and snap-through pressures.
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Tﬂé problem considered by Blachut (1987) is of slightly different na-
ture. The main alm of that paper was to establish, parametrically, the
maximal compressive axial buckling load of barrel-shaped shells. The wall
thickness and the shell volume were kept constant. The buckling load in-
crease was due to the cﬁange in the shell meridional curvature. It has
been shown that some optimal solutions may corréspond to equal axisym-
metric collapse and bifurcation loads.

The possibllity of appearence of a high eigenvalue multiplicity is i1l-
lustrated in Fig.1. Nineteen buckling loads P[m,n] (uniform constant
pressure) calculated for an elastic cylindrical shell in subsequeni opti-
mization steps are shown (Gajewski (1990b)). The integers m and n denote
the number of longitudinal and circumferential waves respectively.

5. Multimodality in vibration problems

5.1. Introductory remarks. Similarly to the buckling loads the fre-
quencies of natural vibration of a structure are eigenvalues of a genera-
lized eigenvalue problem, hence, they depend on design. Simple examples
of finite-dimensional structural design problems with constraints on na-
tural frequency were presented by Haug & Rousselet (1980), Haug & Choi
(1981, 1982), Lam et al. (1981), GaJewski (1981) and Haug (1982). Appro-
priate optimality condition for finite multidegree of freedom vibrating
systems was considered by Bartholomew & Pitcher (1984) and Khot (1985).

5.2. Columns. Bimodal formulation of the optimization problem of com-
pressed vibrating columns was introduced by Gajewski (1981) and numeri-
cally solved by Bochenek & Gajewski (1984).

5.3. Beams on elastic foundation. The characteristic diagrams of the
optimal frequency (under constant compressive load) versus the lower ge-
ometrical constraints for a column in an elastic medium were given by Ga-

Jewski (1985).
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5.4. Arches. Optimization of circular funicular arches, clamped at
both ends, under vibration constraints was carried out by Blachut & Ga-
Jewski (1981a). Both symmetric and antisymmetric vibration modes were
considered and bimodal optimization was allowed for. Shallow arches were
also optimized under vibration constraints by Plaut & Olhoff (1983), whe-
re the form of the arch was varied for a given cross section, length and
span. Both, the shape and material distribution were optimized by Olhoff
(1983) and Olhoff & Plaut (1983), The parametrical optimization problem
for the case of an in-plane vibration was solved by Blachut (1983, 1984).

Introducing stretchablility of arch axis Blachut & Gajewski (1981b) op~
timized circular arches under hydrostatic pressure for various loading
parameters. Evolution of the optimal clamped-clamped clrcular -arch shape
is presented in Fig.2.

Similar problem for a simple four degree-of-freedom model was presented
by Bochenek & Gajewski (1983) and Bochenek (1984). General statement of
the problem was formulated in monograph by GaJewskl & 2yczkowski (1988).

5.5. Frames. A bimodal solution for a portal frame, treated as the
eighteen-finite-element model subject to the natural frequency constra-
ints and constraints on the cross-sectional area, was given by Haug, Choil
& Komkov (1886).
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5.6. Shells. Plaut, Johnson & Parbery (1984) considered thin shallow
elastic shells with a given circular boundary. The material, surface area
and the uniform thickness of the shell were specified. Such axisymmetric
shape of the shell which 'provided maximum fundamental vibration frequency
was the objective function. The optimality condition for bimodal formula-
tion was derived by the calculus of variations. The maximization of na-
tural frequency and multimodality of the forms of vibration for variable
thickness orthotropic shells was also investigated by Medvedev (1985).

6. Multimodality in non-conservative stability problems

6.1. General remarks. The forms of stability loss of non-conservative
systems (bifurcation or flutter) may depend on control variables, namely
distribution of mass and stiffness, and hence they. are unknown a priori
before optimization. During an optimal design process equating two flut-
ter critical forces or equating a flutter critical force with a bifurca-
tion critical force may appear. However, it is difficult to predict which
type of stability criterion should be employed.

A systematic introduction to optimization of non-conservative systems
was given in a survey by Weisshaar & Plaut (1981). The so-called cha-
racteristic curves (i.e. the relations between loading parameters and
frequencies of vibration) play important role here. In an optimization
process they are subjected to essential modifications, leading to conti-

nuous or discontinuous switchings.

6.2. Columns and beams. The great majority of papers devoted to the
optimal design of structural elements which are subjected to non-
conservative loadings deals with columns compressed by a follower force.
The possibility of discontinuous switching raised by Claudon (1975), Ha-
naoka & Washizu (1980), Claudon & Sunakawa (1981a,b) leads to the conclu-
sion that the optimal shape should correspond to maximization of two cri-
tical flutter forces, equal to each other. The optimality condition in
this case was derived by Masur & Mroz (1979) and by Blachut & Gajewski
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(1980). Further detalils were given by Bogacz & Janiszewski (1985) and by
Gajewski & 2yczkowski (1988). Recently, Tada, Matsumoto & Oku (1989) for-
mulated the shape determination problem, in which the obJectllve was to
maximize the critical load of the Beck’s column under the condition of
constant volume and the condition that the distance between characteri-
stic curves for adjacent modes was kept wider than a certalin value. The
obtained shape corresponded to the equation of three subsequent critical
flutter forces (the highest critical force so far). The sané effect was
observed by Seguchi et al. (1989) who an internal damping took into con-
siderations.

Seyranian (1980, 1982a,b, 1990) analysed f_lexuml-torslona_l flutter of a
thin-walled wing in fluid flow. He employed the sensitivity analysis and
found the optimum realizing equal critical forces of flutter and of di-

vergence.

6.3. Annular plates. The optimization problem of annular plates com-
pressed by uniformly distributed non-conservative forces was formulated
by Gajewski (1990a). Both the precritical membrane state and the small
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transverse vibration were taken into account. In general, the kinetic
criterfon of stability had to be applied. Using the sensiti{rity analysis
and consecutive iterations Gajewski & Cupial (1990) observed the typical
effects already known from the optimal design of columns. Some new ef-
fecté connected with evolution of characteristic curves depending on the
number of circumferential waves can be seen in Fig.3. Some relating re-~
sults have already been presented by Gajewski (1990a).

7. Final remarks

The aim of this survey paper was to present, as far as possible, a
full 1list of references concerning the multimodal optimal design of
structural élements, despite of a "repeated character™ of some papers.
The contribution to multimodal optimization topics by authors from the
"Cracow optimization school® - mainly coordinated by Professor M.

2yczkowskl - is evidently seen.
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Summary
WIELOMODALNA OPTYMALIZACJA ELEMENTOW KONSTRUKCYJNYCH#

W pracy przedstawiono rozwsj problematykl optymalnego ksztaltowania
elementow konstrukcyjnych z uwagl na wielokrotne wartoscil witasne. W spo-
sob bardzo krotki omowiono zagadnienia optymalizacji w przypadkach obcia-
2enn konserwatywnych i niekonserwatywnych oraz dla elementow drgajacych.
Zamieszczono wykaz znanych autorowi publikacji, dotyczacych omawianej
problematyki.
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