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1. Introduction

The method of boundary integral equations, connected with the classical boundary
value problems of potential theory, due'to the progress of modern computational technigues,
has became an effective tool to solve the boundary value problems.

It allows to reduce a three-dimensional problem to a two-dimensional one or a two-
dimensional problem to a one-dimensional one, what is advantageous when solving
the problem numerically.

In this paper, different possible formulations of the problem of a thin plate, with
simply supported or clamped edges, are presented. They lead to a different systems of
boundary integral equations.

One of the possible approaches is through the Rayleigh — Green formula, which
represents a biharmonic function as a superposition of four biharmonic potentials, It leads
to the system of weakly singular integral equations of the first kind.

Besides that, a biharmonic function can be represented in several ways by different
combinations of two biharmonic potentials, what leads to different systems of boundary
integral equations of the first and second kind for boundary functions which in general
do not have a physical interpretation. »

2. Basic relationships and equation of equilibrium for the thin plate

~ A homogenenus, thin elastic plate, we describe in the following way. The middle surface
of the plate is a region S of the plane (x,, x,), its boundary constitutes a curve L (Fig: 1):

xeS; x =[x, x)]. )
The curve L is given in the parametric form:

xeL:x = [x,(D), x;(D], )

the parameter / being the arc length along the curve Z. We assume that L consists of a
finite number of segments of the class C2. t is the tangent vector of L, n is the normal

2x
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Xz

T——px 3

vector directed outwards S:

dx(!
(=20 w) = 10, -u01. ®
By » we denote the internal curvature of the curve L.
A _ 1 a
M(I) - = dl n(l)s n = 77! (4)
the reciprocal of x is the curvature radius o:
) . .
o= (%)

The deflection of the middle surface of the plate in the direction of the x5 axis, describes
the function w = w(x), its derivatives have the meaning of the deflection slopes of the
middle surface of the bent plate with respect to the surface (x,, x,).

We consider now an element of the transversal cross-section of the plate, of unit length,
having the normal vector » and the tangent vector . The -derivatives in the directions n
and ¢ we denote respectively:

/] 0 d /]
A T ©
ow W . . . o
I and T represent respectively the slopes of the middle surface in the directions n
a*w *w ‘ .
and ¢, P and represent the curvatures of the middle surface.

or?
The bending moment M,, and the twisting moment M,,, acting on the element of the
cross-section, are given respectively:

*w Pw. | a?w :
Mnn = —D [a—nz—f"ﬂ—ﬁ] = —D [AW—(I—’V) 3—22], (7)
32
M, = =D(L) 5=, ®

A is the Laplace operator.-
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The transverse force Q, s given as:
a.
Q, = —D—a—Aw. 9)
The limits of the above quantities at the boundary L of S, we consider as the functlons
of the parameter /.
The effective transverse force acting on the element of the boundary of unit length:
d 0 d &w
Qn nt = —D lEAW‘F(I _V)WW], xel. (10)
The equation of equ111br1um of a thin, homogeneous elastic plate, loaded by the lateral
load, described by the intensity p(x), has the form:

P
L'AW = 3, (11)
D is the bending stiffness of the plate:
ER? o
D= oA (12)

where / the plate thickness, E the elasticity modulus and » the Poisson ratio of the material
of the plate (see [l, 2]).

3. The integral formula for the function w
For a function w satisfying in the region S, bounded by the curve L, the differential
equation (11), we can derive the following integral formula.
Let G be a Green function of the equation (11). In the sense of the theory of genera-
lized functions, G is the solution of the equation:

AAG(x, x’) = 6(2)(x—x,), (13)
where d(,y(x—x") is the two-dimensional Dirac delta function. In general G is of the form:
G = Go+Gy, : (14)

where G, is a particular solution of the equation (13), while G, is a solution of the homo-
geneous biharmonic equatlon and satisfies appropriate boundary conditions. We may
take Gy in the form:

4

Go(x, x) = —81? [r*lnr—r?], r=x-—x\ (15)

1 r .
For G, we can take also the function —81— r*lar or o r2ln rL the expression (15) has the

advantage, that its laplasian is proportional to Inr.

In the forthcommg formulae x will be a fixed point of the area § or the boundary L,
whereas x’ will be varying. To the fixed point of the boundary L corresponds a fixed value
of the parameter /, to the varying point of L corresponds the varying value of the para-
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meter I': _ .
xeLix="x(); x'eLx =x'(l). (16)

With primes we shall distinguish-the quantities corresponding to the varying point x’ - _2'3?77

will denote the derivative in the direction normal to the boundary L at the point [ with

J . ' . .
respect to the variable x, whereas ——- o will denote the normal derivative at the point /

with respect to the variable x':

d d d v O
w "o O 17
For x € S we have the following identity:

w(x)

fds’w(x’)csz(x——x') = f ds'w(xA4G(x, x') =

d n. — ’
_fdsw(x)axa e 3x aﬁG(x,x), e, =1,2, x,xeS. (18)

Performing in the above formula four times integration by parts, we obtain the following

formula — called the Rayleigh — Green identity — for the function w satisfying in the
region S Eq. (11):

Ww(x) = f arz'w(x'(l'))_aa7 AG (x, x' (1)~ jﬂ ar ai' w (£ (1)) AG(x, /(1)) +

+fdl'Aw(x ") 3 -G (x, x())- fdl’

)+

+Tlsfds'p(x’)G(x, x'). 19

The formula (19) has the twofold meaning. On the one hand, when the function G sa-
tisfying suitable boundary conditions is known, it allows for the derivation of the fun-
ction w satisfying given boundary conditions, with the given loadings p. On the other
hand, using the simplest G, for example G,, it constitutes the base to formulate the boun-
dary equation; for the unknown functions. The solution can then be found by simple

integration. In particular, the boundary equations method allows for the derivation of G
itself, assuming p to be the concentrate force (see [3]).

4. The simply supported plate

We call the plate simply supported, if the deflection and the bending moment are zero
at its boundary:

i | *w '
.xel:w=0 M,,,, =—D AW'—(_I—W)W = 0. (20)
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If the deflection w is equal to zero at the boundary, its derivatives along the boundary
are equal to zero, in particular:

cel: O_dzw_itaw_azw at gw
VS T gt T Yl o <

_ Pw 4t ow *w ow

TR R rl T @D
Hence:
' 2w aw
~ xEL. W—O:W=%a—n. (22)
For the rectilinear boundary » = 0, the boundary conditions (20) have thus the form:
0%w
xel: w=0, W_O’ (23)
or
xeL:w=0, Aw=0. 24)
For the curvilinear boundary:
2w ow _
xEL..W—-— 0, W‘l‘i’%a—n—- O, . (25)
or
' : ow
xeL: w=0, Aw—(l—v)x—a; = 0. (26)

5. The boundary integral equations for the simply sﬁpported
plate resulting from the boundary formula

The integral formula (19) gives the representation of the function w in terms of the
boundary values of the function itself and its derivatives. We shall call them boundary
functions. The boundary conditions for the function w determine immediately some
boundary functions, being at the same time the integral equations for the remaining
functions, treated as the unknowns in these equations.

We consider first the simply supported plate in the form of a polygon, satisfying the
boundary conditions (24). From the formula (19) it follows, that the deflection function
of such a plate may be represented in the form: ‘ '

W= —jfdz' I 4G jfdl' iy G+——fds’ )

At the same time, from the boundary conditions (24), we obtain the following set of

equations for the functions —gnﬁ and gn_ Aw which we accept as the unknown boundary

- functions, depending on the parameter /:
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0= _fdl' dePG
L

—fdl'—AwAG+— fds’pAG, x,x' eL.
P on’ D E

(28)

For the function G we take the function Gy, given by the formula (15). (If we have used
in the formula (27) not the function G, but the function G satisfying the boundary con-
ditions G = 0, AG = 0, only the last term would remain the this formula, and the boun-
dary conditions would be satisfied automatically).

Deriving the second equation, we have assumed the limit of the contour integral
containing the term 44G to be equal to zero, because from (13):

AAG(x,x) =0 for xe8, x' e, x # x'. (29)

The function Z—: and —%Aw disappear in the corners of the plate. Let us consider

a rectangular corner. If the quantities w and A w disappear at the boundary then its tan-
gent derivatives along the boundary disappear also. But at the corner the tangent deriva-

. o aw
tives along one edge are equal to the normal derivatives along the other edge, B and

13

TAW disappear thus in the corner. The similar reasoning can be carried out for the

corner with arbitrary internal angle.

The set of equations we have obtained, is the set of the Fredholm’s equations of the
first kind, as the unknown functions appear only under the integral sign. The integral
kernels posesses only weak, logarithmic singularities. In the second equation only the

d
57 Aw appears.

Let us consider now the simply supported plate with curvilinear boundary. From the
integral formula (19)and the boundary conditions (26) results the following representation

for the function w;
) 1 aw ’

. . - . aw
Let us mention, that in the boundary conditions the boundary function o appears.

At the same time; from the boundary conditions (26) we obtain the following set of equ-
ations for the unknown boundary functions:

unknown function

f ds'pG. (30)

’ aw ’ a ’
, dw d
0= ——(l—v) —+(1 ») jfdl ¥ e AG fdl'-——AwAG+

[A (1— ] f ds'pG. 31)
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The appropriate derivatives of the function G = G, are given by the formulae 41 (2, 3, 5, 7).
When deriving the second equation, we have taken into account (29) and the limiting
properties of the two-dimensional harmonic potential of a double layer, which consti-

tutes the integral with the kernel a—AG (see A2 (1, 2)). For 2 = 0 equations (31) turn

into equation (28). We assume also that the limiting transition to the plate with corners
(o0 = 0) exists.

‘The second equation contains the unknown function outside the integral sign also,
it is thus the integral equation of the second kind.

6. Different integral representation and the boundary equations for the function w

The integral formula (19) is not the only possible representation of the function w,
which we can use to solve the boundary value problems. In general, we can seek for the
function w in the form: '

= Wo+Wwy, (32)

where wy is a certain particular solution of the equation (11) whereas w, satisfies in S
homogeneous biharmonic equation. For the constant load p we can take for instance wy
in the form:

_r '
Wo-*D 64- (33)

To the biharmonic function w; corresponds the, harmonic function Aw;, which can be
looked for in the form of a harmonic potential of a simple or double layer or their combi-
nation. It suggests different possible representations of the function w,.

Let us consider a polygonal, simply supported plate.

a) Let us try to seek for the function w in the following form:

9 26 '

In the above and in the following formulae, for the function G we shall accept the function
Gy, given by the formula (15). From the boundary conditions (24) we obtain the following
set of equations for the unknown functions f and g (for points located not at the corners
of the boundary):

0= -f(l)+fd1f(1) AG+fdl'g(1) -+ W,
(35)

0= 7g(1)+fdlg(1) an,,AG—I—AwO.

We have made use of 42 (I, 2) and (29). ‘ .
We have obtained the set of the Fredholm’s equations of the second kind. The kernels
of the equations are non-singular. At a tectilinear segment of the boundary, to which
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. . - . oG
belongs a point /, after performing the limitary transition A2(2), the expressions o

3/ AG are equal to zero.
on

The functions fand g do not have any direct physical meaning, they need not satisfy
also any special conditions at the corners. '

We can consider the above way of derivation of the boundary integral equations
for the boundary conditions (24) as the analogue of the classical solution of Dirichlet’s
problem. -

We shall not use the representation (34) to derive the boundary equations for the
plate with a curvilinear contour, because we would obtain in this case the equations with
strong singularities, what we want to avoid. For polygonal plates, we can use also the

and

b) The natural representation of the deflection function of a loaded plate is the repre-
sentation in the form of a sum of particular solution wy and the solution due to_the distri-
butions along the boundary of the appropriate forces and moments (see [3]):
oG
a 14

g(ING+w,. . (36)

From the boundary conditions (24), we obtain for the polygonal plate the following set
of equations (for points located not in the corners):

0= f arfny 28 o SN f dl'g(IY G +w,
37

gNAG+4dw,,

and for the plate with a curvilinear boundary, from the boundary conditions (26), the set
of equations:

0 = f dI'RI") gf—,qu f g G +w,,
. L L

1 " 9 96
0=T2—f(l)+fd1f(1 [ 5 AG— (1= 3n]+ _. (38)

/] /]
+ ¢ dl'g(l) [AG—-(I— ) —Gl+[d— 1—v) -—] 0+
f MK . . (1—»)x gl

The appropriate derivatives of the function G are given by the formula 41 (2, 3, 4,5, 7).

We have obtained the set of equations, where the second equation containes the boun-
dary function outside the integral sign, is thus the integral equation of the second type.
The equations for the polygonal plate differ from those for the plate with curvilinear

boundary relatively little. The second equation contains the weakly singular integral
with the logarithmic kernel. - :
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c) We can also look for the function w in the form:
W= fdl'f(l’)AG+fd1’g(1’)%(i,+ Wo. . 39
L L "
For a polygonal plate, from the boundary conditions (24), we obtain the equations:
0= f.dl’f(l’)AG+3[dl’g(1’) g—g-l— Wo,
(40
0= —g(l)+ fdz'g(z) 4Gt .

whereas for the plate with a curvilinear boundary, from the conditions (26), the equations:

0= §arfwyac+ § dl’g(l’)g—r(l;,+ Vo,
L L

= - (=) DAD — (1= 9)(D f ALY 2 G+ gD+ (41)

3

+j§ dlg(l') ~A4G—-1A-»)x) fdl g(l' ¢ - F 4 —=(1—=»)x(D]w,.

The appropriate derivatives of the function G are given by the formulae 41 (3, 4, 5, 6, 7).
The second equation is of the second kind, the first equation is of the first kind. For
» = 0 the set of equations (41) turns into the set of equations (40).

7. The plate with clamped edges
A plate is called clamped (or with clamped edges) if the deflection and the deflection
slope are equal to zero at the boundary:

xeL: w=0, %’li_o . (42)

From the integral formula (19), the following representation results for the deflection
function of the plate under the lateral load p(x):

w=§dlAwa,G fdl'a, fdspG (43)
From the boundary conditions (42), we obtain the following set of equations for the

function Aw and

aa, Aw on L, Wthh we accept as the unknown boundary functions:
o~§dmwa,G—§dITA fdspc

, 0 L , 3G (44)



268 E. Kossecka

The appropriate derivatives of the function G are given by the formulae A1(2, 3, 4).
We have obtained the set of equations of the first kind, the first one being non-singular,
the second one being weakly singular. The form of the equations does not depend on the
shape of the plate. In the case of a polygonal plate, the boundary functions disappear

in the corners. (From the disappearance of w and iw_ at the boundary follows the disap-

on
f Fw Do and 32- f h follows the disappearance of A4 d
pearance o 2 3E n B By rom here ow isappearance of Aw an
d
a—nA_w).

We can consider the representation (43) as the particular case of the representation:
G
W= f dl'f:
L

d
on’
where w, is the particular solution of the equation (11).
Besides the representation (43) or (45) for the function w, we can make use of the
other integral representations.
a) Let us consider the representation:

+ _7( dl'gG+w, (45)
L

w= §dIfAG + § dl'gG+wo. (46)
L L

From the boundary conditions (42), the following boundary equations for the boundary
functions f and g result:

P

0= §dI'fAG+ § dl'gG+ws,
L L

1 9 3G ow @47y
o~ 30 far L aor fure 30
2f(l)+L dl'f Em AG+L_ dl'g 5 T o
b) On the other hand the representation:
w = fdzyAG+_7fd1'gg%+wo, : (48)
L L ’

leads to the boundary equations:

0

a]

fdl'fAG+ fdl'g?—f,%—wo,
£ p

96, aw, “

0 Iwo.
o T on

i

_ L f i 9 j( g9

In the sets of equations (47) and (49) we find the equation of the second kind with respect
to the function f and the equation of the first kind with respect to the function g. The

functions f and g need not satisfy any special conditions in the possible corners of the
boundary.
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8. Conclusions

The deflection function of a thin, homogeneous, isotropic plate, laterally loaded, as
a solution of the nonhomogeneous biharmonic equation, can be represented in several
ways with the help of appropriate biharmonic potentials, with densities playing the role
of boundary functions. The boundary value problem is reduced in this way to the solution
of a set of the boundary integral equations for the unknown boundary functions.

The most natural representation is one following from the Rayleigh — Green boundary
formula, where boundary functions have the meaning of a deflection, deflection slope,
bending moment and the transverse force at the boundary. However another represen-
tations can lead to ,,better” sets of integral equations, containing equations of the second
kind, whereas from that formula equations of the first kind follow, (see [5]).

Appendix 1

The derivatives of the Green function of the biharmonic equation:

- 1 2 27, eyt
G—E[rlnr *; r=x-—x, (1)
oG 1 :
= g (ORInr—1], @)
oG 1 '
a—n, = ——8;;(",")[2111""‘1], ’ (3)
Jd G _ 1 , (nr)(n'r)
AG = L lar, | )
2w
d 1 (nr)
i P R ©
d 1 (n'r)
= e———— 7
on’ 2n 2 ™
Appendix 2
Properties of the two-dimensional double-layer potential, Let # be the potential:
= _1_ i 4 4 a = l f 4 4 a 2 2
u(x) = o j dl,u.(l)a—n, Inr = EL dl'u(l g A[r2lnr—r?),
' ()

r=x~x'(IY; xef8, x({)elL,

L being the boundary of the region S. Denote by u; and . the interior and exterior limits
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of u at the point x belonging to the smooth boundary L - u; and u, are given respectively:

u (x()) = —21—7: fdl’y(l’) 3in' 1nr+%y(l), Q)
)2
u.(x(N)) = % fdl’,u(l’) Bin' lnr—izu(l); x(heL, x'{NelL. (3)
i

where the integrals are to be understood in the sense of a principal value.
More generally, relaxing the restriction to'a smooth curve, if x is located at a corner
of the boundary having an interior angle £2(x), then (see[4]): ,

Q2
u () = o § ) T+ [17;]#(1), @
L
0o (2(0) =~ § dlp) e tmr— ). B
L
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Pesrvome

KPAEBBIE MHTEIPAJILHBIE YPABHEHHE B TEOPMHM TOHKHX IUVIACTHHOK

Kpaepaa sagaua mua guddepeHInansHoro ypaBHEHHS MANbIX M3THOOB TOHKOH INIACTHHIM, IO~
XIEPEUHO HAIPYHEHHON, MOYKET OBITE IPHBENEHA K CHCTEME MHTErPaNbHEIX YpaBHEHAN, COOTBETCTBYIOMIMX
JAHHOMY NPENCTABJIEHMIO (yHKIMHM W3ruba. BosMOXKHB! pasiMuNble MHTCIPAJIBHBIE IPEICTABJICHUSA
Yepe3 GHrapMOHMUIECKHE ITOTEHIIMANbLI, NPHUBOAALUME K DPA3HLIM CHCTEMaM MHTErpPaybHbIX YPABHEHWH,

Streszczenie

BRZEGOWE ROWNANIA CAEKOWE W TEORII CIENKICH PLYT
Problem brzegowy dla réwnania rozniczkowego opisujacego male ugigcia cienkiej plyty, obciazonej
poprzecznie, moze by¢ sprowadzony do nkladu rownan catkowych dla okre$lonych na brzegu plyty, funkeji

brzegowych, odpowiadajacych danej representacji funkcji ugiecia. Mozliwe sa rézne representacje catkowe
poprzez potencjaly biharmoniczne, prowadzace do réznych ukladéw réwnan catkowych.

Praca wplynela do Redakcji dnia 24 maja 1985 roku.



