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1. Introduction

Nonhomogeneity of material for circular sections of-thick walled cy-
linders undgr combined loadings (uniformly distributed pressure, bending
moment, axial force, influence of temperature) was sought in former pa-
pers Kordas and Wrdblewski (1987), and Dollar and Kordas (1990).

The present elaboration is a further step in investigations on this
problem; it means the problem is extended on cylinders loaded with non-
uniformly distributed pressures: external pb(o) and internal p‘(o) (lack

of circular symmetry of pressure) - Fig.1 .

Fig.1. Circular cylinder and its load.

Distribution of plastic nonhomogeneity of the material that compensa
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tes pressure distribution ensuring full plastification of the circular
section of the cylinder at fallure is looked for.

Contrary to the method of small parameter applied in a number of pa-
pers on determination of shapes of bodles fully plasticlzed at ﬁltimate
carrying capacity the method of stress functions was here applied. As far
as the method of small parameter gives solutions only slightly differing
from solutions considered as trivial ones, solutions obtained by use of
the method of stress function are more general.

A circular thick-walled cylinder of internal and external radii a and
b respectively Is considered. Material of cylinder is incompressible,
perfectly elastic-plastic. Its yleld point is sought by use of noncircu-
lar-symmetrical function. ’

With regard to the unlimited length and absence of loads along the
axis of the cylinder (normal force, bending moment), a plane state of de-
formation is adopted. Stress function as well as pressures pa(d) and
pb(d) were developed into trigonometric series (in order to ensure perio-
dicity of solutions) and from the Huber-Mises-Hencky condition of plasti-
city the yleld point was expresseg by the coefficlents of development of
stress function. Making use of stress boundary conditions we obtained
condition for coefficients of the stress function which satisfy the equa-
tions of internal equilibrium and the yield condition (a solution stati-
cally admissible).

For precise solution the condition. of positiveness of power of plastic
deformation is introduced; this condition gives a differential partial
equations of the second order for the modulus of advancement plastic de-
formation ¢(p,d).

With regard to lack of any boundary conditions for. function ¢(p,8) and
a considerably complicated form of the equation another approach was ap-
plied.

Namely the form of the function ¢(p,¥) was assumed in such a way that
in the whole area of variability its sign was the same. Subsequently from
equation for ¢ the class of functions (coefficlients of the yleld point
development) ensuring the assumed form ¢ was determined. Fiom this class,

functions satisfying the boundary conditions were chosen.
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By application of this approach several examples were solved.

2. Basic equations and way of their solution

A thick-walled cylinder of internal radius a and external radius b was
considered. The material applied was incompressible, perfectly elastic-
plastic and its yleld point was sought by use of noncircular-symmetrical
function. The cylinder was loaded with internal and external load pa(o)
and pb(o) respectively.

With regard to the unlimited length and absence of normal force and
bending moment a plane-state of deformation was adopted. The state of
stress is hence in every point of the cylinder determined by three com-
ponents ¢, o,, T o and o = (o-r + c'o)/2. These are functions of the an-
gle ¢ and dimensionless radius p = r/b. In the adopted polar coordira*
p, ¢, they satisfy two conditions of internal equilibriﬁm:
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and in the presence of the adopted condition of full plastification at
fajlure the Huber-Mises-Hencky condition in form of equation:

oF (p,0) , ' (2.2)
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where o'o(p.ﬂ) denotes the sought yield point. The relations between the
components of the state of stress, and the external loadings are determi-

ned by the stress boundary conditions

c (1) =~p(e), T 1)=0, .

- p(0), T s) =0, & (2.3)

o;(s)

a
where s = B
Adopting the stress function F (p,#) so that
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identical satisfaction of equations of internal equilibrium (2.1) is en-

sured.
The function F (p,®#) must be assumed so that the boundary conditions

(2.3) are satisfied.The yield condition (2.2) permits determination of
the looked for distribution of the yield points % (p,8).
The stress function F (p,®6) must be a periodic function and can be

presented in form of trigonometrical serles:

F (p,8) =} [ﬁn(p) sin né + Rn(p) cos no] + Ro(p) . (2.5)

n=1

Consideration of (2.5) in formulae (2.4) aims at expressing components of

the state of stress:
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+ [p-lR; - p'an) n sin no] . (2.8)

Expression of com@nents of the state of stress In the yield condition
(2.2) by means of formulae (2.6) permits to determine the sought yield

point
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o' (p, 0) = 3 b [[ﬁ; - p"ﬁ; + nzp'aﬁn] sin no +
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+[R'-P R:+np R)cosno]} +_ T [(p-x—n_
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Pressures pn(o) and pb(o) are periodic functions and can be developed i{n-

to Fourler’s series:

p (o) =L ( p,Sin nd + p cos ne )+ P

n=1

p (0) = Zi(pbnsin ndé + p_cos no ] + Py - (2.8)
n=s
Consideration of formulae (2.6) and (2.8) in boundary conditions (2.3)
leads to boundary conditions for coefficients of stress functions
Rn(p), Rn(p), Ro(p):

. - - 2 . = _ 2
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R (1) = R (1) , : R (s) = R’ (s) ,
n . n n
R (1) = R’ (1) , R (s) = R (s) s,
n n n n
p =b2s"%R (s) (n%-1) , p. =b 2R (1) (n%-1) ,
an n bn n
= _ n-2_-2g 2_ = _w2g 2_
p‘m =b “s Rn(S) (n°-1) , pbn b Rn(l) (n°-1) . (2.9)

Each function F(p,®) whose coefficients of development satisfy condi-
tions (2.9) ensure satisfaction of equations of inner equilibrium (2.1)
as well as of stress - boundary condition (2.3). Such a solution is, how-
ever, only a statlically admissible one and to be considered a precise
one, the condition of positiveness of power of plastic deformations
H=§crf¢ must be checked. This resolves {tself Into determination of the
sign ¢ (modulus of plastic deformations advancement). From the jaw of
shape change In the plane state of deformation, and from the compatibili-~
ty condition the following equation for the function determining the mo-

dulus of advancement of plastic'deformations ¢(p,9) 1s developed:
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Substituting into this equation formulae (2.8) for the components of
stress state the following equation is obtalned:
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where the dot denotes the derivative with respect to the angle, and prime
the derivative with respect to the dimensionless radius p.

Two approaches aliming at satisfying the condition of positiveness of
the modulus ¢ are possible. First the functions ﬁn and R.n can be adopted
in such a way as to satisfy the boundary conditions (2.9) and subsequen-
tly equation (2.11) is solved examining the sign of ¢.

This, however, encounters considerable difficulties, science in a ge-
ﬁeral case the equation is nonlinear and conditions on function ¢(p,®)
are missing.

The form of function ¢(p,®) can be also assumed so that its sign would
be identical in the whole area of variability (e.q. by analogy with a ho-
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mogenous circular cylinder under constant pressure, for which ¢»=cp2 or
¢=const). Subsequently from equation (2.11) the class of function R and
Rn which would ensure the assumed form of ¢ can be determined and fr:m it
can be chosen functions satisfying the boundary conditions (2.9). In the
examples the second approach was obtained. Namely distributions of pla-
stic nonhomogeneity of material corresponding to full plastification of

circular sections of cylinders at various loading were found.

3. Examples

In the analyzed examples the form of the function ¢(p,?®) was assumed
like for a homogenous circular cylinder under constant pressure (¢=cp2L
and then from equation (2.11) the class of functions (coefficlients of
y;eld point development) which ensure the assumed form of ¢ were determi-
ned and from this class, functions satisfying the boéndary conditions
(2.9) were selected.

Analysis of formulae (2.7-2.11) permits drawing interesting conclu-
sions. We will not, however, discuss it here, presenting only its results
in graphical form. For example a circular cylinder loaded with constant
pressure p_ and P, at edges can be fully plastified for a constant yield
stress, or dependent only on one variable p (circular - symmetrical non-
homogeneity of the yield point), or for noncircular - symmetrical distri-
butions of the yleld stress. In Figs 2 and 3 distributions of radial
stress o;(p.o) and distributions of yield point °b(p'°) were shown in
axometric projections for a cylinder loaded with constant pressure
pa(6)=3p'and pb(o)=0 at given n=4, s=0.5. The diagram o;(p.o) is simul-
taneously an illustration of loading the cylinder. In diagrams the adop-
ted scale was p=2.5[mm). Distribution of radial stress o;(p,o) and of the
yield point °b(p'0) for a circular cylinder loaded on the edges with
variable pressures pa(0)=p(6 + 2cos59), p%(0)=p(2 + cos59), s=0.5, n=5
are shown in Figs 4 and 5.
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Fig. 2. Distribution of radial stress;
p‘(0)=3p, pb(0)=0, n=4, s=0.5 .

Fig. 3. Sought distribution of the yield point;
p (6)=3p, p (6)=0, =4, s=0.5 .,
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Fig. 4. Distribution of radial stress;
p;(0)=p(6+2c0550), pb(0)=p(2+cos5o), =5, s=0.5
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Fig. 5. Sought distribution of the yield point;
p (8)=p(6+2cos59). p (6)=p(2+cos56), n=5, s=0.5
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Summary

NIEJEDNORODNE KOLOWE CYLINDRY GRUBOSCIENNE, CALKOWICIE UPLASTYCZNIONE
W STADIUM ZNISZCZENIA

W pracy poszukuje sle nieJednorodnoéci plastycznej materialu, ktora
zapewnla calkowite wuplastycznienie kolowych przekrojow cylindrow
grubosciennych, obclazonych nieréwnomiernie roztozonymi cisnieniami: ze-
wnetrznym pb(ﬂ) i wewnetrznym pa(ﬂ). Zastosowano metode funkeJji
napr¢zen. Funkcje te, podobnie Jjak cisnienia, rozwinieto w szeregl try-
gonometryczne (celem zapewnienia okresowosci rozwiazan). Poszukiwana
granice plastycznosci wyrazono z warunku plastycznoscli Hubera-Misesa-.
Hencky’ego poprzez wspdlczynniki rozwiniecia.



