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Introduction

The list of papers and monographs concerning mixtures and porous media is very
extensive (for example, cf. [1 - 20]). Most of them is based on the rather unphysical postu-
Iate that in every point of the region occupied by the mixture there are all its components.
At the same time, also porosity is assigned to every such point. Moreover, in [I - 19],
the balance equations for mixture and porous media are introduced in a form of certain
a priori assumptions, which take into account the forementioned postulates being not
related to the balance equations of the classical continuum mechanics.

The aim of the paper is to derive the balance equations for the mixture and porous
media directly from the well known balance equations of continuum mechanics. We are
to show that it can be done using the methods of the nonstandard analysis. Such approach
makes it possible to assign the clear physical interpretation to all terms in the resulting
balance equations for mixture and porous media, At the same time, the extra unphysical
postulates, such as mentioned in the begining of the Introduction, are avoided. The
present paper is self contained but the partial results and ideas concerning the proposed
approach were published in [24 - 26]. The approach proposed here has certain features
common with that of [14], [21 - 22]. .
Denotations. Throughout the paper n is the fixed positive integer. Subscripts e, f run
over the sequence 1,2, ..., n, subscript y runs over 0, 1, 2, ..., n. Moreover, #,, {, are
the known real numbers, ¢, < ¢,, which determine certain time interval.

1. Physical basis

Let & be Euclidean real 3-space of places, O be a set of all regular regions in ¢, V' be
a translation space for e, ¥; be a Euclidean real 3-space of forces, U be the material uni-
verse of all 3-dimensional elementary differentiable manifolds (deformable bodies).

Define . as a set of all n-tuples (yy, ..., xn) Where gt 2, % [to, ;] 2> €, x=1,...,n
are deformation functions of n disjointed deformable bodies %, , %, € U such that

Va, BV (& # B) = (1@ D1 1) # B)).
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Let Q,,« =1, ..., n, be the disjointed regions in & occupied by bodies &, in the known
reference configurations x,: %, e&. Let v,(-,2) €V, where v(x, 1) = 3(X, 1),
X =y Y(x,1), X €8,, t €[to, 1], be the velocity field defined, for every ¢, on the region
(2, t) occupied by the body %, at the time instant r. Define Qf = 7,(2,, ) and ‘
04 = e\ w2t. By virtue of the well known assumptions of solid mechanics, to every
(X1 ---» xn) €A and to every 4 € O the following functions are uniquely assigned:

[thtl]at_) f Qa(x,t)d‘Z)ER+,

1
AN,

lto, ]38~ [ oulx, Dbu(x, dv eV,

Ar\!)&

[to, ]2t > f la(X, )da€Vy, 1,4() =0, (1.1)

3(Anf)&)m6.();,

[to, 151~ [ Tulx, Dnau(x)dacVy,
34NN,

lo, st = [ fulx, t)daeVy.

4n D;) fa) ao;,

Functions (1.1) are assumed to be continuous for almost every ¢ € [¢,, ¢,]. The values

of (1.1) represent for any fixed ¢, the following objects: mass of &, in 4, resultant body

forces acting at &, in 4, resultant of the boundary tractions executed by &, (for y # 0)

on %, in 4, resultant of the surface tractions on 94 within body By(T,(x, t) is Cauchy

stress tensor), respectively. Moreover Jap(x, t) is the density of the forces due to the friction
. between #, and %, which act on Z,. Here f5(x, t)+f(x, 1) = 0. Term t, in (1.1);

represents boundary tractions due to the external forces acting at %,.

For an arbitrary 4, 4 € O, define

4° = &4,
L34, 4% = o(2en)no(@in4°) < aa,
154, 4) = 0(nA)nd(2in4).

As it is known, for each (4, ..., 4,), B, € U, and every (x4, ..., %») € 4 , the integrands
in formulas (1.1) satisfy the well known system of conditions :

"DDT f 0u(x, B)dv = OV, (1.2)

Anﬂfz

'Y Here

% f SCx, Ndv = f [(’)f(‘;\;, f +div(f(x, Dvelx, t))] dv,

t t
Anr)a ANy,

for an arbitraty function f(x, ) on the LHS of Eqgs. (1.2)
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2 f va(x, Doulx, 1) do = Z [ s, t)da+2 [ tayx, nyda+

Ar\.()u ¥=0 rf 4 ¥=0 r{ 4

+ f T.(x, Hnga(x)da+ f bo(x, ) ou(x, t)dv, (1.2)

a4nal, angl,

[ cont.]

f (x—x0) X s (x, )oulx, t)dv = Z f (x—x0) X't (x, t)da+

Anal, =0 rl (4,49

+2 f (x—X0) X tay(x, t)da+ f (x—x0) X T, 1Y nga(x) da +

7= re.d.9 24n0f,

+ f (x—x0) X bo(x, ) ou(x, t) dv,
An!)&
which has to hold for every 4 € O and a.e. t € [t,, 7,]. Here x, is an arbitrary point in &
and t,4(+) = 0, for « = f, while

top(x, 1) = Tp(x, t)naq! (x) —Tp(x, t)nagﬁ(x)+faﬁ(x 1), o#f, (1.3)

holds for a.e. x € d825n9€2%. Egs. (1. 2) represent the well known balance equations of mass,
momentum and moment of momentum, respectively, for the System of n non intersecting
deformable bodies.

2. Nonstandard definition of mixtures and porous media

Let I be the full structure in which ¢, ¥, ¥;, R are disjointed relations of the type (0)
(cf. [23], p. 19). The balance equations (1.2), which hold in I, hold also in *3 as certain
internal relations. It means that for every (internal) #,e* U, « =1, ..., n, for every
internal (yy, ..., xn) €% #, for every internal 4 €* O and x, €, as well as for every
internal function of the form (1.1) (with domain *[#,, ¢,] in *R and with the values in *R
and *V; respectively), relations (1.2) and (1.3) hold in *3.

Define in *IMN

me(x,r) = f eu(x, t)dv,
B, r)nal,

where %(x, r) stands for a ball with a center x and the radius r, r €* R,

Let #° be a subset of *.# which satisfies the following conditions:

1° For every (xy, ..., x») € #° there is °(3) = x for « =1, ..., n where y is defor-
mation function in MY, ie., x:2x [to, #,] » £2. Hence we see that there are regions o2
“in &, such that

@Y =0 fora=1,..,n and €/t t]. (2.1)

® Symbols °(+) stands for a standard part of function or set, [23], p. 115.
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We also assume that all points belonging to each £2¢, are near standard and £' are regular

regions in .
2° For every x € S—int*2* ¥, the internal sequences

vol [B(x, r.)N4%] Mo(X 5 I') 2.2
vol B(x,r,) °~  vol [B(x, r,)nL%]’ ‘
1‘1)1:11—9 o(rl) > O’ m = 1, 2,...J
m

have F-limits (cf. [23], p. 109). By virtue of the theorem which can be found in [23_], p. 110,
there exists A, € *N\ W such that for every » €* N\ N and » < 1, each value

vol[B(x, r,)NnL4] ma(x, F,)
volB(x,r,) °  vol[B(x, r)nE2%]’
is the F-limit of any sequence (2.2).
3° There exist functions £'sx — v,(x, 1) e [0, 1], 2' 5 x - §,(x, ) € R,, continu-
ous a.e. on 21 for t € [ty, t,] (where g,(-, t) is also differentable) which are the standard
parts of functions

(2.3)

Vol[B(x r)NE24]

—intsOt
S—intis volB(x, 1)

e* [0, 1],

_infE Ot mu(x: r{() E* R .
S—intQtsx = - By C

Now we formulate the following,

Definition. The system of bodies #, ¢ *U, « = 1, ..., n, for which (x,, ..., x.) € A°,
will be called the mixture. Every %, is said to be the component of the mixture. The value
ve(x, t) will be called the saturation of the mixture by the «-th component.

Define function

2'5x > 2(x,t)e[0,1],
putting
n
»(x,1) = I—Zva(x, ).
- a=1
If »(x, t) is not identically equal to zero and » = 1, then the mixture is called the porous
medium. Function »( -, ¢) is known as a porosity, and has been derived here by the non-
standard approach from the real porous structure of the body. In the traditional approa-
ches, porosity »( -, ¢) and saturation »,(, t) are postulated a priori.

3. General form of the balance equation in ) and *N

All balance equations (1.2) can be written down in what is called the general form
of the balance equation

» Symbol S-int, where 4 = *R" stands for S-interior of 4 ,cf. [23], p. 107. Moreover, for cvery A
in M, by *4 we define the corresponding standard entity in *,
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2 fsrf(x t)ga(x t)dv—z f G, (x, t)da +

Anxz‘ =0 y(a 48)
+2 f Gup(x, t)da+ f D,(x, t)nga(x)da+ 3.1
y=0 p ey 2) AN,

+ f B,(x, )oulx, t)dv, «=1,..,n,
an0k,
where Gop() =0 for « = f and where
Gap(x, t) = Pulx, nagt(x) = —Dp(x, t)ﬂag}}(x)—!-Faﬁ(x, 1); a#pf, (3.2)
here Fup(x, 1) = —Fpy(x,t) hold for ae. xelfyd,4°) < 84 and te€ [4,t,]. Egs.
(3.1) have to be satisfied by an arbitrary B, e U, « = 1, ..., n, by every (%1, ..., xn) € A
and by every 4 € O. In Egs. (3.1), scalar field g;( -, ¢) has the same meaning as before,
Y(, 1), B,(, t) are tensor fields of the k-th order, defined a.e. on £2§. Moreover, G,,(-, t)
are tensor fields of the k-th order defined a.e. on dQ2;nd82; and @,(-, ) are tensor fields
of the k+1-th order, defined a.e. on Q%. Here @ (-, ¢) is the flux field, B,(', ¢) is the
internal and G., (-, t) is the external supply in the a-th component. In what follows instead
of (1.2), (1.3) we shall deal with the general form of the balance equation (3.1) and with
the continuity conditions (3.2).
On passing to enlargement *3 of M we shall take the internal conditions (3.1) and
(3.2) as the basis of the analysis.

4, From micro- to macro- general balance equations

The general balance equation in *M given by (3.1), (3.2), under assumptions that
Gias v xn) €M° < *, will be called the general micro-balance equation for mixtures
and porous media. The forementioned micro-balance equation constitutes only the starting
point for further considerations, being the basis for obtaining in M what will be called the
the general macro-balance equation. In order to pass from the micro-balance equation
in *M to the macro-balance equation in M, a number of the extra assumptions has to
be introduced. It must be emphasized that the macro-balance equations exist only for
rather special kinds of structure of mixtures and porous media (which in the nonstandard
sense were defined in Sec. 2). .

Let us substitute to (3.1): 4 = B(z,r,), z€ S—int*2", » < A,, » e *N\N. Then for
a.e. zeS—int*Q', 1 € *[zy, t,], from (3.1) we obtain

D 1

Em f Ta(x3 t)@a(x, t)d’l)=

B(z,r,)n .O;

“.1)

_ 2 1 f G, 1) da+
B - volB(z, r,) sy

y= T4,(Bz r,), B%(z, 1))
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n 1 f .
+ Zo: vol B(z, r,) Gy, 1)da+ . @)
y=

188G, 7). Bz 7))
{cont.]
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. 1 f
—_— D, (x,t 7 d
+ volB(z, r,) o, D)o, r,) (X)da+

8B(z,r, )",

1
ol BT [ Bte 0utx, 0.

B(z, r,,)r\!)&
'We shall assume that all terms in (4.1) are near standard and that in I there is field

F (-, 1),

ar ° 1
Y(z, 1) = (vol[B(z, A0 f Yo (x, t)dv),

B(z,r )"0

such that the following formulas hold®

1 J‘ - Q(Z t) f .
Vol B, 7)) , Yolx, t)eulx, t)dv =~ VolBG.T) , Yo(x, t)do ~
B(z,r )My, Bz r)n0L,

1 -~
~ % *, ~ % * *

A P D) o gy | Yl Do =8 e, 07, 0,
B(z,r‘,)n.()&

ey | e Dealn, o = e, 10, DG, ).

‘Dt volB(z,r,)
BGz.r)n0},

Analogously, we assume that in 9 there are fields B,( -, t) and Say (5 't) such that

*B(z, 1) ~ LI f Bu(x, 1)dv,

vol[B(z, r,)n82}]
Bz, rv)n.();

1 .
* ~ B =
Sup(z, 1) volBG,7) f Guy(x, t)da, y=1,...,n
Toy(Blzar, ), Blz, 7))

f Bu(x, Deul, Do,

] Z, t * Fy t *.B t >rr
Q( ) 'Vu(z ) a(z, ) OI.B(Z, l‘,.)
B(z,r ynal,

holds in S-int*Q*, te [1,, t,].

Let I' be an arbitrary smooth surface in S-int*Q' oriented by the unit normal nr(z),
zel'. Let the minimum radius r,;, of the curvature of I" is greater than r,. Define by
B*(z,r), B~(z,r), z€ I the semisphers of the ball B(z,r), which are situated on the
positively and negatively oriented side of I, respectively,

Define ’

I3, [B*(z,n), B=(z, r)] = 8[B* (z, )nQ:]nI[B~ (z, )nE2],

4 We write a ~ b, where a, b are finite numbers in *R, if |a— 5| is infinitesimal
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for «=1,..,n; ¥y =0,...,n. We shall assume that for every z e 'm(S-int*Q"), the
internal sequences _

areals,[B*(z, ry), B~ (z, ry)]
area[l'nB(z, r,)] ’

_ r_1 _ . .
m= s M 1,2,..,°%(r;)) > 0
have F-limits. Then by virtue of [23], p. 110 there exist 4, € *N\ N such that for every

6 e *N\W and 6 < 4,, the following values

arealy,[B*(2; rs), B~ (z, rs)]
a:ea [I'nB(z, rs)] = “2)

are the F-limits.
We shall assume that for every pair of surfaces ‘I', "'I" in S-int*£', which satisfy con-
ditions analogous to those imposed on I, and for every z € 'I'n"'I" there is

area' I, [B*(z, rs), B~(z,ry)] _ area" I,[B*(z,rs), B (z, rs)]
area['I'nB(z, rs)] - area["I'nB(z, rs)] ’

where I's, (), "'I'%, () have the same meaning as I, (- ).
Define the system of functions

areapgzv[B+(Z> rd), B_(Z, rd)]

—1 * t
In(S—int*Q) sz —~ area['nB(z, ry)]

e* [0, 1],
and assume that there exist functions
Q' ex — pu(x, 1) €0, 1],

which are standard parts of functions defined above. We also postulate that there exist
functions :

023 x> Dyy(x, 1),

constituting tensor fields of the k +1-th order, such that

1 Fiad
* ~ [11]
D,,(z, )nr(z) =~ areal ™, [B* (z, 1), B> 1], J <(x, Dnr(x)da,
I} 1B+ @,r8), B2, 78]
Hence
‘ 1
* * ~ L (X, da.
A“tay(z) t) @w(z, t)nl‘(z) _ area[F(‘\B(z, "a)] dj (x t)nf'(x)

I} B+ (5 rg), B (z,7p)]
Now assume that

1

e — * * : t . r d ~
volB(z, 1,) ) f Uap (%, 1)¥Dyp(x, Diape,r,(x) da

B(z, r,)

div[*puap(z, 1)*Pap(z, 1)] =

1 . f ¢a(x’ t)naE(z, r')(X) da.

~ volB(z,r,)
. T4 plB, 1), B2 r)]



288 K. Nosis
Taking into account all obtained results, we conclude that (4.1) implies that

2 [Bulz, Dtz Dz, 0] = 3 divlpg (2, 1) Doz, 0]+
y=0

+ ) Sz, D+ ulz, D7z, DBl 1), 4.3)
p=0

hold for a.e. ze Q' and for a.e. t€R.
Let us observe, that from

[ owomeda= [ @ 0+ g, 11da,
T IB¥ (2 ), (B (2 1] Ty plB=(z,1), Bz,

and under assumption that u.(x, ) = pg(x, t) and Fup(-) = 0 we obtain Pyp(x, 1) =
= Dp,(x, 1).
Thus, for every # < 2 and every ¢ € [y, ,], there is

D - ~
2 b e, 0%, 00 = D) [ i, DPune, D)t

(&, 1) y=0 .1
1 ~
D) [ s odot [ aton b od. @
=0 (&1 (&0

At the same time, assuming that pes( -, 1) = ug( -, ) we define
ﬁ;ﬂ(z5 t) = ®aﬂ(z, t)—(pﬂa(z, t);

as a field determining the effect of friction. Condition (4.4) will be called the general
integral macro-balance equation for mixtures and porous media, while (4.3) be the local
form of this equation.

From the foregoing consideration it follows that the general macro-balance equation
in the form (4.3) or (4.4) holds under rather strong regularity conditions, which have been
succesively introduced in this Section. The mixtures and porous media for which Egs,
(4.3) and Eqs. (4.4) take place, will be called the ideal mixtures and ideal porous media,
respectively. '

5. Macro-balance equations for ideal mixtures
and porous media

From the general balance equation (4.4) we shall obtain now the macro-balance equ-
ations of mass, momentum and moment of momentum. It will be done by the speci-
fication of fields ¥o(+, 1), Gu(*, 1), Po(-, 1) and B,(-, t) in (3.1) and (3.2).

5.1. Mass conservation. In order to obtain the principle of mass conservation from the
general balance equations (for a-th component of the mixture), we have to substitute

Yur)=1, Gu()=0, D()=0, B,()=0,
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into Eq. (3.1), where p,( -, t) stands for a mass density of the a-th component in con-
figuration £2§. Taking into account the forementioned substitutions, we obtain fields

P 5 1)y (-5 1) Sap(*5 )5 Bu(+ 5 1), @u(-, 1) and wy(+ , 1) in M where in *IMN

~ 1
s = —
Yz, 1) VollB(z, 1)l f , Yux, Ddo =1,
B(z )Ny
1
*Pay (2, Hnr(2) = areal,[B*(z, 1)), B~ (z,r,)] . f)B . D, (x, tynr(x)da = 0,
%plB* (@ r,), B (z,r,
1 &
* s —
Sel@ 1) = vorB ) f Gy (x, )da = 0, (5.1)

OW[B(Z, r,) B(z,r)|

- 1
* — ES
By (z, t) Vol[B@, F)AE] f By(x, t)dv = 0,
B(z,rv)r\ﬂg‘
1 .
3o ~
0u(z, 1) 2 Vo[BG, )i f 0.(x, t)dv,

Bz, rynet,
vol[B(z, r,)NE2%]
volB(z, r, ’

and where z € S-int*Q*, v, 1, e *N\WN, v < 4,. Now, from (5.1) and from Eq. (4.3)
we obtain .

*a(2, 2)

—,% (Cu(2, Dra(z, 1)) = 0, (5.2)

where g,(z, ¢t) and »,(z, ¢) satisfy the postulated regularity condition and

i o 1
0z, 1) = (vol[B(z,r,,)nQ;] f 0% ’)d‘”)

B(z,r r\.Qt

(5.3)

vz, 1) = °f vol[B(z, r,)n2%] )

x> vol B(z, r,) ’
hold for every z € S—int*Q*. Moreover if & is an arbitrary regular subregion of £, then

D ~
2 | e, otz Yo = 0, (5.4
x(g”,l)

holds. The resulting equations (5.2), (5.4) represent macro-mass balance equations in the
local and the integral form, respectively. Fields ga(:, #), »x(*,?) are not postulated
a priori (which takes place in the known approaches to mechanics of porous media) but
are given by formulas (5.3).

5.2, Conservation of momentum. In this case we have to assume that in the general balance
equation (3.1)

Ta( ) t) = va( ) t)’
Ga-y( ) t) = ta-y( i t):

4 Mech. Teoret. i Stos. 3/86
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Do( 5 1) = Tu(5 1),
B,(", 1) = by(-, 1).
By virtue of the assumptions formulated in Sec. 4 we have

1 f (x, t)dv,

vol[B(z, r,)nL2]
B(z,r)n0},

1

*s(Z, b)) 2 f 1., (x, t)da

ay( s ) VOl_B(Z, rv) ) ay( ] ) »
Pay[B(z' r) B(z, r)l

*Gu(z, 1)

Tu(x, Ynp(x)da, (5.5)

h 1
*To,(z, 1) - f
4 areaf&y [B+(Z, r,,), B (Z; rv)]

TG, [B+(z, 1), B-(z,7)]

e 1
* ~
ba2, 1) = vol[B(z, r,)nL2%] f bu(x, ydv,

B(z,r)n52,

and
D 1

Dt volB(z,r,) f Vu(X, 1) 0u(x, t)do

B(z,r,) r\!)&

= D (4o, 1Yz, 0¥z, 1),

for z € S—int*Q', 1y, » € *N\N, » < Ao. Using the procedure analogous to that applied
in Sec. 4, instead of (4.3) we obtain

D luler e, ules O = ) vl (2, 1) Toyla, O]+

y=0

+ D 50z, 1) +8a(2, (2, B2, 1). (5.6)
»=0
The meaning of u,,(-,?) has been explained in Sec. 4. Here

[t Dmsda.
TgyIB* (z.1,), (B~(z 7))

I ps1(z,t) = ... = pan(z, t) then the following equalities hold

div[*u, * T2, )] = ————
IV[ U, y(Z> t) T)’(z t)] VOIB(Z, rv)

j div [y (2, 1) Tz, )] = iV {1102, 1) Z To(z, 1)].
y=90

r=0
Putting
n
Tty = D Tijz, 1),

y=0

we shall refer Ta(- , I) to as a partial stress tensor related to the a-th component of the
mixture. At the same time, for an arbitrary regular subregion by virtue of (4.4) we obtain
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D - ~
i f@a(z, Dve(z, D0z, dv =
22,0
n n
= Z fuw,(z,t)Tay(z, t)da+211 fsa;(z, t)dv+ (5.7
y=0 2(# 1 y=0 (#,n)

+ [ e oz, b Db,
o2 )

Egs. (5.6), (5.7) represent the local and global form, respectively, of the macro-balance
equation of momentum. The macro-fields occuring in the forementioned equations have

been not postulated a priori but are related to the micro-structure of the body by means
of Egs. (5.5).

5.3. Conservation of moment of momentum. Applying the procedure analogous to that of
Sec. 5.1, 5.2, we assume now that
W(x, 1) = (x—x0) Xva(x, 1),
Gay(x, t) = (x—xo)x tow(xz t),
D (x, hnaa(x) = (x—~x0) X Tolx, 1)npa(x),
Boz(xa t) = (X—xo)xba(x, t)'

Hence in M there are fields ,( -, 1), Suy( -, 1), Toy(*, t) such that in *IN the following
relations hold

(Z_ZO)X*%(Z’Z);vol[B(z,lr)r\Q&] [ =z <o, 1y,

B(z, r, )N -sz

1
(z—X0) X *54y (2, 1) =~ volB(z, ) f (x—Xo) X 1 (x, t)da, (5.8)
I} 1B, r,) Bz, r,)]) /

(2=50) X T, r(2) = o (21 T f (x—x0) x Tu(x, 1)nr(x)da,

L, [B*(z1,), B~ 1,)]

(z—xo)x*l;u(z., 1= vol[B(z,lr YA f (x—xo) X by(x, t)dv,

Bz, r)n 2,

and where

D 1 f
Dt volB(z. r) - Hdo =~
Dt volB(z, r,) 2a(X, £)(x —X0) X vu(x, t) dv

B(z,r,) r\-Qa

~ —l%— [*0u(z, 1)*7,(2, t)(;—xo) x *(z, D]

4%
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Applying the forementioned relations we arrived

D 16u(e, e, )= 30) Xz, )] =

= D) divlay(z, E—0)x Tz, D]+ (59)
y=0

+ ) (2=X0) X Suy(z, 1) 42a(z, 1)(z—X0) X Bu(z, 1).
=0

Taking the time derivation of Eq. (5.9) and bearing in mind (5.6), we obtain

. - Dz .
Ho(2, D dIVZ X T2, 1) = Bulz, Dz, D) J- % Bulz, 1) = 0,

under the extra assumption ?,(-,!) = ... = 9,(-, ) = (-, 1) where
D - .
—Bj—(x, 1 =o(xX,1),t), XeQ.

Hence, after simple calculation, we arrive at

D by (@ ) Tz, 8) = | D) 2, ) Tanz, D] (5.10)
y=0

y=0

Defining
- "
Tz 1) = ) oz, DTz, 1),
y=0

as a total stress tensor of the a-th component of the mixture, we obtain here the symmetry
condition of this tensor.

The resulting equation (5.10) represents the macro-balance law of the moment of
momentum in its local form.

Final remarks

The main feature of the resulting macro-balance equations is that they are not postu-
lated a priori but are derivied from the balance equations for system of unintersecting
and coacting deformable bodies, i.e., from Egs. (1.2). Such procedure has been realized
here by applying the methods of the nonstandard analysis. On this way we~are able to
give the exact fenomenological definitions of mixtures, ideal mixtures, porous media,
and ideal porous media. The approach used in the paper assignes to every term in the
resulting macro-balance equations its physical interpretation in terms occuring in Egs.
(1.2), which have the clear physical meaning. For the particulars and the further analysis
of the obtained results, the reader is referred to [27].
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Pesome

YPABHEHW S BAJIAHCA IJII CMECEW M IIOPHICTHX TEJI
B BUOY HECTAHIAPTHOI'O AHAJIM3A

Ilen HACTOAUIEro COODI(EHHS — TO IIOJNYUMTh, METONAMHM HeCTAHNADTHOCO 8HANM3A, YPABHEHUA
GanaHca A CMecel ¥ MOPUCTHX TEJI M3 M3BECTHBIX YPaBHEHMI GallaHCa MEXaHHMKH CIUIONHBIX cpex. Ta-
¥t TIODXOK [AeT BO3MOMXKHOCTB SICHON HMHTEPNpeTANUA BCeX NOJeH B NOJYYEHLIX YPaBHEHUAX Ganamca.

Streszczenie

ROWNANIA BILANSU DLA MIESZANIN I CIAL. POROWATYCH
W SWIETLE ANALIZY NIESTANDARDOWEJ

Celem pracy jest otrzymanie, za pomacq metod analizy niestandardowej, rt6wnan bilansu dla mieszanin
i cial porowatych wprost ze znanych réwnan bilansu mechaniki kontinuum. Podejécie takie umozliwia
jasna interpretacje wszystkich pél w otrzymanych réwnaniach bilansu.

Praca wplyngla do Redakcfi dnia 12 kwietnia 1985 roku



