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INVARIANT FORMULATION OF A DISTORTIONAL MODEL OF PLASTIC HARDENING

" TADEUSZ KURTYKA ' (KRAKOW)

1. Introduction

The classical theory of plasticity relies on the description of evolu-
tion of the yleld surface during plastic deformation. There are however
several difficulties connected with the practical application of this
concept. First, because experiments in metal plasticity reveal that this

“evolution is quite complex; the yield surface changes its size, its posi-~
tion in stress space and it also suffers strong distortional changes of
its shape. This latter effect is reflected neither by classical kinema~
tic-isotropic hardening models nor by kinematic-~anisotropic hardening ru-
les restricted to‘quadratic yield conditions, since in experiments it is
observed that subsequent yield surfaces corresponding to complex load hi-
stories are, in general, nonsymmetric. ‘

The second source of difficulties is more fundamental, since both from
theoretical considerations as well as from experiments it follows that
the classical formulation of the theory of plasticity, employing a single
yleld surface, may not be sufficient or at least iconvenient for the des-
cription of plastic hardening under variable loading conditions, particu-
larly in the case of nonlinearly hardening materials. This is due to the
fact that the distribution of generalized plastic hardening modulus in
the stress space is, in general, discontinous. This may be accounted for
by introducing, apart from the yield surface, certain additional surfaces
(loading surfaces), separating the regions in the stress space with dif-
ferent laws of variation of hardening parameters. Such approach is used
in various multi-surface hardening theories (e.g. Mroz (1967), Dafalias
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and Popov (1975)). It seems that it should also be applied in the theo-
ries of plasticity which make no use of the concept of yield surface.
In the multi-surface formulations simplified assumptions are,uSually
" made with regard to transformations of loading surfaces in the course of
plastic deformation. Most frequently the kinematic-isotropic model is
used here. However, from experiments it turns out again that loading
surfapes undergo transformations similar to that displayed by yield sur-~
faces ahdgalso in this case essential distortions of these surfaces may
be observed.

" The above remarks Fay be concluded by saying that the description of
distortional changes of yleld surfaces, reflecting more closely experi-
mental findings, 1s necessary for a realistic description of hardening
within any of the approaches mentioned. Some descriptons of distortional
plastic hardening have already been proposed (e.g. Willlams and Svensson
(1971), Yoshida et al. (1978), Ortiz and Popov (1983), Watanabe (1987)).

The present paper is devoted to a further development of the concept
bf(geometrlc description of distortional plastic hardening, first propos-
ed by Zyczkowski and Kurtyka (1984) and then discussed in subsequent pa-
pers (Kurtyka and Zyczkowski (1985), Kurtyka (1988), Zyczkowski and Kur-
. tyka (1989)). : :

»

2. Aim of the uork; notations and basic relations ~

- The papéf is concerned with the apalysis of some invariant aspects of
distortional models of plastic hardening. The main attention is paid to
~the study of the distortional model given by Kurtyka and 2yczkowski
' (1985). The results of the paper apply, to some eXtent,‘also to other di-
 ,stort1ona1 mgdels, as well as to kinematic- énisotropic hardening rules
with quadratic yleld conditions (e.g. Baltov and Sawczuk (1965).

: f._The main purpose of the work is to formulate invariant forms of sub-
Sequent yfeld conditions for the hardening models considered. Derivation
‘'of the invariant forms is primarily based on the analysis of geometry of
subsequent yleld sqrfaces. which is performed with the use of representa-
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tions of yleld conditions in a five-dimensional deviatoric vectorial
.stress space (Ilyushin (1963).

Such a space is adéqudte for the analysis of the hardening models con-
sidered here, as they all describe pressure-insensitive materials, with
initial and subsequent yield conditions expressible in teris of deviato-
ric parts of appropriate tensors. A further restriction is imposed by as-
suming that these models describe materials conforming to the Ilyushin
postulate of isotropy (Ilyushin (1963)), which is equivalent with neglec-
ting the influence of third deviatoric invariants of these tensors. The
initial Huber-von Mises yleld condition is thus assumed.

The present analysis of invariant formulations provides a simple way
of deriving tensorial forms of hardening models formulated in the Ilyu-

" shin vectorial stress space (e.g. Yoshida et al. (1978)). Here such ten-
sorial form will be derived for the distortional model considered (Kurty-
ka and Zyczkowski (1985)) which has been given as yet only in vectorial
formulation. ) ' oy

The invariant forms of yleld conditions are derived here in a simple
manner. First, they are expressed in terms of invariants of vectors in
the Ilyushin space and then by invariants of corresponding tensors (de-
viators). Matrix notation is mainly used for the vectorial space and di-
rect notation for the physical space. For the sake of clarity of indical
noiation which is also employed in both spaces, Latin letters are used
for indices referring to physical coordinate system (1,]J,...=1,2,3),
while Greek indices refer to coordinates of the five-dimensional flyushin
stress vector space (a,8,...=1,2,...8). In this space the stress devia-
tor S = {51,) is represented as a stress vector ¢ = ¢ W , where u; are
base vectors of this space and where the components o are defined here
as : -

P e I v3( 5%14 s, »

1 2 11
2 (2.1)

. ﬁsu » O ﬁsz’ o O v‘:?s:n :

The inverse formulae, giving the components of the stress deviator as

. functions of the vectorial components, are :
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(2.2)
- 3% Sa”
All stress-type deviatoric parameters: of y1e1d cond1t1ons will be re-
presented in the stress space (2.1) as vectors in an analogous way. Deri-
vation of invariant foyms of yield conditions will be, however., mainly
based on relations between vectorial and tensorial invariants. The basic
relation here is that one defining the Ilyushin stress and strain spaces,
i.e. a proportionality of the square of the norm of vector to the second
basic deviatoric invariant. For the stresss vector defined by the fOPMUf(
lae (2.1) this relation has the form ' .

= 3 = . 3
IJSIJ = 5 tr _sz.~ . (2-31

le|’= ¢’e = ¢ o = 2s
: aa 2
Due to this relation the Huber-von Mises initial yleld condition is map-

ped in the stress vector space by the hypersphere:

le| = o, =R, o o . (2.4)
Qith the radius Ro equal to the tensile yiéld.stress-cbf _

A set of invariants of vectors includes norms of thesezyectOPS as well
as their scalar products, related_tq mixed invarlants-of corresponding
deviators. For any two stbeés—typé.Vectors x=(x&)‘and~z=(zaf;"with the
corresponding deviators X=(x11} and Z=(zlj}:

T_ —z —2 P
xXz=xz2 =5 xi’zlj.— 2.trnxz : S % (2.5)

The yield conditions of hardening models considered in the present pa-
per can be expressed in terms of invariants of the type (2.3) and (2.5).
There is nc need for considering other stress invariants, as the mate-
rials studied here are assumed to be pressure-insensitive and the influ-
ence of third invariants is neglected. The parameters of subsequent yield
surfaces will, in general, depend on the history of plastic strain devia-

tor EP={efj}. This problem is not treated here since only yield condi-
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tions at a given stage of plastic deformation are investigated. The space
of plastic strain vector ep=(ea) may be introduced similarly. as the
stress vector space, but the coordinates of the plastic strain vector are
defined in such a way that

o’eP= tr SEp » . : (2.8)

3. The distortional model

The distortional modél proposed by Kurtyka and Zyczkowski(1985) may be
treated as a geometrical generalization of the kinematic-anisotropic har-
dening models with qdadratic yield condition . In tensorial notation the
latter ylield condition is usually written in the form

- % Ao 1
F = Nijkl(slj = au)(skl akl) 2k 0, ; (3.1)

where N = (N‘jkl} is a fourth order tensor of plastic anisotropy,

(a } is the deviatoric translation tensor (or back-stress) and k
stands for the shear yield stress. In the stress space (2.1) this yield
condition is mapped (under certain conditions imposed on the tensor N} by

a hyperellipsoidal surface , described by the quadratic form
F=(r-a'Cl(er-a)-1=0, : (3.2)

with a symmetric matrix C = {C } corresponding to the anisotropy tensor
N (with the components dlvided by the common factor 2k%) and a transla-
tion vector a = {aa} representing the translation deviator .

In the general case of "deviatoric" anisotropy described by the yield
condition (3.1) the tensor N has 15 independent components which in the
vectorial representation (3.2) have simple geometrical interpretation.
These are five, generally distinct eigenvalues Ty of the matrix C, toge-
ther with ten independent components of five mutually orthogonal eigen-
vectors ;; of this matrix. This interpretation is clear when the matrix C

is transformed into the canonical form
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c=q¢"Baq, (3.3)

where Q = (Qaﬁ) is an orthogonal matrix (Q™' = Q".detQ = + 1) containing

the eigenvectors ;

. g it
Q= Y w W, ' (3.4)
-’ (a) "(a)
and where B = (B(aa))'is a diagonal matrix with the eigenvalues 7, being

its non-zero components .
By using the transformation (3.3) the equation of the elliptic surface

(3.2) can be given in the canonical form

)

Az -
zyaza-l-o. (3.5)
=1

where
T = - , 3.6
T Qdﬁ(o'B aB) ( )
are coordinates of the active‘stress vector
T=0¢-a, (3.7)

in the moving reference frame ;& , with the base vectors ;a (Fig.1).

The hyperellipsoid (3.2) may be treated as a surface resulting from a
proJective mapping of five concentric hyperspheres with five (generally
different) radii R, and with proJective directions coinciding with di-
rections of the eigenvectors Yo being also directions of elliptic de-
formation of the yleld surface . Such interpretation of the hyperellip-
soidal surface, depicted in Fig.l.a for a two-dimensional subspace of
the stress space (2.1), has been used for formulating the distortional
model. A non4elllpt1c distortion of the yield surface has been obtained
by allowing the hyperspheres, generating this surface in a similar man-
ner, to be ﬂonicbncentric (Fig.1.b) . The parameters responsible for the
non-elliptic distortion of the yield surface are here five vectors of di-
stortion da' describing displacements of centres of the hyperspheres with
respect to the centre A of the yield surface - the origin of the moving
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Fig.1. Elliptic and distortional model of yield surfaces.

01

In general, the directions of distortional vectors da may be arbitra-

ry, while their lengths must satisfy the conditions

R (3.8)

(@ " MlF=0.
ensuring the locatlion:of the centre A within all the hyperspheres.

Such general distortional model is quite flexible, but it contains a
large number of parameters defining the yield surface. It turns out, how-
ever, that satisfactory and still quite general description of experimen-
tal subsequent yleld surfaces can be achleved by employing a much'simpler
distortional model (cf. Kurtyka and Zyczkowski (1985), Kurtyka (1988)),
namely suph in which the distortional vectors da are coaxlil with the co-
rresponding (i.e. having the same index a) eigenvectors L of elliptic
distortions. This simpified model will be considered in the present pa-
per.

The model is specified by the parameters of the elliptic surface
(3.2) and, additionally, by five .scalar parameters da , since in the sim-

plified case

PN

da = d(a) ¥(a) * (no sum over (a)) . ’ (3.9)



122 oy i T. KuwnnA

As has been shown by Kurtyka and 2yczkowski (1985) the yleld condition
for this model can be written in the form (3.2) and Eqs. (3.3-3.7) are
valid also here, however the matrix B is now a functional matrix; with
the diagonal components ;

-

Y |
(@) “(a) ~ d(a)) " (3.10)

(aar Yo 1Byt a4

where indices in parantheses aré not subject to summation.

4. Invariant forms of yield conditions

4.1. Remarks on quadratic 5arden1ng rules. The distortional model con-,
sidered here is a direct extension of kinematic-anisotropic hardening ru-
les with elliptic ylield conditions. In further developments of this model
it would therefore be reasonable to use some results previously obtained
for the elliptic model, particularly those concerning the tensor of plas-
tic anisotropy N in the yleld condition (3.1). Such approach may result,
however, in restricted forms of the distortional model, since some forms
of the tensor N which have been considered in literature give only quite
restricted description of elliptic deformation of the ylield surface. This
is clearly seen in the case of hardening models based on Baltov-Sawczuk’s
rule (Baltov and Sawczuk (1965)), for which the tensor of plastic aniso-
tropy can be written as a sum of isotropic (I) and anisotropié.(A) ten-

sors;
N L A
i3kl 1)kl 1)kl SES :
1 2 SR L SR e .
Iljkl_ 2 (les_n+ 6118Jk 3 BlJBkl) AR e : (4.1)
A Ap P

1)kt o 1§ kL

this latter being an open product of a certain deviatdr P={plj}. In gene-
ral, it may be-specified by suitable rate equation {c.f. Axelsson {1979))
but in Baltov-Sawczuk’s approach it is directly equal to plastic strain

deviator EP, A° is a scalar function of plastic strain, & is Kronec-

1)
ker’s delta.
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Such a method of constructing the anisotropy tensor A results in a ve-
ry simplified elliptic deformation. This is easily seen when the in-
variant form of Baltow-Sawczuk’s yleld condition

tr(s -~ a)® + A tr’[(S - a)E®] - 2= 0 , (a.2)
is transformed into a vectorial invariant form. In view of Egs. (2.3),
(2.5) and (2.6) this latter is given by the equation

; 2
e - a]2 + g A [(f - n)Tep] -o=0. (4.3)
: ]
The scalar product in the square bracket may.be rewritten as
(o - a)fe® = ¢ - a| |e] cos 8, (4.4)

where 8 is the angle between the active stress vector (¢ - a) and the
plastic strain vector eF. Eq. (4.3) can then be presented in the form

5T r T Bigo me g
jJo - a]® (1 + 3 A°|e | cos®® ) o =0. _ (4.5)

This equation describes a hyperellipsoid which is rotationally sym-
metric with respect to the direction of the plastic strain vector. Ellip-
tic deformation of the yield surface occurs only in this direction, while
in the subspace orthogonal to the vector e’

hypersphere. In this case four eigenvalues of the matrix C in Eq. (3.2)

the yleld surface remains a

are equal to each other and only one eigenvector, colnciding with the di-
rection of the vector e®, is distingulshéd. This result is essential for
our considerations as it shows that a general tensor of anisotropy N (for
the class of materials éonsidered here) cannot be defined in this way.
Such a general tensor should be expressible in terms of five linearly in-
dependent tensors (deviators), defining five linearly independent direc-
tions of distortion - eigenvectors of the quadratic form, together with
five different scalar functions for its five, generally different, eigen-
values.

Such representation of the tensor of plastic anisotropy for kinematic-
anisotropic hardening can be revealed by transforming the general quadra-
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tic form (3.2) “"back" to physical coordinates. However, we shall perform
this transformation at once for the distortional model and the elliptic

- model will result as a special case.

4.2. Invariant form of the distortional yield condition.  The simplest
" derivation of the invariant form of yield condition foh the distortional
model is obtained by starting from the canonical form (3.5), with 7(a)
glven by Eq. (3.10). For that it should first be noted that the coordina-
tes T of the active stress vector are themselves invariants, as they can

be writ en as the scalar products

T, .- (e - a) Vi { ; (4.5)

The scalar distortional parameters d ) are also invariants - scalar pro-

ducts of the distortional vectors d o and of the vectors of distortional

directions w 3

- a -~

T -
= dia) ¥(a) Y(

) Y )

@) = da_ (no sum over_(a)); (4.86)

The remalning parameters in Eq. (3.10) - the radii R(a) - are lnvariants
as well. In view of that the canonical form of the distortional yield

condition can be expressed in terms of vectorial invariants as follows

5 - 2 e
azlv(a) [(’ - a) H(a)] bz 1 = 0 » : : ,,_\_(4-7)

- 2 _ T2 TR A
where 7(a)' ( R(a) + 2d(a)(¢ a) Yia) d(a)) g (4.8)

with no sum over («) in (4.8). : )

Now, this yield condition may be rewritten with the use of tensorial
invariants. However, first it is necessary to give a tensorial interpre-
tation of the directional vectors ;( ) In physical space these vectors
are represented by a set of five non-dlmensional deviators which will be

~ denoted by H( ) (w }. Since the vectors "(a) are orthonormal,

(a)iy

A P

Y H(B)= saﬂ 3 (4.9)
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where 5«5 is Kronecker’s delta in Ilyushin’s coordinates, thus, in view
of Eq. (2.5), the directional deviators must also satisfy the following
“orthonormality conditions”

- - )
trll( W —5'5

«) @) , for a,p=1,2,...5 . (4.10)

off

By employing again the relation (2.5), the invariants (4.5) can now be
expressed as tensorial invariants of the active stress deviator (S - a)
and of the directional deviators “(a):

e % Te _ 3 2 o
T (o0 - a) ¥ =3 tr[(S a)H(a)] . (4.11)

Substitution of these invariants into Eq. (23) ;ields the final invariant
form of yield condition for the distortional model

g 2 S %

- azi"“’ tr [(s - a)H(a)] -1=0 , (4.12)
wheré 1(a)are invérlani functions of the active stress deviator. They are

given by

= -1
£ 2, 3 2
() { R(a) *+ 3d tr [(S a)H(a)] d(a)} " (4.13)

with no sum over (a) in (4.13).

The scalar parameters.R(u) and d(a) could also be expressed in terms
of quantities defined in physical space, as they are related to yield
stresses under certain specified loading conditions, however, in Eq.
(4.13) they are retained in the form of parameters defined in the vector-
ial stress space, where they have clear geometrical interpretation.

The above invariant form of the distortional yield condition (4.12,
4.13) may be easily written in indicial notation, formally identical to
that of the quadratic yield condition (3.1),namely

F= Ltlkl( s!j~ a‘j) (vsk‘- akl) -1=0. (4.14)

However here the tensor L=(Lljkl)' corresponding to the tensor N of plas-

tic anisotropy in Eq. (3.1), will not be a constant tensor, but a certain
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invariant tensorial function of the active stress deviator. The form of
these function can be obtained directly from Eq. (4.12) by rewriting the -
squares of the invariants in indicial notation, where from L

S
9 ~ "
L=3 azl’(a)“'(a)' Vea)) _
(4.15)

5 .
9 -~ -~
Lun': 3 azl"(cg)(f'(g)ljw(a)xn)'
while T()®re expressed now as
. 2 | - 21!
T {R(a) * 3 5147 24y Yan, T d(a)} ' A8

again without summation over (a) in (4. 16).

4.3 Discussion of special cases. The formulae (4.15) and (4.186) are
the most general forms of the tensor of plastic anis.o‘tropy for the dis-
tortional model considered, corresponding to general type of distortion,
when all parameters da are different from zero. In this case the distor-
tional yield surfaces do not exhibit any symmetry in the vectorial stress
space. Should some da vanish the;i the ylield surface deformations in cer-
tain directions will be restricted to symmetrical elliptic deformations.

The formulae (4.15) and (4.16) also give the general.form of the ten-
sor of plastic anisotropy for- the kinematic-anisotropic hardening models
with elliptic yield conditions. This case 1is obtained by setting tn
(4.16) all da= 0, which results in L being now a constant tensor. Compar-
ing this tensor with the tensor of anisotropy given by Baltov-Sawczuk
(Eg. (4.1)) it is seen that, apart from non-essential differences con-
nected with defining the tensor L as a tensor -having the dimension of one
over stress squared (with N being non-dimensional), the main dlfrference
is that L is constructed from five open 'products of five directional de-
viators (instead of one as in (4.1)) fulfilling the ortogonality condi-
tions (4. 10_). multiplied by five different scalar functions (instead of
one function A in (4.1)). The second difference is that the tensor L,
unlike N, 'does not: contain any isot;ropid fourth-order tensor. In fact
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this tensor is not necessary if the elliptic deformation is general, i.e.
.if all Ra are different, and all Ga are specified. This difference is al-~
so reflected by the absence of the isotropic invariant tr(s - n)? of the
active stress deviator in the general invariant form (Eqs. (4.12,4.13)),
vwhereas it apears in the invariant. form of Baltov-Sawczuk’'s model (Eq.
(4.2)). This invariant is redundant in the general representﬁtion but it
may appear in the invariant foris of yleld conditlons corresponding to
restricted cases of both ellliptic and non-eliiptic deformation. Such’
.forns may be usefull for studying simplified models of plastic hardening
and they can be derived from the general form (4.12).
For this aim let us assume that from the set of five scalar parameters
R, (a=1,2,... 5) only some are different, say R, for a=1,...B < 4, and
the remaining ones are equal to each other; RaE Ro for a« = B+1,..5, then
the yield condition (4.12) may be written in the form

»

: s e ; |
7 trz[(S - a)¥W ] + —15 Z trz[(s - a)w(a,] - g =0, (4.17)

£ (@) {a) Ro a=B+1

Qhere Ga for @ = B+1,...5 are now unspecified (but still fulfilling the
conditions (4.10)). The above form is valid also In the case of non-~
elliptic distortlon, provided that the parameters da in Eq. (4.13) are
vanishing for a = B+1,...5. Now, making use of therfollowing identity

/

= :
2 2 ke VS
azltr [(s - a)H(a)] =Str(s-a)”, (4.18)

we may express the second sum in Eq. (4.17) by the invariants appearing
in the first sum. After some rearrangements the yleld condition may be
written in the form

i 2_ 2 £ =y _ 22
tr(s - a)” + 5 azl(r(a)Ro 1) tr [(S ‘)"(a)] 3 Ro o, (4.19)

thch is analogous to the Baltov-Sawczuk hardening rule, but not restric-
ted to elliptic deformation and not only to one direction of that defor-

mation. :
By setting B=1 in Eq. (4.19), i.e. by specyfing only one direction of
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distortion, one obtains the most simple distortional model of the kind
considered here, being a distortional counterpart of Baltov-Sawczuk's
hardening model. The model of this type ls represented in the Ilyushin
vectorial stress space by a surface which is rotationally'symmetﬁic with
respect to the direction.of distortion.

Even in this simple form the model accounts for most effects observed
in experiments ( such as Bauschinger’'s effect, cross effect, translation,
rotation and distortgon of the yleld surface ) and it may be used as a
starting point for constructing effective forms of evolution laws for pa-
rameters involved in the description. The set of parameters contains in
this case two deviatoric tensors (Gl and a) and three scalar parameters:
Rl, Ro, dx' The restricted invariant form (4.138) may -also be presented
in tensorial notation which can be obtalned either from Eq. (4.19) or by
a direct transformation of the tensor L given by Eq. (4.15). Decomposing
this tensor in a similar manner as in Eq. (4.17) into two parts and using

the identity

(4.20)

L[ e 19,
®
"
Wi
-

o«

which holds for any set of five deviators "a fulfilling'the conditions

‘{4.10), one obtains in the restricted case the tensor L in the form
3 3 2 " -
L= — | I + = ﬁ (y R°- 1) (W eV )] , (4.21)
ZR: 2 o @ e (o) (a) )

now containing the isotropic fourth order tensor I given by Eq. (4.1).

5. Concluding remarks

In the above derivation of invariant forms of the distortional model,
which ére also valid as general forms for elliptic yleld criteria, geo-
metrical invariants of the yield surface have been employed. From the
analysis presented here it follows that the general case of deviatoric

anisotropy considered here may be described by a set of five invariants;
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tr(S—a)U(“),
tional hardening rules different from the proposed distortional model. In

a = 1,2..5. Such invariants may be used for deriving distor-

this respect it is worth-pointing out that this set of invariants may be
replaced by the equivalent set of five invariants

1
[ tr(s - a)z]a ! cos'® a=1,2,3,4, (5.1)

which can be obtained from the set of basic invariants by representing
.these invariants as scalar products of corresponding vectors.The in-
variants cos ea are defined by the relations
(c-a)fw = fo v (5.2)

: () )

5 1
= g o - af |G(a)| cos ea = [ % tr(s - 3)2]2 cos 8¢ p

tr(S ~ a) "(a) =

Wi

where in view of the condition (4.18)
S £ ;
Zcos 8, =1, (5.3)
a=1

and only four of these invariants are independent.

Invariants of .this type have been employed by Ortiz and Popov (1983)
who proposed a rather generally formulated idea of describing distortio-
nal effects with the use of trigonometric series of such invariants. The
effective form has been given by the authors only for the case of simple
distortion, with only one distortional deviator Ga being specified. Ano-
ther proposal of this type, also restricted to simple distortion, is due
to Yoshida et al. (1978). Their model can be interpreted (and also gene-
ralized) in terms of the invariants considered here.

Concluding the present paper it is worth to add two remarks :

Ai.Xn the further development of the concept of distortional plastic har-
dening the most important problem is to specify the tensorial parame-
ters Ga' responsible for anisotropicvchanges of the yleld surface. A-
part from experimental efforts in this direction, one possible way of
investigations is connected with Ilyushin’s idea, based on the use of
geometrical invariants of strain traJectorj'ln vectorial representation
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_of plastic processes. : ;
.ZLThe geometrical invariants of the yleld surface, embloyed in the pre-

" sent approach, provide a certain measure of aquired plastic anisotropy
of a material. Indeed, as pointed out by Boehler (1985), the type of
anisotropy can be preclsely defined, whereas there 'is no precise defi-
nition of the degree of anisotropy and this may be mainly judged thro-
ugh anisotropic changes of yield surfaces. In this respect it may the-
refore be Interesting to investigate the type of anisotropy described
by particular distortional models, and to relate the present results
with the methods of description of plastic anisotropy employed within

the theory of tensor function representations.
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Summary

 NIEZMIENNICZE SFORMULOWANIE DYSTORSYJNEGO MODELU
WZMOCNIENIA PLASTYCZNEGO

W pracy omowiono niezmiennicze postacie zapisu warunku plastycznosci
geometrycznego modelu wzmocnienia plastycznego (Kurtyka, Zyczkowski
1985). Podano zapis tego warunku przy uzycliu niezmiennikow odpowladajacych
. wektorowej reprezentacji procesow plastycznych Iliuszina i na tej podsta-

wie sformulowano rownowazny zapis poprzez niezmienniki tensorowe.



