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CREEP-LIKE CRACK PROPAGATION IN FIBER REINFORCED
COMPOSITES DUE TO DAMAGE ACCUMULATION PROCESS

MICHAEL P. WNUK (MILWAUKEE)

Introduction

The process of localization and spread of damage ahead of the dominant
matrix crack is viewed as a sequence of nucleation and propagation phases
both of which may be described by use of the internal damage parameter.
This scalar quantity reflects the ratio of the current.'. crack (or pore)
density to 1its saturation, or critical level. It is shown that the
Continuous Damage Mechanics (CDM) approach is useful in modeling a damage
field consisting mainly of the fiber breaks generated ahead of the matrix
crack and clustered around the plane of a prospective fracture, thus
forming the so-called "damage band” embedded within the stress field of
the dominant erack. & o Cutd R
. Descrlpf.ion of. this t.ype of damage applies to the fallure process
‘which follows t‘ornul.a‘tl'on of the “"characteristic damage state” (CDS)
observed .in ‘a number 46!‘_'lult1ph;ase_ materials. -
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Derivation of the Governing Equation
According to the continuous damage mechanics (CDM) view of
fracture, the presence of the dominant crack is always accompanied by a
region of microdefects in which damage i{s being continually built up,
cf. Wnuk (1983) and Wnuk and Kriz (1985). Integration of the Kachanov
law of damage accumulation ~ .
o VvV ' :
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in wvhich w = w(t) is a scalar function describing the intensity of
damage, o5 denotes the stress ashead of the dominant crack while C and »
are material parameters, leads to the following criterion oa fracture
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" This criterion may be verbalized as follows: *... for a collapse of a
material element located at the distance r from a dominant crack tip of
half-length ’'a’ it is necessary that the time integral of v-th power of
the stress at that point attains the critical value nc - (1+u)-]'.'l
Decomposing the 1nte$ral in Eq. (2) into two parts:
t
logl, ‘ g (3)
A o
and identifying the first part, say Q. with the damage generated
during the latent phase of the failure process associated with a
buildup of microdefects while the dominant crack remains stationary, we
obtain ; '
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The first critical time t is defined as the time at which the
material element adjacent to the tip of an initial crack collapses.
This occurs when the integral
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t
o 1 ,
CI a;(ao)dt , az(no) - az(ao.ao) (5)
0 _ ;

attains the critical value, ﬂc. Since the stress az(ao) -

*
KI(:O)Y*/J2xp does not depend on time, the integral (5) equals
C az(ao)tl, and therefore
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Applving the fracture criterion (2) to the second phase of the

t, = (8,/0)

failure process, we can evaluate the amount of damage generated within
the time interval tl £ t' £t. Here, t coincides with the instant at
which the material element located at point P collapses. Now, the
stress distribution Gy varies not only with the distance from the
current crack tip but, also, it is time dependent, since at any fixed
point in space, say P, the stress becomes elevated when the crack front
propagates toward this point. The integral

~

L
a,(t) = ¢| [e%(p,P*)], dt’ (7
2 J b i
1

may be replaéed by an integral with respect to the current: crack length

a :
0,(a) -'Cj a;(a.A') ;%f?; » (8)
; . _
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When the nondimensional crack length X = a/p, and the nondimensional
time 4 = t/ti are introduced, the expression (7) assumes the form

2.4 '
8,00 = [ e vEaA) BB, X - axa (9)

x, x(x’)

in which the geometry, dependent function ¢ is defined as the ratio of
the stress intensity factor for a current crack and that for the
inittal crack, i.e.,

o(x) = K (x)/Ke(x)) - - (10)

The function Y(x,x’) is the familiar nondimensional stress ahead
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of a moving crack, Y(£), in which the distance £ is expressed as t/p* -
l+x-x’', see Fig. 1. Ve note that the rate of crack propagation x
appearing in the expression (9) has to satisfy the governing equation
(13), or (15). '
Next, we eliminate time by replacing it with the time~like
variable, a(t). Replacing dt’ by da'/i(a'), we arrive at the following

"equation of motion for a propagating crack

a ’ .
cf o¥(a,a’) ;%§7; - 0,0, (a) (11)
a
o]

When this equation is differentiated with respect to time, remembering
that d[ )/dt = ad[ )/da, one arrives at

a
Ecj a;(a,a')[da'/é(a')] + Ca;(i,a) - -adnl/da (12)

a
o

Solving for the rate of crack growth gives

: —-Ca¥(a)
2= E_ (13)
24
¢ . aa[ op(a,a )]a(a ry +d0;/da
[o]

which is an integro-differential equation defining the unknown function
a(t). We note that both terms appearing in the denominator of
(7.13)involve not only the stresses az(a,a') and az(a,ao)\but also
their gradients. _

These gradients are always negative; therefore, the entire
expression on the right-hand side of Eq. (13) is positive.

Let us introduce the nondimensional variables

x =a/p, , f = t/tl‘ )

X' =a'fp, , X =8 /p,
in which p, denotes the characteristic structural length (such as
aggregate size), while the critical time tl'is.defined by Eq. (6).
Substitution of (14) into Eq. (13) yields the nondimensional version of

the governing equation, useful in further numerical studies, namely
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Here, tﬁe function &(x) is geometry dependent as indicated by Eq. (10),
while the other two auxiliary functions F, and F, are defined as
follows:

. k4 —1
y(CO Rl () :
F,(x,x') = 4 (°)
1 '{ X, Y9 Jex.x') = lex—x’ e

Fz(x) - Fl(x,xo) , or f(x,xo) - 1+x—x°

These forms were used in generating the curves shown in Fig. 2.
The function Y(r) is obtained from a continuum mechanics or a

-finite element solution to the problem of a crack interacting with its

own damage zone. Let us suppose that this solution is of a form

: K (a) o ST Tty
og(a,a’) = —— [¥(x’)] % ' _ (17)
2tp* r' = p, ta-a’
in which KI denotes the Mode I stress intensity factor associated with

crack of half-length a’. The quantity p  is a characteristic length
parameter, such as the length of the process zone, see Fig. 1, and it
is treated here as an additional material constant. Symbol Y,  denotes
the value of Y(r) at r = p, .. When éhe'current'crack half-length a’
varies between a, and a, Eq. (17) defines the distribution of,the_ngar—
tip stress oy ahead of a crack propagating gradually into its own
damage zone. Although the specific form of the function Y(r) may be
difficult to obtain anglytiéally; it is péssiblé to solve the .~
appropriate boundary value problem-by any of the known numerical ,
methods. For the simplest assumption of a valid LEFM field, the

function Y(r) is given by a familiar |p,/r expression. Curves shown in
Fig. 2 were generated by assuming a double-edge notch crack

configuration (see Fig. 3) and the Jp*/r form for the Y-function. The
K-factor for such crack configuration is given by the expression, cf.
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Three crack growth histories obtained by numerical integration of
9. (13) for the double~edge-notch specimen configuration when

Kachanov’s axponent » equals 0.1, 2.0 and 4.0.
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Fig. 4 R—curves in damaging material as predicted by Eqs.(27-28)Tocal

damage 0 at the material point 1s representsd as a sus of damage
sccumulated in the latent period of fracture development, n1 and
the damage Q, genarated whils the crack front approaches the given
econtrol point P. HNote a pronounced sensitivity of the R~curve
shape to the magnituds of Kachanov’s exponent ».
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‘the K-factors catalog by Tada, Paris and Irwin (1973):

K (a’) = o(t") .l;i"'{(-l - gl)fl/z (1.122 - 0.561 (&) ‘
_ ? : : ; L i _(18)
\ ‘_'_ 2 3! 3 : ’ ‘: 4 oy
- 0.205 (b )+ 0.471 (g-) - 0.190 -(.b ) ]}
Symbol 2b denotes the width of a'conponent, see Fi§;~§;'qhile a(f)
is the stress applied remotely from the crack site.

Resistance Curve in Damaging Materials

If we denote the left-hand side of Eq. (11)'by 02, i.e:.

0,(a_,a) = cra;(a,a') ;—%g—)- a9y
%

in which the stress %5 is defined by the second equation in (2), then
the quantity so defined becomes a measure of damage associated with
crack growth, and, therefore, a measure of an energy absorbed due to
microdefects developed ahead of the dominant crack during the second
phase of fracture involving stable growth of the macroscopic crack.
Therefore, the quantity 02 may be used as a guitable parameter
describing material resistance to'cracking during the early (stable)
stages of fracture development in close analogy to plastic deformation
associated with the ductile fracture process, cf. Wnuk (1981).

In order to obtain an R-curve, 02-- nz(a), we must first ‘
subgtitute expression (13) for the function a -_a(a'), dnd then
evaluate the integral given by Eq. (19). This leads to a rather
lengthy numerical procedure. The final results are illustrated in Fig.
4. Of special interest in this investigation is the lowest curve shown
in Fig. &4, which corresponds to a'Value.of’the Kachanov exponent v
approaching zero. This is a case of fracture occurring in a brittle
material. Despite the apparent conplicated_aigebra, an equation
describing the R-curve when v -+ 0 can be derived in a closed form.
Referring to this case as a "limit case,” we proceed as follows.

First, we onit* the integral appearing in the denominator of Eq.
{15), which, with {'(x‘,xo) - 1+g‘-x°. gives

*Th. vnlihity of such simplification was proven mummerically.



» 1 & °V<‘,)
x(x') « =7 (20)
R # B (1+x‘-xb)y'(1+x'-x°)

Here, a compact notation is introduced, namely

Y€)= Y)Y, . x'= dx/as
(21)

y' - dy/a6 " € = Lixx’

Next, using expression (9) we rewrite Eq. (19) in a nondimensional form

4 4X4
0, (%y,%,) = -an ¥ (x" )y’ (Qax-x" )y~ (1+x'—x )Y (' =x ) —4‘—) (22)
3 3 & (x’
*o
‘It 1s seen now that the geometry dependent function & cancels out. For
v approaching zero, expregsion (22) can be furthar simplified, namely

i y'(l+x’'-x )
- - —e B, oy €
[02]v40 vOc y(1+x'—x°) o 23
x
. b Q
We will attempt to integrate the latter expression in a closed
form. Particularly attractive appears the case of a LEFM field for

which

y(6) = /4%
(24)
y' (€) = -17¢2¢3/
Thus, the integral (23) reduces to
Ml x
I5) =% ) e (25)

x

which is elementary. Now, our R—curve is defined by a logarithmic
function

1, 1]
(@0 -0 + (nzlwo - =% M[l-x sx) + 9 (26)
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This, indeed, is a "universal" geometry independent R-curve, as usually
is the case for an R-curve obtained for quasi-brittle solids. Since
p*(x—x ) represents the increment in crack length, Aa, we may rewrite
Eq. (26) in this way

vid

-0, + 3% sl + M1 @n

(91,0 2

The slope of this curve di/da, is given by

V9]
(42 .-l (28)

g0 U 2Ty e

Px
Equations (27) and (28) were used to construct the curves shown in Fig.
4. The R~curves experimentally obtained for various cementitious
composites resemble very closely the R-curve shown in Fig. 4, cf. Wnuk
et al. (1984). An obvious drawback of all the models developed so far,
including the present one, is their deterministic nature. Further
research aimed at incorporating stochastic features into the

mathematical model of damage accumulation process is underway.

Conclusions

The Kachanov damage accumulation law is modified so that the
effective stress which enters in the damage evolution equation reflects
the elevation of stress due to the presence of a dominant macro-crack.
This, in turn, triggers an interaction process between the damage zoné,
which precedes the crack front, and the crack itself. Coupling between
micro- and macro-defects provides the time dependent mechanism
responsible not only for an accelerated damage accumulation but also
' for the propagation of the macro—crack. Total damage 03 has been
partitioned into the damage 01 accumulated at a given material point
when the macro-crack is not propagating (during the so-called latent
stage of fracture), and 02 which represents the damage build~up due to
an increase in stresses and stress gradients observed at a stationary
control point while the crack front is approaching. The quantity Q has
been evaluated in a closed form for the case 01 >> 02, which is the so-
called "graceful fracture" case.  The opposite situation, when 01 <<

02, corresponding to the "sudden death® type of fracture, requires
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further numerical studies. The diagrams O vs. Aa, shown in Fig, 4,
represent the final outcome of this investigation, namely the
resistance curves in damaging materials.
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