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1. Introduction

The aim of the paper is to outline an approach which enables one to
describe the macro-properties of certain nonelastic (for example elastic-
plastic) micro-periodic material composites. This problem has been stu-
died, among the others, by Suquet (1985) and Marigo et al. (1987) via the
general (asymptotic) homogenization method. The method outlined in this
paper is based on the concept of the ideal constraints for stresses,
Wozniak (1984) and takes into account. the ideas of the nonstandard (mi-
crolocal) homogenization approach developed in a series of papers by
Wozniak (1987, 1989), Kaczynski and Matysiak (1888), Matysiak and Nagorko
(1988), Naniewicz (1987), Wagrowska (1988) and others. The main feature
of the method is that it is relatively simple compared with the general
(asymptotic) honogenléation method and hence can be succesfully applied
in the engineering practice. On the other hand it is an approximate met-
hod which makes it possible to 'obtaln different, more or less approxima-
te, macro-models of micro-periodic nonelastic material structures. The
approach can be divided into the local (constitutive) and global model-
ling. In the local modelling we deal exclusively with one representative
(heterogeneous) volume element and 'we describe the overall properties
(macro-properties) of this element in term of certain macro-quantities.
The global modelling constitutes an avenue leading from the laws of
motion for the fields in the micro-periodic structure to the laws of mo-
tion for macro-fields introduced via the local modelling. In the present
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paper we restrict ourselves to the local (constitutive) modeliing. All
considerations are carried out within the range of infinitesimal stx"ainsr.

Notations. Indices i, J,k run over 1,2,3 while indices a and A run ovei
1,...,nand 1,...,N, respectlvely; summat ion condition holds. For‘ an ar-
bitrary -integrable function f(.) defined a.e. (almost everywhere) on the

region V in R3 we denote

. 1
<f> = v—o-l—v i f(y)\dy

where dy = dyldyzdys.. For every symmetric tensor with components kl 3 we

B8
define k = (li) = (kll’k22'k33'k12’k23'k31)- as an element of R.
Similarly, the N-tuple of symmetric tensors with components K‘:J K‘;-l is

denoted by K = (KJ.....K") where l(A = (l(A ) = (K':l.éz.Kga.K':z.K;a.Kgli.

2. Foundations
Let V& (-1,/2, 1,/2) x (-1,/2, 1,/2) X (-1,/2, 1,/2) be a representa-
tive volume element (r.v.e) of the micro-periodic bedy, which is referred
to the cartesian “"micro"-coordinate system Oylyzya. It is assumed that V
is occupled by the heterogeneous, nonelastic material, governed by the.:
constitutive relations the general form of which can be wr'it_tgn down as:

§y) € Fly; o(y), o(y)), forameiyeV, . (@1

where e(y) = (e, ,(y)), oly) = (o (y))," oly) = (o J(y)) stand for the
constitutive strain rates, stresses and stress rates, respectively, and
vhere Fly; o, o) for every o, o stands for a certaln closed and convex
(possibly empty) set in the strain rate space R°. It can _be observed
that elast.lc-idea.l plastic materials belong to the class of materlals ob-
tained via a specification of F(y;.).

Let on 8V be given the stress boundary conditions

o'u(y) nJ(y) = TU J(y) for a.e. y € 8V, r | (2.?)
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where n(y) is a unit normal to 9V at y and TiJ are components of 3x3 sym-
metric matrix called mecrostresses. The principle of virtual work for
r.v.e. will be postulated in the form:

5 o-u(y)v“.d)(y)dy -85 TiJnJ(y)vi(y)da(y). (2.3)

which is assumed to hold for every vi( ) such that
3 x a
.vi(.y) 61 ¢ ‘15",) + EIJ"J + h&(y)qi » Y e Y, (2.4)

a
Me 61, €, " -eJi. EU EJi' q, are arbitrary constants and ha( )
are given a priorl sufficiently regular displacement shape functions de-
fined such that

<ha > =0, ha(y'.) 20 for a.e.y € 8V.

» 1
It means that the velocity field u( ) defined on V 1is constrained by
means of the formula

. .

- - ' “
§i(y) = 61 +. einJ + EinJ + ha(y) q;

z » . . -1 - - 8
for some -61, eu_- *Ji' EIJ EJi' q T Hence

. - S T
Uy, p@ =Eyth 19y L
is the kinematical strain rate field in the r.v.e. For the particulars
the reader is referred to Wozniak (1887).

Now assume that independently of the strain rate constrains (2.5) we
also introduce the stress constrains given by

A
Q'U(y) = q i.jkl(yl ,-Akl v » _ (2.8)

: : ' “A g
where EAkl o EAIk are arbitrary constants and 7 iJkl( ) =9 kliJ( )
are sufficiently regular stress shape functions defined a.e. on V, sym-
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metric with respect to (i,J) and (k,1) which specify the constraints.
Eq. (2.6) imply the stress rate constraints

. A A '
ﬁfw-plﬁﬁw.&l. .7

The realization of the introduced stress constraints is assumed to be
ideal, i.e., the condition

.'l,‘ (u“.J)(y) - e-U(y)? tu(y) dy =0, : 5 : (2.8)

holds for every. 1:”( ‘ } such that
s 3 . ; _ _
tu(y)- =7 lel(y) EAkl , | (2.9

for arbitrary T, = . 1t has to be emphasized that for the stress
constraints the constltutl\.re stralin rates elJ(y) do not coincide with the
kinematical strain rates u“'J)(y), cf. Wozniak (1984). ,

Eqs. (2.1)-(2.9) where the multifunction F(y;.) and the shape func-
tions ba(. ), 'y (.
tions of the proposed macro-modelling method. Constants EIJ' qal, EAkl"
tAkl will be called the macro-constitutive quantities and Egs.(2.5),
(2.6) represent what can be called macro-micro localization conditions

(cf.Suquet (1885)).

) are assumed to be known, represent the founda-

3.1<Re.sults
In the sequel, for the sake of simplicity, we shall assume that the

‘isplacement and stress shape functions satisfy the extra conditions

A

< 1 k1 ha,J> =0, ' (3.1)

Moreover, we shall Introduce the following macro-quantities
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AA .a'wkl w e (3.2)
and we denote A" = (A7), l-‘orevery}:m(zl 2").“2-(21 2")

we define a set {possibly empty)

‘ o N BN A _ A
e (LY =m(a (8%,...,87) € R:A = <n 1 %15

) A e
o(y) € Fly; (3 Uny;‘ua. " _leltAkl)) pol (3.3)

for a.e. y € V},

From Egs.(2.1)-(2.9) under condition (3 1) and using (3.2) we derive
the system of relations
P T

T A :
(3 iJkl>2‘Akl' g™ < l,jkl>zAkl'

A o SR
A7, =< i,jkl>E‘iJ 5 (3.4)
5

between the introduced macro-quantities. Moreover, taking into account
(2.1), (3.2) and (3.3) after some calculations, we arrive at

Ae®l}), - v : (3.5)

A= (a%,..,"). 1t can be also easily shown that

TysEry = klAAkl = <oy Uy g )
Egs.(3.4), (3.5) represent the main result of the proposed approach. Let
us observe that Egs.(3.4) are independent of material properties and in-
terrelate the macro-stress '1‘1 Jmacro-stress rates '1‘1 3 and macro-strain
rates E ; with the macro-quanities P B0 84, hich can be called
the partial macro-stresses, partial macro-stress rates and partial macro-
strain rates, respectively. Eqgs.(3.5) constitute the macro-description
of material properties for micro-periodic éomposltes; it interrelates pa-
rtial macro-strain rates with partial macro-stresses and partial macro-

stress rgtes. Hence Eqs (3.4), (3.5) are macro-constitutive relations of
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this composite, treated as the interrelations between TIJ' i.iJ and !'-:U.
At last Eqs.(3.6) represents the Hill’'s macro-homogenity condition (cf.
Suquet (1985)) which is a consequence of the proposed modelling.

It has to be emphasized that due to the condition (3.1) the macro-
parameters qa'l do not enter the macro-relations (3.4), (3.5). These pa-
rameters can be used in order to minimize, for emp_le. the norm of the
strain rate incompatibility Iu'“.J)( ) - elJ( )1 and/or the norm of
the reaction forces due to the kinematical constraints (2.4); this pro-
blem will be treated separately. ;

. MIQ %

The general theory outlined in Secs.2,3 will be how illustrated by the
example of the plane strain in the elastic-ideal plastic isotropic micro-
periodic fibre reinformed composite. The cross section of the r.v.e. is
represented by a rectangular (-1,/2,1,/2) x (-1,/2, 12/2) on the plane 0
Yq¥ae with the rectangular t“lbr‘e cross section (-a1/2.'a1/2) x
_ -a2/2 a2/2) Setting E' =a, /l oa=1,2 we shall assume that £1 s 1 and
€2 << 1, if.e., that the- flbres have a form-of rod-like thln plates. Under
these considerations the stress rate constraints (2. 7)in the first appro-

ximation can be postulated in the forn
1 2
o) = n uu(’)tlu . uu(y)zzu'

lzai(y)tlz-x"_v e T s (4.1)

1
cRW)snRQW)2m+n
. 1 1
00 (¥) = 0 (VIE o

with ' () = 0’0 () m 172, 2’y (y) =1, F'p, = 'y and vhere

7'11111( )._ ”22111( ) are clmncter‘l.stlc i‘u_nétlon of the sets

V1 s (-11/2.11/2) p 3 (-a2/2.a2/2) and V2 EV\ V1 , respectively, By vir-

tuc of the symmetry conditions we also have nlzuz(y) = "12121(") = 1/2;
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all components : nAi Jkl not mentioned above are equal to zero.

Setting L8 E'io. L, By, from Eq.(3.4) ve get now
eztlu" “'52’2'211'
= § _ " andi W
To=L, '

Moreover from the known plane strain assunptfon for elastic-plastic ma-
terials we also obtain Tyy = Tqp =0 and

Ligd, » a-e)ff + B0 ' (4.3)

For a.e. y € V we define the set I:y in Ra setting:

. |
kys{o € R oy, (-0, (y))4ate ()2~ (y) = 0} (4.4)

The constitutive rélations (2.1) for the elastic-ideal plastic materials
(with Huber-Mises-Hencky yield condition) take the well known fora

2 ) 3 Aly) :
) * B TR

(y) ('I'.'

iJ iJ

iJ (y)»]'SO; teky and o€ k.. (4.5)

y
In the seqinl we define 171D P =T ek AT }(Elu.izu.}':n.f:‘z),

1 2
A-(A 11’ 11 A22 Alz) A-(A 118 11080 Alz) and we introduce the scalar

product in R® of the form: AT ® Aln g * A 2{; AR A S

Let us assume that k, > “z and introduce the set K in R® given by

x-(::en.(;:'u +4;,2 50
AP, - };&)2 + 4;;212 - uzz 20} .

s (4.6)
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Moreover define:

+ - Ap +SA
1 ez“"‘x’ti}?%%@ * 55 m

"
[}

: | n,
i:" ASley) Tl ) ' 4% wlﬁrlm o
i +3 :

u-ez) ;‘%“%2-% 5 v -' @
2. - (1-g,) W”aﬂ%ﬁ? o
' R 1.5152 i

Gt m

g

and ; :
Al' 0, Bl.' o
PO L T .
Bl' 32. AIMZ‘ 0 (4.8)
0, 0, 0, c

Under foregoing denotations it can be shown that the constltutlve rela-
tions (3.5) lead to ; ¥

Ae=Abenr, g Ty T R R (4.9)

4

where A = (A 11' 11 A22 A12) is an arbitrary vector in R™ that satis-

fles the condition
A (E-Dso, Terx andfek. © (4.10)

From (4.9), (4.10), we conclude that the general macro-equations (3.5)
are now specified to the form:

Ae LD, LD =AL+38 ind, (), (4.11)

Lo O
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| G ‘ G ks 1,2
which hes to hold togther with Eqs.(4.2) and with & = (A;,.K0,.4,).8,,)=

= (Ez E 1.(1-€2)!-:11 Ezz 512)
. The foregoing example has only an 11llustrative meaning but can be a basis
. for more detailed analysis which will be given separately

S. Final n-rks

g ‘In this paper we have sketcmd only certain aspects of the local (con-
"stitutive) modelling for non-elastic composite periodic materials with
- the constitutive law of the form given by multyequation (2.1). For the
sake of simplicity we have also introduced the extra condition (3.1) by
means of which only stress constraints (2.6) were involved in. the resul-
ting macro-constitutive relations (3.4), (3.5). More general line of the
approach to the macro-modelling of composites involving cons.t.raints both
for strains and stresses will be given in forthcoming papers. ' s 7
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Summary

O MODELOWANIU KONSTYTUTYWNYM SPREZYSTO-PLASTYCZNYCH
MIKRO-PERIODYCZNYCH MATERIALOW

W pracy zaproponowano metode modelowania lokalnego dla sprezysto-
plastycznych mikroperiodycznych kompozytow. Wprowadzajac odpowlednie
wiezy kinematyczne oraz naprezeniowe wyprowadzono relacje konstytutywne
pomiedzy wielkosciam] predkosci makro-odksztalcen czastkowych oraz makro-
naprezeniami czastkowymi | ich predkosciami.

Rozwazania 2zostaly zlilustrowane przykladem sprezysto-idealnie pia-‘
stycznego mikro-periodycznego kompozytu.



