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Introduction

In the microlocal mechanics of periodic composites the constitutive relations are
assumed to include an additional term being the linear function of microlocal parameters
related to the strain tensor by some algebraic equations. The idea was first advanced in [2]
by an application of nonstandard analysis [1, 8] and then explored in [3,4, 5, 6, 7]. The
aim of the paper is to obtain effective modulae for a few special cases of the linear elastic
composites with periodic structures including sheet reinforced and fiber reinforced compos-
ites. Results of the paper hold for composites with periodi¢ structures consisting of two
different linear elastic materials. The first material is interpreted as a reinforcement material
being more rigid than the second material which is treated as a matrix. At the same time
the area of the cross section across the matrix is much bigger than that across the reinforce-
ment. We start the considerations from the formulation of the fundamental system of
equations of the microlocal mechanic for periodic structures.

List of symbols

Throughout the paper the symbol A ® B stands for the tensor product of tensors A
and B. The double contraction of any two tensors A, B is denoted by AB provided that
A and B are the fourth-order tensors (otherwise the symbol AB denotes the simple product
of A and B) and by A[B] if A is the fourth-order tensor and the B is of the second-order.
For any function R, 5 ¢ — f(¢) € R™, m being the positive integer, and for an arbitrary
real number ¥ € R, the symbol f(e) €0 (&) stands for the condition that the function
e — & "f(¢) is bounded in all 0-neibourhoods. Subscripts @ and b run over the set {1, 2, ...
..., n}, subscripts « and £ run over the set {1, 2, ..., »}, where positive integers n, » will
be specified below. Subscripts i, j, k, / run over the set {1, 2, 3}. Moreover the summation
convention is. assumed to holds for every pair of the repeted small subscripts,
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1. Basic equations

Let 4 = (0, Y)x(©0,Y*)x ... x(0, Y), for the given »-tuple (Y*);_,, of positive
real numbers, be the basic unit of some periodic linear-elastic composite in a certain
undeformed state related to the known Cartesian orthogonal coordinate system. It is
mean that (we restrict our considerations to ases » = | or » = 2):

(i) if » = 1 then we deal with a periodic linear-elastic sheet-reinforced composite,

cf. Fig. 1.
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Fig. 1.

(ii) if v = 2 then we deal with a periodic linear-elastic fiber-reinforced composite, cf.
Fig. 2.
Assume that there is given the finite decomposition A4 = vid@A=1,..., M 3
A(A)HA(B) = 0 for 4 # B, A(4) = intA(4) for 4 =1,..., M, M being the given
positive integer. Morover for every 4 = 1, ..., M, it is assumed that 4(A4) is occupied by
the linear — elastic material in the reference state. By H(4) = (H(4)"**) and ¢(4) we
denote the tensor of elastic modulaec and the mass density related to this material.
Define:

- p(A4) = mesA(A)/mes4,

M
e =D n()e).
A=1

Fig. 2.

We shall introduce the decomposition of the basic unit on finite elements, [2]: 4=

= U{AdE=0,1,..,N}, Aendp =9 for E# F, E,F=0,1,...,N, Ag = intdg,

E=0,1,...,N, where N > M+1 is a given positive integer. We suppose that:
(VE=0,1,..,N)@4=1,2,..., )[4 = A(A)],
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and define:
g = mesdg/mesd.

We shall also introduce the system I', ..., I": R® > R" of the shape functions, [2]. They
are 4 — periodic continuous functions such that every /4, @ = 1, ..., n, is linear in every
set d4g, E=0,1, ..., N. Hence we denote:

£ =A%) = (("la)a), @ < v,

where A%, are the known constants.
““In microlocal mechanics of periodic composites, [2], it is assumed that the displacement
‘field of the composite in some nonstandard model of analysis, [8], has the representation
of the form:
u(X, 1) = *w(X, )+ o™ * P (0X)*q, (X, 1), (X, 1) € ¥ x*(0, 1)), 1.1
where:

— o is an infinite hyperreal number,

— t; € R, is an arbitrary but fixed time instant,

— Q is the region occupied by the composite in the reference configuration,

— w=w(,1): 2> R® and ¢, = ¢q.(-,1):£2 > R® are certain basic unknowns
termed the macrodisplacement field and the microlocal parameter fields, respectively.
We shall also denote by a = a(-,1):2 - R3, b= b(-,1): 2 —> R?® the acceleration
field and the body force field, respectively, and by E(w): £2 — RS the macro-strain tensor
field defined by:

E(w) = 0.5(Vw+VwT).
It can be proved, [2], that the equations of motion:

divi+o(b—a) = 0,

s =0, (1.2
and the constitutive equations:
N
T= Z ne He[E(W) + AL ®¢s],
- (1.3)

N
59= ' ng H[Ew) +AL@q,]0%,

E=0

hold in 2 and for every ¢ € (0, t); here Mg stands for H(A4) iff 4z < 4(4), E=0,1, ...
wo N, A=1,.., M.

2. Formulation of the problem

The results below correspond to the class of periodic composites consisting of two
linear -elastic materials: the matrix material and the reinforcement material. Hence M = 2,
Let ny = 7(1), 7z = 1(2), Hy = H(1), Hg = H(Q2), ou = ¢(1), 0r = 0(2). We are

3*.
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taking into account only composites for which ¢ = }/ g is a small parameter and where

Hx = ngHy as well as H, are independent on & Hence also %4 = | —9g0 (1).
From now on we have to keep in mind that the terms in Eqgs. (1.3) depend on the small

parameter ¢. The problem we are going to deal with is to determine the tensor H.;y =

= (HY¥), which is assumed to be independent on &, such that the condition:
T—~H,[E(w)]eo (¢), 2.1

is equivallent to the system (1.2),, (1.3) in the following sense:

(i) for any pair (w, T) satisfying (2.1) there exists a system of microlocal parameters
g = (g,;) making a triplet (w,T,q) to be a solution of (1.2),, (1.3),

(i) if a triplet (w, T, q) is a solution of (1.2),, (1.3) then a pair (w, T) satisfies (2.1).
The tensor H., will be termed the effective modulae tensor.

3. Results

To determine the effective modulae tensor for the composite under consideration
we are to restrict the system /!, ..., /" of shape functions by taking into account only the
situations that satisfy certain conditions which will be specified below. In order to do that
we shall introduce the following denotations:

Ouux 6;'1 p if o=,

— ajkly. prikl — _‘
P = (P"):P {0.5V2 Ba 05+ 021 0,), if <,

Ly = (L) Lglgl = P[Ai®q] for ¢ = (qu)-

Now we are to formulate the following basic proposition.

Assume that:
1¢ the set Ax coincides with the fixed finite element 4, ie., 4g = 4,

2° L, is a linear epimorphism matrix,
N N
3° Ly €o (1), Z nelg €0 (€2), 21 neLlIH Le €0 (2).
E=1 E=
Then:
H.;; = Hy+ Hg—HgPT(PH, P")"'PHp. (2.2)

Proof. By means of 1° the constitutive relations (1.3) can be rewritten to the form:

N
T = (g Hy + H)[EW]+ He PTLo[q1+ ) 7 Hy PTL,[q),
L=1

N
S = (59 = LE PHLPTL,[q]+ > ;LT PH, PTL;[q]+ G.1)

E=1

N
+ L PHR[E(w)]+ D nsLE PHy[E(w)].
E=|
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By means of 2° for any E = 1, ..., N there exist the unique matrix Lg such that:
L = L,L,, (3.2)
and:
LT is a linear monomorphism matrix. (3.3)

Since the matrix PHZPT is invertible then, by means of (3.3), LIPHP” is also. By

means..of 3° we have:

N
(LoPH, P — (L, PH.PT+ 2 neLEPH,, PTf.E)‘1 €o (g). 3.49)
E=1

By virtue of (3.2), (3.4) from (3.1),, (1.2), we obtain:
Lo(@) = — (LEPHR P LEPHL[E(w)]+ © (o),
and hence by virtue of (3.1),:
T = (Hy, +Hg— HPT(PH, PT)"'PH[E(w)] + © (¢).
Now taking into account Eq. (2.1) we conclude that (2.2) holds, which ends the proof.

4. Example: sheet reinforced composites

We shall examine the case of ¥ = 1, n = 2. By the previous comments we deal with
the sheet reinforced composite, cf. Fig. . We suppose that Ay is the interval, 4g = (a,, «,),
0<ay,a, <Y, Y=Y,, similituded to 4 = (0, Y) with respect to its common origin.
As the shape function we take the 4 — periodic function /: R — R, I = I*, the restriction
of which is given by, cf. Fig. 3:

XYY [(Y—a) if  Xe(0,05(Y—a),
Pl4X) =10.5Y-X) oY [« if X ed0.5(Y—a),0.5(Y +a)), @.1)
X=-V)yaY [(¥Y—0) if Xe(0.5Y+a),Y),

LX) matrix
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where a = a, —o,;. In this case we have ¢ = |/oc/Y and:

L = FAw

(Z%L PHy)" = e2m}. (4.2)

N
(D nalEPHL PTL)™ = /(1 - e?) Hi™.
E=1

By means of (4.2) for the sheet reinforced composite under consideration there are satisfied
conditions 1°, 2° and 3° and hence the tensor H.;, is given by the formula (2.2). If we deal
with isotropic materials with the Lamé constants Ag, g and A, ga, respectively, then
the formula (2.2) leads to the following values of the effective modulae, in which A; =
= nr Az and pg = Ngug:

AM+2qu-4,Zi_R(ZTR+;7R)/(AR+2,22R) if i=j=k=1+#1
Hi = Av+2ug Apf(Ar+2ug) if (i, k) = (,De {(2,3),(32)}
orif (i,k)=(,j)e {2,3),32))
HYH if otherwise.

A

4. Example: fiber reinforced composites

We shall examine here the case of » = 2, n = 2. By the previous comments we deal
with the fiber reinforced composite, cf. Fig. 3. We suppose that Adg is «y X o, rectangul
similituded to 4 with respect to its common origin. As the shape functions we take the
pair (I',1?):R? - R* of A — periodic functions the restrictions of which to 4 is given
by (no summation with respect to a), cf. Fig. 4:

|
|
\ . B
Iy mateix 1y \
L(x) :I

fiber

Ve - |

|

I

(e

0 (YLey)/2)
i
Vo~~~ 1

Fig. 4.
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Veyap X[(Y7—a) if  X7€(0,0.5(Y" —ay),
Il(XY, X3 =057 —X) Voo [, if  X°€(0.5(Y"—a,),0.5(Y +a,)>, (5.1)
Vg (X =Y (Yo~a,) if X9e(0.5(Y"+a,), ¥9),
In this case we have ¢ = p/m and:

(Hg PTLy)ke = V;(—l)““H;{ka’

N
(3 neliPH,)™ = —ya O 2 H (5.2)
E=1

e2(8/(1—efa)—a) HY i a=b=1,

N
(Y oL EPHLPTL)™ = Mool — /) ely/)Va) =) I i a=b =2,
E=1
—e2HY? if (a,b) = (1,2) or if (a,b) = (2, 1),

where « = a,/a,, 6 = Y?2/Y! are assumed to be independent on £. By means of (5.2)for
the fiber reinforced composite under consideration there are satisfied conditions 1°, 2°
and 3° and hence the tensor M., is given by the formula (2.2). If we deal with the isotropic
materials with the Lamé constants Az, pg and Au, uy, respectively, then the formula
(2.2) leads to the following values of the effective modulae:

Hk Aﬂgfzﬂ.w+(3ix+2ﬁx)ﬁn/(7m +2up) if (1, ) = (k, )= (3,3)
s Hi¥ if otherwise,

where Az = Nerg and pg = Ngpg.

Final remarks

By the application of the microlocal theory of periodic composites the effective tensor
of elastic modulae H.,, has been obtained in the form of the formula (2.2). The formula
(2.2) holds in a few special caSes. The cases of the sheet reinforced composite and of the
fiber reinforced composite has been examined in Sects. 4, 5. If the tensor H.,, is deter-
mined then the problems for the linear elastic composite can be treated as the problems
similar to those of the linear elasticity theory.
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Peswme

OPPEKTHUBHLBIE MOAYJIM B MHUKPOJIOKAJIBHBIX MOJIENAX VIIPYTHUX
IIEPHOONYHBIX KOMITO3UTOB

B muxponoxansHoH MeXaHMKE NMEPHOAMUHBIX KOMIIO3MTOB B OIPEJE/IAIOLINX COOTHOWEHHAX CY-
IIECTBYET HEKJIACCHUECKOe CJlaracMoe — JIHHeHHaA (YHKIMA MUKDOJIOKaNbHBIX MapameTpoB. Tensop
JAeOopMaIT OTHOCHTCA K MHKPOJIOKQJIBHBIM [1apaMETPaM JIOCPENCTBOM H3BECTHOH CHCTEMbI anredpan-
yecknx ypaBuenmit. Ilenis 9Tolt CTAaTBH — BBIMUCHUTE I(hPEKTHBHDBIE MOXYHM ANs HEKOTOPOro wnacea
JMHEeHHO-YIIPYTHX NEePHOHUHBIX KOMIIO3HTOB HA OCHOBAHMM MHUKDOJIOKAJIBHOH MeXauWKku. MITorn crarbi
KACAKOTCA K KOMITO3HTOM COCTOALUMMCH H3 [BYX PA3JIMUHbLIX mMarepuanoB. IlepBbii, cuMTaemMblil yKpe-
IUITIOIIHM MARTepHanomM, bosee >KecTKHIt apyroro, cudraemoro marpuueit. IIpemnonaraercs, yro mepa
Paspesa MaTPHLbLI B HAIPABJICHWH NOMEPEUYHOM OTHOCHTENBHO YIIPOUYHEHHS HEC/IHYHMO Manast B CpaB-
HEHHH C TOH JKe MepoH KacarouleiicA YKpeIuLTIowero MarepHana.

Streszczenie

EFEKTYWNE MODULY W MIKROLOKALNYCH MODELACH SPREZYSTYCH
PERIODYCZNYCH KOMPOZYTOW

W mikrolokainej mechanice kompozytow periodycznych relacje konstytutywne zawierajg dodatkowy
czlon, ktory jest liniowa funkcja parametréow mikrolokalnych. Parametry mikrolokalne sg z kolei zwiazane
z tensorem odksztalcet poprzez pewien uklad réwnan algebraicznych. Celem pracy jest otrzymanie efek-
tywnych moduléw dla pewnej klasy liniowo spr¢zystych kompozytéw. Punktem wyjécia jest tu mikro-
lokalna mechanika periodycznych kompozytow liniowo-sprezystych. Rezultaty pracy dotycza kompozytow
periodycznych zlozonych z dwéch materialéw. Pierwszy z nich, interpretowany jako material zbrojeniowy,
jest duzo sztywniejszy niz drugi traktowany jako matryca. Jednoczednie zaklada sie, ze miara przekroju
matrycy w kierunku poprzecznym do zbrojenia jest duzo wigksza w stosunku do analogicznej miary dla
materiatu zbrojeniowego.
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