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1. Introduction

The magnetoelastic interaction effects are particularly significant in shell-like- con-
structions. However, the electrodynamic forces caused by initial magnetostatic field do
not violate the validity of the Kirchhoff hypothesis. In a case of a perfectly conductible
shell the Kirchhoff hypothesis is a sufficient approximation for the Lorentz body force
to be expressed entirely in terms of the midsurface deflection by means of the relation-
ships of electrodynamics (cf. [1]). It should be stated that in this case, i.e., when the con-
ductivity increases to infinity, the magnetoélasticity equations do not ensure the vanishing
of the normal component of the current density vector at the boundary bordered on a
vacuum. Upon the neglect of the perturbed electric field in beams of finite conductivity
Dunkin, Eringen [2] and Suhubi [3] obtained the simplified equation of the bending and
twisting vibration, respectively, expressed in terms of dlsplacement For the shells made
of a real conductor Ambartsuinian, Baghdasarian and ‘Belubekian [4] supplemented the
Kirchhoff hypothesis, assuming that the tangent components of the perturbed electric
field vector and the normal component of the perturbed magnetic field vector are constant
across the shell thickness. As a consequence, some of Maxwell’s equations in scalar form
are not used during the derivation of the differential governing equations of the shell
theory [5] (Apart from a case of spherical shell in radial magnetostatic field the equations
simplified with the aid of so-called Vlasov’s engineering theory being considered). It was
proved in [6] that the above electromagnetic restrictions are too strong for plates so far
as a general case of initial magnetostatic field is concerned. It should be apparent that
these restrictions are too strong for shells, too. Note that the electromagnetic quantities
determined in the same way as in [1] are not found to be constant across the shell thickness.

In the present paper we apply the modified hypothesis of thin magnetoelastic plates
and shells (see [6]) as the simplest correction removing the shortcommgs caused by the
former hypothesis.

[N

2. Basic equations of linear magnetoelasticity

We shall deal with an elastic, diama‘éﬁétic or paramagnetic, homogenous and isotropic
solid. The initial magnetostatic field, being described in a body region by the equations:
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rotB=0, divB=20, €))

. where B is the magnetostatic induction vector, causes no body force in the state of rest.

The motion of a particle with respect to initial frame may be described by the displacement

vector w. In the linear theory all the terms containing more than one secondary quantity,

i.e., quantity due to motion of a body, ought to be omitted. Thus, in the quasi-stationary
case (cf. [7]) the perturbed electromagnetic field satisfies the following equations:

rote+b =0, roth= B, 2)
diviee— (€ — €)Bxv] =p,, divh =20,

in which the vectors b, e and j denote the perturbed magnetic field induction, the per-
turbed electric field intensity and the current density, respectively; u, € and €, the magne-
tic permeability of solid (equal with permeability of vacuum), the electric permittivity
of solid and permittivity of vacuum, respectively; g, denotes the charge density; v the
velocity vector (v = w); dot represents differentiation with respect to time, r. The di-
vergence of (2),,, yieds, respectively,

divb =0, divj =0. )
The electromagnetic constitutive equation is given by:
j = AMe—Bxv), ©)
where 1 is the conductivity. In a case of a perfect conduction (4) ought to be replaced by:
e = Bxv, )
Making use of (5), or (4) and (3),, we simplify (2), in view of (1), as follows:
0. = — €oB rotwv. 6)

At the bounding surface of the body considered we must fulfil the discontinuity condi-
tions:

[e=Bxv]xn =20, [%]xu= —j?, %)

[ee—(c—€)Bxv]ln=¢l, [bln=0, [jln=0,
where jP is the surface current density vector, of the surface-bound charge density, n the
unit normal vector to the external surface of the body; double square brackets mean the
difference in the values outside and inside the solid considered. Surface currents are obser-
ved when one of the media is a perfect conductor (cf. [7]). If the bounding surface of the
body considered is bordered on a vacuum, then (7)s; reduces to:
jn = 0. (®
If the body made of a real conductor borders on a perfect conductor, then with the aid
of (5 and (4) we simplify (7), to:
jxn=70. ’ ©®)
Under the assumption that the only mechanical effect of the electromagnetic field
is the Lorentz force, the stress equation of motion takes the form:

divo+l+q—o%w = 0, (10)
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where the vector product:
=jxB (11)

is the Lorentz body force, ¢ the mechanical body force, o the stress tensor and ¢ the mass
density. Analogously, the kinetic boundary condition may be written down as:

on—S = F, (12)
where the vector: ]
S =j*xB, (13)

describes the surface tractions of electromagnetic origin, the vector F represents the sur-
face load of mechanical origin.

Obviously, the well known geometrical relations remain unchanged by the presence
of the electromagnetic field. Similarly, the mechanical constitutive equation is taken to be
the Hooke’s law.

3. Equations of magnetoelastic shell theory

We shall consider a thin conductible (not perfectly) shell of uniform thickness, the
"lower and upper faces being surrounded by a vacuum, and the edges being bordered on
a perfectly conductible medium. Let &' (i = 1,2, 3) be identified with a set of normal
coordinates in a shell space and its certain neighbourhood, the midsurface being deter-
mined by equation #*> = 0, and u* (x = 1, 2) being the curvature coordinates. Lame’s
coefficients corresponding to a given coordinate system are:

Hy = (1+u*K)A,, H; =1, (14)
where 4, = 4,Wf) and K, = K.(4*) (B = 1,2), K, being the principal curvatures of the

midsurface.
We put the components of the magnetostatic induction vector in the similar form:.

B, = (1-u’n,)By,, (15
where Bo; and %, depend only on %, 7, being of the order K, . Naturally, for plates n; = 0
(cf. [4], [6]). Here and afterwards the vectors indicated by the subscript ,,0” are identical
to their space counterparts evaluated at #® = 0. In [5] the components B, are, in general,
arbitrary functions of #? (for plates too), thereby the complexity of the governing equations
of the shell theory becomes too great, even if shallow shells are concerned.
We adopt the classical assumptions of the Kirchhoff-Love’s theory (also known as
Love’s first approximation). Thus, in particular, we may write:

W = Wou+ W3 %e, W3 = Wp3, (16)
where:
_ Wo,3a
Ha = — A +Kaw0aa (17)
o

are the angles of rotation of the straight lines perpendicular to the midsurface; comma
represents differentiation with respect to the appropriate coordinate.
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Furthermore, we introduce the electromagnetic approximation which corresponds to
that of [6]:
3 _ e )
€y = €oat Tsa’ by = bo3+ Tg, (18)
where eox, bo3, 5. and g depend on uf and ¢, h being the shell thickness. Above electro-
magnetic hypothesis, unlike the former hypothesis in which case s, = 0 and g = 0 (cf.
[4D, is in agreement with (16). Note that in termoelastic study [8] the thickness distribu-
tion of the temperature field is also approximated by a linear formula.

Taking all the foregoing assumptions into account, we formulate the shell theory as
an approximation of the magnetoelasticity theory, in final formulae the terms of the order
hK, being omitted. First, integration of (1) across the shell thickness, i.e., with respect to
©* between the limits —4/2 to #/2, after using (14) and (15), yields:

Bos,a—(Ka—na)Aa-Boa = 0.’ (Al Bm),z—(AzBoz).l = 0;

19)
(A2BO.1).1.+(A1302),2+(K1 +K;—n3)A; A, Bos = 0. (

From (4), and the use of (15), (16) and (18),, the tangent components of the current
density vector at any point of the shell region and at any point of the midsurface read,
respectively |

.] "JOa‘*'usl{ +(_I)V[-BOS(XV_USw07)+777307w03]:| (20)
Joa = A€o+ (—1)*(Boy, Wo3 ~Bos Wop)l,

where the notation r = 3 —a (cf. [9]) is employed. Introducing (20), and (18), to the first
two scalar equations of (2),, and integrating these equations across the shell thickness, we
obtain:

. -1 |
Joa = (‘7)“(_— b03 W _h‘ b7)7 (21)
where;
by = by—by, bs=bi+bz, (22)
the quantities indicated by a superscripts “+” being referred to the surfaces u® = +h/2.
Applying to the same scalar equations of (2), the integral operator:

hi2 —hf2
fdu ——(f du3+f du® )

we find:

1 ud h

3\2 1
b 3[1-—4{-‘;,—) ]{A—g,r<—1>“u(zs,7+hKajoV)+

(23)
—pAh[Bos(a—"3 Woa) + N Boa Wos]} .
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The third scalar equation deduced from (2), and evaluated at u® = 4 h/2, on account
of (8), i.e.,, j§ =0, leads to:

(Azb;),l_(Al bf),z = (AZbSZ).l_(Al bsi),z = 0. (24)
Substituting (23) into the third scalar equation of (2),, and making use of (24), we arrive
at: . .
w\?
= |- f =
where: o
: Ah? . . . o
Joz = ;iAz [303(7(2—7}3 Wo2) + 12 Boz Wo3 + K, QL]} +
8A1A2 }‘ .1
_ (26)
—'thAB('— ﬁ))+Bv'v—Kj°—2 +ah
8-/41\;12- 1] Po3 (X1 — M3 Wor) T 71 Do1 Wos 1 S g’
the unknown s being defined by;
1
s = A, A, [(4251).1 +(A152) 2] (27)
On comparing of (2'0)2 and (21) we have:
_ : 1 (b by
€ox = (—1)% [Boson—Bo,ywos - —/;I( 343: —hp)] ' (28)
Putting (4) in the inverted form and using (15), (16), and (25) we obtain:
e3 = Boy Wo2 — Boz Wor +4*(Boy X2 — Bo2 %1) + [ ( ) ] J03 29

Thus, through (18), (20),, (23), (25), and (29) the thickness distribution of the quantities:
e;, b; and j; has been established. Now we proceed to deduce three electromagnetic-equa-
tions expressed entirely in terms of the following unknowns: w;, Jos, bos, & b, b3 and its
derivates.

Integration of (2), 4 across the shell thickness, after use of (14), (15), (16), (18), (23),
and (29), gives, rspectively:

1/ @ Jox . . \
(l+,ul P 3t)l —1) (ﬁ'f'K ; 303(17_773“’07)—77;7307“’03]'*'

bs 1)* 2 o w 1 . i
5t (—“)‘[(K —K)joa— KX ji; ]+ }Ta(BOaWQV_BoVWOa),a'*'

+Bos[,‘.(p—(7}3—Ka)W07]+BOV(7}p—Ka)W03 =0,
o (A2e02).1_(AleOI),2+A1AZI;03+

(KzAzsz) 1= (K A4y 5), . +(K1+K2)A1 281 =0, (30)
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h? h B3 .
(l—ﬁﬁ) g+h(K +K)bos+ 57— 24, 4, [(4. 5% )-1+(A1b§),2]—ll'/1§43w03+
M y y 30
B P[RR RSSO SN | I
AR3 . ) . s
+ ﬁ{Az[(Kl_ns)BOSWOI +771B01 W’03—K1 13—2 -——Tz. }‘1 — 0’

where:

1 Jd [A4, © 0 (A, 0
A Tl =31+ s=l-—==
A A, | ot \ 4, o uwr\ 4, ]|’

d A, 0 0 A4, 0
[au—l(”oa 7%) * 797(” Aia:ﬂ)]-
Multiplying (30), by 4,,, next taking the partial derivate with respect to «*, and com-

bining both results, i.e., for « = 1 and « = 2, in view of (26) and (27) we arrive at the first
desired equation:

Ag =

mr‘

7

h? a\]. h? . . By, ¢
[1_1_2(4—1‘;*5)].]034‘1? A(Boz Woy — Boy Woz) + (Ky — Kz)( AOIZ F

By ). An? i
+ Ao; az)wos] m{[(Kl"'7]2)A2'Bi02],1_[(Kz_nl)A1B01]'2}w03+

. An? ) '
+ m{[(Kl +Ky—13) Ay Boz Woyl, 2 — [(Ky + Ky ~13) Ay Bos Woal, 1} + 31)
1422

h—2 (K, —Ky)|b ———b —|(K,—K,)|b —Alb' }—0 é:{
+8yA1A2 1 2){Do3,2 n 02 y 2 )|%03,1 = =01 S = L.

Applying approximations: hA(Kqs,) , < 12eo.,, and hK, g < 12by;, and replacing eg,
by (28), we simplify (30),, to: (

1
(A —uhd— )bos A i [(42567),1+(A4,5%), .1+
2
i (32)
+—F 4,4, [(A2Bo1 Wo3), 1+ (4, Bozwos) 2— (A1 Bo3Wo3),2— (A2 Bo3Woy),1] = 0.

In order to express the terms with s, in (30); by the desired unknowns we return to the
scalar equation (2), corresponding to u’—direction. Integration of this equation with
the weight one across the shell thickness results in:

(A252),1—(4;51),2 = h[(4: K, e0,), 2 — (42 K3 e03),1]1— 4, A, [A(K, +Kz)[503 +£].

With the aid of this above formula, by application of (28) and (21), and under the assump-
. tions: h°K, Aby; < 12g and h*K, gbosp < 124, A,g equation {(30); becomes:
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3 3

h
2AA

AR3 _ . .
ISA 4, {[(n1—K3) A3 Boy Wo3l, 1 + [(n2— K1) Ay By, Wos3), 2+

+ [(Ky + Kz —03) Ay BosWoy ], + [(Ky + Kz —03) Ay BosWez] 2} = 0

The equations (31) to (33) may be futher transform with the aid of (19). According to (32)
and (33) B; = 0 is the only case in that the unknown g is negligible in comparison with
the unknown bg;.

After using of (14) to (17) from (6) we obtain:

0e = 2 € o(Boy X2 — Bo2 %1 +Bos 5),

[(4259), 1+(A b3),. Hl W A pWo3+ (33)

+

where: N

1
S =-m [(A; wo1),2— (A2 w52) 1],

denotes the angle of in-plane rotation of an infinitezimal midsurface element.
Keeping in mind (10), we supplement the equations of motion of a shell (cf. [9]) by
the terms due to (11), namely: "

(AVNG),G+ (AaNya),V+Aa,yNaV—AV,aN|7+ Aa AV(Kan+pd_ th‘.’Oa +./;z) = 0

(A4501),1+(4,03), 2, — Ay A, (Ky Ny + Ky N, —ps +0hivo; — f3) = 0, (349
(AVMG).Q-I'(A a) +Atx VM AV.GMV_AGAV(Qa—fa+3) = 0’

where:
hi2 hi2
[ haw, fis= [ Las, 35
-2 ~hf2

No, Nop, Qus My and M, are the stress resultants and couple resultants, respectively, p;
the components of the mechanical load per unit area of the midsurface. Introducing (11)
into (35) through (15), (20), (25) and (21), we find:

. b 2
fa o = Bljs (h% —b&)+(— ])a—“hBOVjOS,
1 b b
Sz = ;[Bm( (,)4311 —b')+B02( 022 br)] (36)
fa+3 - 1303 12 [( i _Bo3(Xaz 73 woa)"‘naBOGWOZi:I'-

After some manipulation and simplification, using (30);, (21), (20), and (19), we arrive at:
fa+Kafa+3 ~ ./‘G)

1
3+ H[(A2f4).x+(A1fs).2] X 37N
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B
x fy4 203

h
g+h(K + Kp)bos+ 57— (42 5}), + (4, 55) 5]
24, A4, i

The mechanical constitutive equations have the form (cf. [9]):

) h?
Ny = C(eqtve,), Ny, = C(1—-v) 5 + - K, 7}, (39)

Ma, = D(xa+vxa)7 M,, = D(I_‘V)T!

ey
where:
Eh | n
. C= T;‘v—z and D = CW’

denote the stretching and bending stiffness, respectively; ¢,, w, », and 7 being the measures
of strain. The components of the midsurface displacement vector may be introduced into
the formulae (38) by using of the geometrical relations:

1 A
&y = T(WOa,a‘F AG'V w07)+Kaw032 W =W, +w,,
@ v

39
1 Ao, 1. . . (39
A Kot A Xa)s T= *2“(71+72_K1w2‘“K2w1)y

14

Hy =

where:

1 Aa S A,
Wy = A_a'(wop,a_ AVV WOoz)’ Ty = *At(xp,a" ‘Aana),

% being determined by (17).

After expressing the transverse shear forces Q, by means of (34); and making use of
(36) to (39), from (34), ,, we obtain three equations of motion which together with electro-
magnetic equations (31) to (33) may be put in -the form:

Lywoy +Liwo, +L£W03+L:j03 +Libos+Lig+

. _ 40
LB+ LB+ LY+ L°bs =p., (k=1,..,6) ¢ )

whete p, =ps=ps =0 and L8 =L]=LS =13 =L0=L}=L1L%=1L5=L.=
=Ly=L§ =L =L =L%=L]= L8 =0. The nonvanishing differential operators
are not recorded for the sake of brevity. Since the right-h_and sides of (36),, and (37),
unlike in [5], contain no displacement terms, the operators L;; (i,j = 1, 2, 3) are affected
by none component of the magnetostatic induction vector.

On account of extra unknowns: b}, and b5 the six equations (40) must be supplemented
by:

roth = 0, divb =0, 41)

where b = E(x‘, t) denotes the magnetic induction vector in the upper and lower region
of vacuum, coordinates x! being referred to both regions of vacuum and the shell space.
We assume that there exists one-to-one transformation x' = x!(u/) as far as the certain
neighbourhoods of the upper and lower shell faces are concerned. The magnetic induc-
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i tion ;n vacuum regions may be found by solving (41) under the .continuity conditions. (7),
for 4 = +h/2, namely:

1 -
. bQS + “2“8 = b3lus = 2np2 ' 42)

As a shell is made of a real conductor, the upper and lower faces carry no currents; thereby
in view of (7), (with j? = 0) the unknowns (22) are identical to its vacuum counterparts,
ie.: ’

b% = baluw = p2—balus = - hi2
by = balur = 2+ balus = ~pp2-

The set of equations (40) may be reduced, provided. the mmal magnetostatic field
satisfies the restriction By B3 = 0. If B; = 0, then unknowns: g, by and equation (33) may
be set aside. Correspondingly, the second term in Lh.s. of (42) is to omit, for in this case
unknown g is negligible in comparison with unknown by . If B, = 0, then unknown Jo3
and equation (31) may be set aside.

The order of the differential equations-(40) with respect to basic unknowns: wo;; jos,
bos and g is fourteen, therefore the boundary conditions at each edge are seven (four of
mechanical origin and three of electromagnetic origin). In sequel we shall consider the
edge u* = const, The geometrical conditions are the same as in the Kirchhoff-Love’s
theory, namely:

Wo; = Woi» Ao = }f{a-
Above and afterwards the boundary quantities known a priori are indicated by “A
The kinetic conditions may be written down as follows:

hi2

No=Not [ Sedi?,
. —h/2
N hi2
NuptKaMuy = Ny+ KalMoy+ | S, a0,
—h2 ' =

o 2 hj2
2o S
Ous Morr _ gy Move o [ a0y | Sewipap,
= v -hi2 ~h2 P
ior wn o . hJ2
/ ) Ma = M¢+ j SauaduS.
. —hi{2

In accord with (12), (13) and (7),, and under the assumption that the permeability is
continuous, the terms due to electromagnetic surface tractions read:

1 - ;
Sa = 7 [BOV(bV—bV)+B03(b3_b3)]’

S, = B"“ (b,~b,), Ss=

14

Boa

(bs b3).
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In the case considered (perfectly conductible outward medium) the electromagnetic condi- .
tions follow from (9) which for the edge #* = const. is equivalent to:

j3 = 0. jV = 0
Integration of the above equations across the shell thickness, with the aid of (20), (21) and
(25), leads to:

. h
Jos =0, A—bos,a—b& =0,
) (43)

s . . .
(- 1)!7717 = Bo3(Xa—"3Woa) =N Box Wos = 0.

Making use of (43),.,, (30); and (21), we change (43), to:
h 1 1
mg.a——i-bgﬁ' A—V(BOVwoa_BOaWOV).V+ (44)
+ (e —K;) Boa Wo3 + Bos[xa— (13— K;) Woa] = 0.
Note that through (15), (16) and (23), (44) may be put in the form: .

hi2

[ Ba—rotalwx B)ldu® = 0.

—h/2

4. Final remarks

The modification (18) of the electromagnetic hypothesis hitherto applied in the shell
theory consists in the inclusion of the antisymmetrical terms with respect to the thickness
coordinate. This correction results in a full coupling of the differential governing equations
(40). Namely, each one of displacement equations of motion influenced by the magneto-
static field (cf. (36) and (37)) is mutually coupled at least with one (in general with two)
of the electromagnetic equations (31) to (33). Such a coupling does not appear when the
former hypothesis is invoked, i.e., when s, = 0 and g = 0, and as it was proved in [6]
for the probleni of transverse vibrations of a plate, the resulting solutions are false for lack
of this coupling. Note that in magnetoelasticity theory the equation of motion (10) is
. coupled with the Maxwell’s equations (2) in every case of magnetostatic field. In the pre-
sent paper, unlike in [5], all the Maxwell’s equations (2) in scalar form have been used
during the derivation of the equations of the shell theory. The modification (18) involves
an increase both in the number of unknowns and equations. Nonetheless, due to (15)
and the elimination of the tangent components of the perturbed electric field vector the
final equations attain a relatively simple form. The termoelastic effects may be added as
in [8].
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Peswome

MOINPHIHNPOBAHHAA THMIIOTE3A TEOPHMH TOHKHUX MATHHUTOVIIPYTHUX
OBOJIOYEK

H3 ypaBHeHU TEOPHH MaTHHTOYIPYTOCTH BBHIBEJEHbLI YPARBHEHHA KOJIEOAHHIA TOHKUX MPOBONALIHX
00010YeK IPH JOMYIEHNH, YTO TAHTEHIHATBHEIE KOMIIOHEHTH! BEKTOPA HANPAXKEHHOCTH BO30Y)KAaeMOro
NIEKTPHUECKOrO IMOJIST X HOPMAbHAA KOMIIOHEHTA BEKTOPa HANPSIKEHHOCTH BO3DY)XIAEMOro MarHHMT-
HOTO TOJIA W3MEHSTIOTCA JIMHENHO o ToNIuHe 06oouxH. [ToxrBepriieHo, 4To THIIOTEe3a AMBapiyMsiHa-
Baraacapsina-BenyGexsiHa CIIMILIKOM CHIIbHAA B 00LLEM CITyyae MarHHTOCTATHUECKOTO IO,

Streszczenie

ZMODYFIKOWANA HIPOTEZA TEORII CIENKICH POWLOK MAGNETOSPREZYSTYCH

Z rownan teorii magnetosprezystosci wyprowadzono réwnania drgan cienkich powlok przewo-
dzacych, zakladajgc ze skfadowe svyczne wektora natgzenia wzbudzonego pola elektrycznego i skiado-
wa normalna wektora nat¢zenia wzbudzonego pola magnetycznego zmieniajg si¢ liniowo na grubodci
powloki. Przyjeto, Ze marerial powloki ma wiasciwosci diamagnetyczne lub paramagnetyczne. Pot-
wierdzono, ze hipoteza Ambarcumiana-Bagdasariana-Bielubiekiana jest zbyt silna w ogdélnym przy-
padku pola magnetostatycznego.

Praca wplynela do Redakcji dnia 26 stycznia 1988 roku.
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