DYNAMIKA LOTU POJEMNIKA LOTNICZEGO HAMOWANEGO SPADOCHRONEM ZABUDOWANYM NIESYMETRYCZNIE

KAZIMIERZ MICHALEWICZ
Instytut Techniczny Wojs Lotniczych, Warszawa

ważniejsze oznaczenia

\[C_x \]
— bezwymiarowy współczynnik oporu spadochronu,
\[d \]
— średnica korpusu pojemnika,
\[g \]
— przyspieszenie ziemskie,
\[I_x, I_y, I_z \]
— osiowe momenty bezwładności pojemnika,
\[L \]
— długość korpusu pojemnika,
\[l_{SH} \]
— odległość SM pojemnika od węzła zamocowania spadochronu,
\[L_B, M_B, N_B; L_{SP}, M_{SP}, N_{SP} \]
— aerodynamiczne momenty przechylające, pochylające i odchylające pojemnika oraz pochodzące od spadochronu,
\[L_N, M_N, N_N \]
— aerodynamiczne momenty pochodzące od niesymetrycznie zabudowanego spadochronu,
\[L_p, M_q, N_r \]
— pochodne aerodynamiczne momentu przechylającego, pochylającego i odchylającego względem zmian prędkości kątowych pojemnika,
\[P, Q, R \]
— prędkości kątowe przechylania, pochylania i odchylania pojemnika w układzie związanym,
\[P_{Sx}, P_{Sy}, P_{Sz} \]
— składowe wektora oporu spadochronu,
\[S \]
— powierzchnia przekroju poprzecznego korpusu pojemnika,
\[S_b \]
— powierzchnia przekroju podłużnego pojemnika,
\[U, V, W \]
— prędkości liniowe środka masy pojemnika w układzie związanym \(Oxyz \),
\[X_B, Y_B, Z_B \]
— opór, siła boczna, siła nośna pojemnika w układzie związanym \(Oxyz \),
\[X_q, X_r, Y_q, Z_r \]
— pochodne aerodynamiczne oporu, siły bocznej i nośnej pojemnika względem zmian prędkości kątowych \(Q \) i \(R \),
\[\alpha \quad \text{— kąt natarcia pojemnika,} \]
\[\alpha_1 \quad \text{— kąt zabudowy wężła spadochronu,} \]
\[\gamma \quad \text{— kąt ślizgu pojemnika,} \]
\[\gamma_1 \quad \text{— kąt zabudowy wężła spadochronu,} \]
\[\theta \quad \text{— gęstość powietrza,} \]
\[\Phi, \Theta, \Psi \quad \text{— kąty przechylenia, pochylenia i odchylenia pojemnika,} \]
\[m_c \quad \text{— masa całkowita pojemnika.} \]

1. Wstęp

W pracy zbadano wpływ niesymetrycznie zabudowanego spadochronu hamująco-stabilizującego na parametry lotu pojemnika lotniczego zrzuconego z samolotu. Obiekt traktowano jako układ mechaniczny sztywny [3, 5, 9, 13, 14], na który działają siły zewnętrzne [1, 2, 15], a między innymi siła hamująca \(P \), spadochronem [8, 10, 12].

Analizując dynamikę obiektu podczas projektowania do niego układu spadochronowego wykonano:
— badania aerodynamiczne modelu pojemnika i spadochronu,
— pomiary charakterystyk geometrycznych i masowych,
— analizę dynamiki układu metodą symulacji numerycznej,
— badania w locie pojemnika z symetrycznie zabudowanym spadochronem.

Równania ruchu wyprowadzono stosując podstawowe zasady dynamiki Newtona dla układów mechanicznych o więzach holonomicznych w układzie współrzędnych związanych z pojemnikiem [2, 5, 6, 7, 9]. Uwzględniono sześć stopni swobody pojemnika, składowe prędkości: podłużnej — \(U \), poprzecznej — \(W \) i bocznej — \(V \) (rys. 1) oraz przemieszczenia kątowe: kąty przechylenia \(\Phi \), pochylenia \(\Theta \) i odchylenia \(\Psi \).

W pracy przyjęto założenie, że spadochron (jako obiekt nieważki) ustawiał się równolegle do kierunku wektora prędkości układu. Uwzględniono proces przejściowy otwierania i napełniania ciaszy spadochronu, zakładając liniową zmianę współczynnika oporu \(C_x(t) \). Przyjęty model matematyczny badanego obiektu został zweryfikowany na podstawie przeprowadzonych prób w locie.

2. Przyjęte układy współrzędnych

Do opisu dynamiki obiektu swobodnego niezbędne są cztery układy odniesienia (rys. 1):
— układ \(Oxyz \) sztywno związany z poruszającym się zasobnikiem,
— układ prędkościowy \(O_x\alpha\gamma\alpha_1 \) związany z kierunkiem przepływu ośrodka,
— układ grawitacyjny \(O_x\gamma\alpha_1 \) związany z \(SM \) poruszającego się obiektu, równoległy do układu \(O_x\gamma_1\zeta \),
— nieruchomy układ grawitacyjny \(O_x\gamma_1\zeta \) związany z Ziemią.

Uklady odniesienia zostały przyjęte zgodnie z \(P\N\text{—}83 \ L\text{—}01010.01. \) Ruch obiektu został opisany w centralnym układzie współrzędnych \(Oxyz \) sztywno związany z obiektem.
Chwilowe położenie pojemnika lotniczego określono przez współrzędne środka masy obiektu \(r_1(x_1, y_1, z_1) \) mierzone względem nieruchomego układu współrzędnych \(Ox_1y_1z_1 \) oraz kąty obrotu \(\Phi, \Theta, \Psi \), [5, 9].

3. Model fizyczny

Analizowanym obiektem jest pojemnik lotniczy zrzucony z samolotu, hamowany niesymetrycznie zabudowanym spadochronem. Pojemnik (tj. korpus wraz z układem stabilizacji — rys. 1) traktowano jako układ mechaniczny, sztywny, osiowosymetryczny o stałej masie [1, 2, 11].

Spadochron w tym układzie przeznaczony jest do wyhamowania prędkości lotu pojemnika oraz zapewnienia stabilizacji. Oddziaływanie spadochronu na pojemnik odwzorowano jako działanie siły \(P_s \) przyłożonej niesymetrycznie (na obudowie korpusu) układającej się równolegle do kierunku wektora prędkości \(V_c \) [10]. Model pojemnika i spadochronu poddano stacjonarnym badaniom aerodynamicznym, natomiast na obiekcie rzeczywistym dokonano pomiarów charakterystyk geometrycznych i masowych. Podczas badań aerodynamicznych wykonano dmuchania aero pojemnika, jak również pojemnika ze spadochronem [1, 2].

4. Model matematyczny

Równania ruchu obiektu wyprowadzono w oparciu o podstawowe równania dynamiki [3, 5, 9, 14, 16, 17] słuszone dla układów inercjalnych, które dla ciała o stałej masie mają postać:

\[
m \left(\frac{\partial V_c}{\partial t} + \Omega \times V_c \right) = \overrightarrow{F}. \tag{1}
\]

\[
\frac{\partial K_c}{\partial t} + \Omega \times K_c = \overrightarrow{M}. \tag{2}
\]
Stosując przekształcenia [9] oraz rzutując wektorowe równania ruchu (1, 2) na osie układu współrzędnych, otrzymano dynamiczne równania ruchu, które dla rozpatrywanego obiektu mają postać:

\[
\frac{dU}{dt} = R \cdot V - Q \cdot W - g \sin \Theta + \frac{1}{m_e} (X_B + X_Q + X_R + P_{S_z}),
\]

\[
\frac{dV}{dt} = P \cdot W - R \cdot U + g \cos \Theta \sin \Phi + \frac{1}{m_e} (Y_B + Y_R + P_{S_y}),
\]

\[
\frac{dW}{dt} = Q \cdot U - P \cdot V + g \cos \Theta \cos \Phi + \frac{1}{m_e} (Z_B + Z_Q + P_{S_z}),
\]

\[
\frac{dP}{dt} = \frac{1}{I_x} (L_B + L_P - P + L_{S_p} + L_N),
\]

\[
\frac{dQ}{dt} = \frac{1}{I_y} [-(I_x - I_2)PR + M_B + M_Q + M_{S_p} + M_N],
\]

\[
\frac{dR}{dt} = \frac{1}{I_z} [-(I_y - I_x)PQ + N_B + N_R + N_{S_p} + N_N].
\]

W celu uzyskania pełnego układu równań uzupełniano je związkami kinematycznymi [5, 9, 10, 11].

Do sił i momentów aerodynamicznych przedstawionych w pracach [9, 10, 11] przyjęto dodatkowo:

\[
L_{S_p} = \frac{1}{2} \cdot \rho SV c^2 L C_{l brz},
\]

\[
M_{S_p} = P_{S_z} I_{S_H},
\]

\[
N_{S_p} = - P_{S_y} I_{S_H},
\]

\[
L_N = P_{S_y} \frac{d}{2} \cos \Phi - P_{S_z} \frac{d}{2} \sin \Phi,
\]

\[
M_N = \frac{1}{2} \cdot \rho SV c^2 \frac{d}{2} C_x (1 - \sin \alpha - \cos \alpha_1) \cos \gamma \cos \Phi,
\]

\[
N_N = - \frac{1}{2} \cdot \rho SV c^2 \frac{d}{2} C_x (1 - \sin \gamma - \cos \gamma_1) \cos \alpha \sin \Phi.
\]

Pochodne aerodynamiczne zasobnika przyjęto jak w pracach [9, 10, 11].

5. Wyniki analizy numerycznej

Podczas wykonywania obliczeń torów lotu pojemnika wyróżniono trzy fazy lotu:
— faza pierwsza — lot pojemnika od momentu zrzutu z nosiciela do początku otwarcia spadochronu (0 < t ≤ 1, 6, s),
— faza druga — rozwijanie i napełnianie spadochronu, założono liniową zmianę współczynnika oporu spadochronu \(C_x(t) \) (1,6 < t ≤ 2,1),
— faza trzecia — lot pojemnika hamowanego spadochronem (t > 2,1 s).
Przeprowadzona analiza numeryczna miała na celu zbadanie wpływu parametrów lotu samolotu — nosiciela oraz parametrów konstrukcyjnych obiektu na jego właściwości dynamiczne.
Charakterystyczne wyniki analizy numerycznej badanego obiektu przedstawiono w formie wykresów na rys. 2÷9.

Rys. 2

Rys. 2 — Tory lotu środka masy pojemnika zrzuconego przy równych prędkościach nosiciela

Z analizy uzyskanych wyników obliczeń numerycznych wynika, że profil toru lotu (rys. 2÷9) pojemnika \(z_1 = z_1(x_1) \) w istotny sposób zależy od parametrów lotu nosiciela w momencie zrzutu \((z_1, V_p, \Theta_p)\), efektywności hamowania spadochronu \((C_{x_s})\) oraz wielkością czasu rozwijania i napełniania czaszy.

Prędkość całkowita \(V_e \) pojemnika jest zależna od prędkości zrzutu i intensywności hamowania czaszy spadochronu [10].

Zmiana kąta pochylenia \(\Theta(t) \) osi podłużnej \(Ox \) pojemnika zależy od prędkości zrzutu i współczynnika oporu spadochronu \(C_{x_s} \).

W oscylacji kąta natarcia \(\alpha(t) \) wyróżnia się okres: lotu swobodnego pojemnika do \(t = 1,6 \, \text{s} \), rozwijania czaszy spadochronu do \(t = 2,1 \, \text{s} \) i lotu hamowanego \(t > 2,1 \, \text{s} \) (rys. 3).

Wahania kąta \(\alpha(t) \) wzrastają wraz ze spadkiem prędkości pojemnika.

Oscylacje kąta ślizgu \(\gamma(t) \) podczas lotu pojemnika (rys. 3) na spadochronie uzależnione są od prędkości lotu. Niesymetryczne zabudowanie spadochronu do korpusu pojemnika (rys. 1) i niesymetryczność samego obiektu w płaszczyznach \(Oxy \) i \(Oxz \) prowadzi do powstania sprzężeń ruchów symetrycznych i asymetrycznych, które powodują powstanie obrotu wzdłuż osi \(Ox \) (rys. 4 i 5).
Wielkość tego obrotu (kąt przechylenia Φ) uzależniona jest od prędkości zrzutu V_p (rys. 4) oraz intensywności hamowania spadochronu (rys. 5). Wahania kąta słizgu γ oraz wzrost kąta przechylenia Φ (rys. 4 i 5) do około trzech radianów, powoduje zmianę znaku kąta odchylenia Ψ w czwartej sekundzie lotu. Czas po jakich układ osiąga maksymalną wartość prędkości kątowej przechylenia P uzależniony jest od współczynnika C_x (rys. 6) oraz prędkości zrzutu V_p (rys. 7). Maksymalna wartość siły w węźle spadochronu występuje po pełnym rozwinięciu czaszy i jest również uzależniona od C_x i V_p.

Rys. 3 — Zmiany kąta natarcia α w funkcji zmian kąta słizgu γ pojemnika

Rys. 4 — Przebiegi kąta przechylenia $\Phi(t)$ pojemnika dla $V_p = 125; 175; 225$ i 275 m/s i $C_x = 8$.

K. Michalewicz
Rys. 5 — Przebiegi kąta przechylenia $\Phi(t)$ pojemnika dla $V_p = 175$ m/s i $C_{x_s} = 8; 11,5$ i 15.

Rys. 6 — Przebiegi prędkości kątowej przechylenia $P(t)$ pojemnika dla $V_p = 175$ m/s i $C_{x_s} = 8, 11,5$ i 15.
Rys. 7 — Zmiany prędkości kątowej przechylenia $P(t)$ pojemnika dla $V_p = 125; 175; 225$ i 275 m/s

Rys. 8 — Zmiany przyspieszenia $AX(t)$ pojemnika wzdłuż osi Ox, dla $V_p = 125; 175; 225$ i 275 m/s
Prędkość rozwijania i napełniania czaszy spadochronu ma zasadniczy wpływ na wielkość przyspieszenia A_x. Uzależnione ono jest od prędkości zrzutu (rys. 8) i intensywności hamowania czaszy. Przeciążenia występujące wzdłuż osi podłużnej Ox pojemnika N_x przebiegiem zbliżone są do oporu spadochronu P_{sx} ze względu na największą jego wartość w silach zewnętrznych działających na pojemnik. Wartości przeciążeń N_y i N_z działających wzdłuż osi Oy i Oz uzależnione są od oscylacji kąta natarcia α i kąta ślizgu γ.

W celu weryfikacji przyjętego modelu matematycznego i założeń, przy których otrzymano rozwiązanie, dokonano prób eksperymentalnych na pojemniku z symetrycznie i niesymetrycznie zabudowanym spadochronem. Zmiany prędkości całkowitej podczas przeprowadzonych badań w locie, przedstawiono na wykresie nr 9. Ogólna zgodność wyników uzyskanych z obliczeń i badań modeli rzeczywistych weryfikuje opracowany model badanego zjawiska.

![Wykres zmiany prędkości V_c]

Rys. 9 — Zmiana prędkości V_c środka masy pojemnika ze spadochronem zabudowanym symetrycznie i niesymetrycznie zabudowanym spadochronem.

6. **Wnioski ogólne**

Wyniki analizy numerycznej dynamiki lotu pojemnika z zabudowanym niesymetrycznie spadochronem, przedstawione w niniejszej pracy wskazują, że istniejące sprzężenie między parametrami ruchów symetrycznych i antysymetrycznych ma istotny wpływ na dynamikę układu.

Powyższa analiza pozwoliła ustalić podstawowe charakterystyki i zależności w przypadku zrzutu takich układów z samolotu. Najistotniejszą fazą ruchu takiego układu jest lot podczas otwierania czaszy spadochronu oraz po jej otwarciu co ma zasadniczy wpływ na parametry ruchu pojemnika.

Celem dokładnego zasymulowania całego toru lotu obiektu należy założyć nieliniowy przebieg procesu otwarcia czaszy spadochronu wykonując dokładne badania aerodynamiczne.
 Wyniki uzyskane z analizy numerycznej i badań w locie mogą być przydatne przy projektowaniu spadochronowych układów hamująco-stabilizujących przeznaczonych do zrzutu pojemników lotniczych.

Literatura

Резюме

ДИНАМИКА ПОЛЁТА АВИАЦИОННОГО КОНТЕЙНЕРА ТОРМОЗИМОГО ПАРАШЮТОМ, ВМОНТИРОВАННЫМ НЕСИММЕТРИЧНО

В настоящей работе представлена проблема влияния несимметрично вмонтированного парашюта на параметры полёта контейнера, выбрасываемого из самолёта. Уравнение движения определено, используя основные принципы динамики Ньютона, для механических систем с гиперболическими связями в системе координат, связанных с контейнером.

Используя численное моделирование, была исследована проблема влияния условий выброса, а также выбранных конструктивных параметров на динамические свойства объекта в воздушном полёте.

Из проведённого анализа (численного) динамики полёта контейнера следует, что существующая связь между параметрами симметричных и антисимметричных движений имеет существенное влияние на перемещение системы.
Summary

DYNAMICS OF AIR CONTAINER FLIGHT HAMPERED BY PARACHUTE BUILT IN ASYMMETRICALLY

The paper presents the influence of an unsymmetrically built-in parachute on flight parameters of a container dropped from an aircraft. Equations of motion have been derived using basic Newton's law for material systems with holonomical constraints in a coordinate system related to the container. The influence of drop conditions and selected structural parameters on dynamic properties of the object in three-dimensional flight has been studied using digital simulation. From the numerical analysis of container flight dynamics it has appeared that the existing interaction between parameters of the symmetrical and antisymmetrical motions has an essential influence on the system displacements.

Praca wpłynęła do Redakcji dnia 29 października 1987 roku.