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1. Introduction

The problem of static buckling of viscoelastic columns under constant axial forces
has been solved by DE LEEUW [1]. Applying the correspondence principle and analysing
the properties of elasticity moduli the critical loadings for several viscoelastic models
have been obtained. One of the first analyses of the dynamic stability of viscoelastic conti-
nuous systems has been made by GENIN and MAYBEE [2]. In this paper the stability
of a beam made up of a linear Voigt-Kelvin material with viscoelastic boundary conditions
has been investigated. In the next significant study PLAUT [3] has used the Liapunov
method to determine the stability criteria of viscoelastic columns subjected to compresive
axial loadings. Using the same method WALKER and DIXON [4] have examined the
effect of a linear structural damping on the stability of plane membranes adjacent to
a supersonic airstream.

The dynamic stability of continuous systems under time-dependent deterministic or
stochastic loadings has also received much attention, e.g. (KOZIN [5], ARTARATNAM
and TAMM [6], TYLIKOWSKI [7]). The problem was solved not only for a simple
elastic column subjected to an axial time-dependent force but also for arches, panels,
plates and shells. In most papers the dissipation of energy was described by an external
viscous model of damping.

In the present article the applicability of the Liapunov method is extended to linear
Voigt-Kelvin systems subjected to time-dependent deterministic or stochastic parametric
excitations. Using appropriate functionals general sufficient conditions for the asymptotic
stability, the almost sure asymptotic stability as well as the uniform stochastic stability
are derived. The paper describes the two general approaches to the stability analysis and
present some illustrative examples.

2. Problem Formulation

Consider a Hilbert space o of all summable functions having all generalized deriva-
tives of order < 2n on the open set £2, summable to the power 2, independent of time,
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possessing a suitable inner product {.,.» and a dynamic system, which is assumed to be
well defined by the equation

I

'12+DL2+Ku+§(E[+q,)L,u=0, xef2, 0
under the condition that at every fixed ¢ € [0, o) the state of the system (i, ir) belongs
to the product ¥Yx Y, where ¥ (¥ < A7) is a subset of functions belonging to 2, which
satisfy given linear time-independent boundary conditions on the boundary 92 of Q.
Operators K, D, L; are linear differential with respect to spatial variables. X is self-adjoint
of order 2n, D is of order <2n, L; are self-adjoint of order <n, ¢; and &; are constant and
time-dependent loading components, respectively.

The question of interest is the stability of the eqilibrium (, &) = (0, 0) for a general
system of the form (1). To estimate deviations of solutions from the equilibrium state we
introduce formal stability definitions using a scalar measure || - ||, which is the distance
between a solution of equation (1) with nontrivial initial conditions and the trivial solu-
tion. The study of stability of equilibrium state splits into three branches. First, under
the assumption that the time-dependent components of forces are deterministic functions
.of time, conditions of the asymptotic stability of the trivial solution, i.e. conditions that
imply '

lim]ju|| = 0
0
are derived.
Our second purpose is to discuss the almost sure asymptotic stability of the trivial
solution, i.e. that corresponding to the equality
P{lim|[u]| =0} =1,
>0
if the forces &; are stochastic ,,nonwhite” processes.

In the third case, if the forces are the Gaussian white noises, we investigate the uniform

stochastic stability, i.e. we formulate conditions implying the logic sentence

A AN lut, 0l < r :P{tsipo (., Ol > a} < &,

8>00>0r>0 =

We are poing to study the foregoing kinds of stability via the Liapunov functional
approach. In order to employ the direct Liapunov method we construct the class of func-
tionals as follows

[
V = alit, #y + (1 —a) {i+ Du, i+ Dup +<{u, Kud +<u, Z a;L; w>, )
i1

1

h < —=.
where 0 < « 5

1 .
For a = 5 we have the functional similar to ,,the best” functional applied by KOZIN

[5]. The mentioned functionals are the same only if the dissipation operator corresponds
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to the viscous model of damping. For « arbitrarily small but positive we obtain the func-
tional similar to that introduced by PLAUT and INFANTE [8].
The functional ¥ satisfies the desired positive definite property if

!
G, Ky +{u, D) g L) > 0, ©)
=1

j.e. if the classical condition for the static stability is fulfilled.

3. Asymptotic Stability and Almost Sure Asymptotic Stability
We can give a unified treatment of stability analysis for both deterministic and sto-
chastic ,,nonwhite’” processes. Under this assumption a classicial stability analysis can be

applied. We choose the Liapunov functional in the form (2) inserting « = %

!
T . -
Vi =~ ity i + = i+ Du, v+ Duy + Ku>+<u,;l’q,L,u>. @

If condition (3) is satisfied functional (4) is positive definite and its time-derivative along
equation (1) is

! !
d;zl - —<(1<+ Zq,L,) u,Du>—<212+Du, Zfl(t)L,u) (9
i=1 I=1

Our object is to obtain bounds on ¥V, that will guarantee the asymptotic stability or the
almost sure asymptotic stability. In order to do this we transform (5) into the form

av,

L - 24V, +2U,, (6)

where U, is the known functional and 1 is a parameter describing the intensity of damping.
"We now attempt to construct a bound

Ul < XVI; (7)

-where the function y is to be determined. Substituting (7) into (6) and solving the obtai-
ned differential inequality we have

!
Vi(t) < Viexp{—241+2 [ y(s)ds}. (8)
0
‘Thus, it immediately follows that the sufficient stability condition for the asymptotic
stability with respect to the measure ||« || = l/fV_1 is
1
lim - | y(s)ds < 7, ©)
tooo £ h)

‘9 Mech, Teoret. i Stos. 1—2/86
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or for the almost sure asymptotic stability, if the processes &, are ergodic and stationary, is
Ey <A, (10)
where E denotes the operator of the mathematical expectation.

4. Uniform Stochastic Stability

If the excitations are the Gaussian white noises equation (1) should be rewritten in the
1t6 differential form

du = ’Udt,
I I
dv = ——(Ku+D7)+ 241@”)‘”’ Z&'lL,udw,, D
i=1 =1

where w; are the standard uncorrelated Wiener processes with intensities ¢,;. As realiza-
tions of the Wiener processes are not differentiable the Ito calculus has to be applied in the
stability analysis (see e.g. CURTAIN and FALB [9]). Taking functional (2) we calculate
its differential

! !
av = {20(v, —Ku-Do— D q.Luy+2(1-a){v+Du, ~Ku— > qLu)+
i=1

i=1

! 1
+2¢o, Kuy+2{v, ) L)+ D oXLyu, Liudldr+
i=1 i=1

!
+2{v+(1-) Dy, — 21 g Ludw,). (12)
=

On integrating with respect to ¢ from s to zs(f), where
75(1) = min {7, £},
75 = inf {¢: [[u]| > 6 > 0}
and rearranging the integrand it follows that
75(8) !

V() = V(s)—2-f {a(‘v, Do)+ (1 — ) Ku, Du) + (1 —a) <Dw, 2 q,L, u>—
s i=1

! 75(1) !
1

- 2 oXLyu, L,u>}dt+2 f {o+(1- a)Du,Z o Lyudw,). (13)

i=1

i=

We now take the conditional average of equation (13) remembering that the second
integral is a stochastic one, so the conditional average of it is equal to zero

z3(1)
EV (v5(2)) = V(s)—2Ef {a(v, Doy + (1 — a){Ku, Du)y +

!

2
+ (1= {Du, D aiLiy— ¥ oKL, L) (14
i=1

i=1
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We see that the functional V(z,(¢)) is a supermartingale, i.e. EV(7,(¢t)) < V(s), if the
integrand of equation (14) is nonnegative. Neglecting the first positive term adv, Do)
and proceeding similarly to the proof of the Chebyshev inequality we have the following
chain of inequalities

Vo) = EV(n@®) = [VE)P@) = [ V((@s0))Pdy) > P {supllul] > 63,

{y:sup|lu|] > 3} tzs
tzs

where y € (I', B, P), i.e. y belongs to the probability space I" with o — algebra 8 and pro-
bability measure P. Setting s — 0 we conclude that the trivial solution of equation 11y
is uniformly stochastically stable with respect to measure || || = ¥'/2, if the following
inequality is satisfied for every ueY

i

1
(1—o) <Du, Ku+ Zq,L,u —%Zo‘f(L,u, Lyuy = 0. (15
i=1

i=1
If o is arbitrarily small but positive, we shall obtain the largest stability region as
a function of damping parameter-and intensities o;, so the weak inequality (15) becomes

1 1
{Du, (K+ Zq,L,)u>—T,l): Y oX L, L > 0, (16)
i=1

i=1

5. Asymptotic Stability and Almost Sure Asymptotic Stability of a Viscoelastic Beam
Compressed by a Time-Dependent Force

Let us consider a straight simply supported beam of constant cross section. If the
linear Voigt-Kelvin material is assumed the equation of transverse motion obtained by
the correspondence principle has the form

£

o 1220 U+ E+u” =0, xe(0,1) Q17)

where prime denotes the partial differentiation with respect to the spatial variable x,
ou . . . e .
V= A is the dimensionless retardation time, g and & are constant and time-dependent

components of the axial force, respectively.
Wechoose the functional in the form (4)

1
V, = f [%vu%(wzzu"")z+(u")2—q(u’)2]dx' (18)
0

o
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The functional (18) is positive definite if the Euler condition is fulfilled g < #2. Upon
differentiating ¥, along any solution of equation (17) we obtain the equation (6) where

1
U = [ [= M0 = 22— how' + 2E@™")? + Mg +
0

A (0P 420 4 2R (0 — () .

In order to determine the function 4 that satisfies the inequality (7) we apply the varia-
tional calculus and solve the problem 6(U, —xV,) = 0 via the associated Euler equations,
After extensive but straightforward computations we find the function y to be

¥ = A+ max {nn A% (am)® + —i—‘ / V (nm) 21 + lz(nn)“]—q.— l(mz)"'}.

n=1,2,..

The asymptotic stability regions as functions of o2, ¢, evaluated numerically in the
case when the load is a deterministic periodic (sinusoidal) process are shown in Fig, 1,
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Fig. 1.

where the variance of the sinusoidal process is equal to the half of the amplitude squared.
As the second numerical example we take the beam compressed by a Gaussian process. The
dependence of the stability regions on the retardation time A, variance ¢ and constant
load g is shown in Fig. 2.
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6. Uniform Stochastic Stability of a Viscoelastic Beam Compressed by the Gaussian white
noise

If the load acting in the beam axis is a broad-band Gaussian process we model the
excitation by means of a white noise of intensity o and rewrite equation (17) in the It6
differential form

du = vdt,
/

do = —@W" +20"" +qu’)dt —ou'" dw, (19)

where w is the standard Wiener process. Using the functional ¥ defined by (2) we obtain
the simpler form of the general stability condition

! 2
‘ (A(u””)2 —Aq(u'")? — -% (u”)z)dx > 0.
0

Finally the condition for the uniform stochastic stability of the undeflected beam is given by

A > o%/4n*(n*—q).
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" 7. Uniform Stochastic Stability of a Plane Bending Form of a Viscoelastic Thin-Walled
Double-Tee Beam

Let us consider the flexural-torsional stability of a thin-walled double-tee simply sup-
ported beam subjected to broad-band Gaussian couples m acting on both ends in the
plane of greater bending stiffness. Assuming the technical theory of thin-walled beamg
we neglect rotatory inertia terms and an influence of transverse forces on displacements
of the beam and describe the displacement state by the axis displacements and the angle
of torsion. As we are going to examine the stability of the plane form we can omit the
equation of motion in the plane of the couples and describe the deviations from the plane
state by the transverse displacement u of the beam axis and the angle of torsion ¢. Using
the correspondence principle we have the equations of motion in the form

do

W‘ +2lelvllll+elullll+m(pll —_ 0’

%‘l;)_ +2l€21p””—|—82(p””—2&€3!’[)”—83 w”-{-mu” —_ 0,

(20)

where v and y are linear and angular velocities, respectively. Constants e,, e,, e; denote
bending, warping and torsional stiffnesses, respectively. 4 is the retardation time of a Voigt-
Kelvin material. Modelling the broad-band couples as a sum of the constant component
g and the white noise w with an intensity o we rewrite equations (20) in the It6 differen-
tial form

du = vdt,
d‘v - (elu”I’+2e17)”,’+ql’)dt""o'¢lldw’
1)
dyp = ydt,
dy = —(ey@"""+2e, """ —es " —2Ae39" +qu’)dt—ou''dw.
We can now identify the operators
K = [el(‘)lul IIS II]
0 ()" —es()
0 . 43
t=ley o]
¢y 0
D = 2JK.
The functional is specified as follows
1
Vo= f {0@*+ )+ (11— ) (v +24e,u""") 2+ (p +2e, 9" —22es9")? ) +
0
(W) Fex(p R+ es() —2qu'"p)dx. 22

The form (22) is similar to the functional used in a stochastic stability analysis of thin-
walled beams with external viscous damping (TYLIKOWSKI [10]).
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Assuming that the both ends are simply supported and are free to warp we have the
following boundary conditions
p(1,0) = 9(t,1) = ¢"(,0) = ¢"'(1, 1) = 0,
u(t,0) = uft, 1) = u"(t,0) = u'’(t,1) = 0.

Functional (22) is positive definite if the well-known Timoshenko condition for lateral
stability is satisfied by the constant component g

(23)

q < 75]/6’1(6’34‘6’2752)-
Specifying general stability condition (16) we get
1

f{e%(uuu)z+e%(¢lul)2+e§(¢u)2 +2€2€3((P”’)2 +qel ll””q?”-l-
0

1
+qe, ¢ —gesp''u’ — HO‘Z (@2 + (<P")2)}dx > 0. @4

Integrating by parts and using boundary conditions (23) one can show that
1 1

fu""q)"dx — fu"(p""dx,
0

0
Using this property and applying the elementary inequality

1 2 1 2hL2
-I_-ab = — 'Ea—za —_— —2—06 b
to condition (24) we have
1

[ {le2—(eu + e 2071w"Y? 12023 + €39 )+
0

+e3(p")2 +2e,e5(¢ ) — g202(¢")? — 0 221 (") + (9") ]} dx > O,
where o2 is to be determined. Taking into account the extremal property of minimal
eigenvalue of boundary problem (23) we obtain the following inequality

1
[ {[(€% — (e, +e2)2/20) m* — €3 /202 — 02 [22] () +
0

+ (2% + €3)* —q*0* — 0%/22] (¢"")?}dx > 0. 25

Setting the first coefficient of integrand equal to zero and solving for the coefficient oe?
we find

a? = [(e,+e,)*n* +e3/[2(etn — 0 [20)].

Substituting «? into inequality (25) we obtain the sufficient condition for the uniform
stochastic stability with respect to measure || - || = F*/2

< l/ o o’ ] 26)
T e [l"m”“m’
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where
oo =1/ 2T o)
The condition (26) generates a stability region shown in Fig. 3.
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8. Conclusions

The applicability of the Liapunov method has been extended to linear Voigt-Kelvin
continuous systems subjected to timedependent deterministic as well as stochastic para-
metric excitations. Two different dynamical models have been used, the first when the
excitations are deterministic processes or stochastic nonwhite processes, the second one
is applicable to describing the Gaussian white excitations. The class of Liapunov functio-
nals useful for analysing both asymptotic stability and uniform stochastic stability has been
proposed. Obtaining asymptotic stability and almost sure asymptotic stability criteria
for the first model has been reduced to solving an auxiliary variational problem. The expli-
cit stability criteria for stability of an Euler beam compressed by a periodic or stochastic
force and a thin-walled double-tee beam bending by two broad -band Gaussian couples
have been obtained as an application of the derived theory.
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Peswme

TMHAMUWYECKASL YCTOWYUBOCTDL BSI3KOVIIPYIMX CHCTEM IO NENCTBUEM
HATPY3KM 3ABMCUMOW OT BPEMEHU

B paGoTe NpEACTaBJIEHA BO3MOMHOCTD TIDHMEHEHHS NPSIMOr0 Meroaa JIAnmyHoBa K HCCIEXOBAHHIO
YCTORUMBOCTH JIMHEHHBIX HENPEPBLIBHBIX BASKOYNPYIHMX CHCTEM IPH BO3AEHCTBHUH 32BHCHMOLO OT BpE-
MEHH JIETEPMBHUCTHUECKOTO M CTOXaCTHYECKOTO NapaMeTPUUIECKOro Bo30y »KaeHus1. BBemen ofmuit wiace
dynxuonanos JIANYHOBA yHOOHBIA B 2HANM3E YCTOMYWBOCTH PasHOOODAa3HBIX HENPEPLIBHBIX CHUCTEM.
2dEKTHBHO NOJNYUEHBI JOCTATOUHBLIE YCIOBHA ACHMMNTOTHUECKOH YCTOMUMBOCTH, ACHMITOTHUECKOH
YCTOMUMBOCTH C BEPOATHOCTIO 1 M DABHOMEDHOH CTOXacTHUECKOH YCTOMUMBOCTH HEBLIUTYUYEHHBIX (hopMm
cuctem 13 mareprana Poiirra-KemsBura. B Buie NpumepoB HCCIEN0BAHO AUHAMUYUECKYIO YCTOHYHMBOCTE
cTepyxHsA Disiepa CHATOTO MEPHOIMHUECKOH HITH CTOXaCTMUECKOH CHIIOH M 3a1auy JUHAMIYECKOH yCTOoHYH-
BOCTH IIOCKOH (POPMBI M3rH0a TOHKOCTEHHOrO CTEPIKHA NPY BO3AEHCTBUH LUNPOKONOIOCHBIX HOPMATb~
HbIX MOMEHTOB.

Streszczenie

Streszczenic

DYNAMICZNA STATECZNOSC LEPKOSPREZYSTYCH UKLADOW PODDANYCH DZIALANIU
ZALEZNEGO OD CZASU OBCIAZENIA

W pracy pokazano mozliwoéé zastosowania bezpoéredniej metody Lapunowa do badania statecznosci
liniowych lepkosprezystych ukladow cigglych poddanych dzialaniu zaleznego od czasu deterministycznego:
lub stochastycznego wymuszenia parametrycznego. Wprowadzono klas¢ funkcjonaléw Lapunowa wygod-~
nych w analizie statecznoéci réznych ukladéw ciaglych. Efektywnie otrzymano dostateczne warunki
asymptotycznej stateczmodci, prawie pewnej asymptotycznej statecznoéci i jednostajnej statecznosci sto-
chastycznej nieodksztalconych postaci (rozwiazan trywialnych) ukladéw Voigta-Kelvina. Jako przyklady
zbadano dynamiczng stateczno$é preta Eulera Sciskanego okresows hub stochastyczna sila oraz dynamiczna
stateczno§é plaskiej postaci zginania cienkosciennego preta pod dziataniem szerokopasmowych normal-
nych momentow.

Praca wplynela do Redakcji dnia 24 maja 1985 roku.



