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1. Formulation of the problem

In the case when kinematic nonlinearities is taken into account the elastic deformations
may have essential influence on both the initiations of elastic-plastic process and its termi-
nation. Basic equations for symmetric, rigid-plastic deformations of a toroidal shell,
loaded by in-plane bending and pressure, have been derived in [2]. The purpose of this
paper is to generalize these results to the case when elastic-plastic deformations are allowed
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for. Similarly as in [1] we consider deformation of an incomplete torus as the rotationally-
symmetric problem in broader sense, since circumferential displacements are allowed
for (Fig. 1). Thus, geometric assumptions investigated in [1], as well as the notation in-
troduced there, have been retained, Let the parameter of change of principal curvature
x be defined as an increment of angle in the circumferential direction

k= di[di—1 1n
The Cauchy strain rates derived in [1] have the following form:
(68_(/:)1 = 63ji' 6%_/, j = (p,?9 (12)
where
— Suysing + du cos g og’
da, = : o ,  Ox, = R, (1.3)
ou, u, — dpsinp(l +x)+ dxcos
531,=—R—(1+z<)+a,<(1+§), by = 09500 R) ¢,
du,cosp+ du,sing

bp = — R
d and ( )’ denote the derivation with respect to time-like parameter v and material, angular,
meridional coordinate, respectively., Other symbols used in (1.3) denote:
‘ @, ¢ — angular, meridional coordinate in deformed and undeformed state,
8, 6 — angular, circumferential coordinate in deformed and undeformed
state,
993 99 — elongations at the middle surface,
,,,I;f, He = Hy H— parameters of increments of the mlddle surface curvature change
of unit angle,
R, R(,)(H R= RO)H — radii of undeformed element,
U = u,(H Uy = u,)H — radial and axlal middle surface displacements.
All quantities are dimensionless, H is the half distance between sandwich sheets (“denotes
dimension quantity).
The radii of curvature in current configuration r,, r, are related to R,, Ry by:

X)

cos¢

rp = R |9, ryg= o—(m- 1.9
According to [2] the dimensionless, generalized stresses have the following form:
N, = 2 (o +o7)
(1.5)

1 .
My =5 (-of+o7), j=g,9

where N, = N, [26,T, M, = M;[26,HT, o, = &,/50,
&9\ — tensile yield stress of sandwich sheet material,
T — initial thickness of sandwich sheets.

Superscripts +- or —denote quantities evaluated in the exterior or interior sandwich sheets
respectively,
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Moreover, the system of equations of equilibrium derived in [2, 3] will be applied
here in the following fashion:

(RN,) + R, sing(l1+1)Ny+¢' RS = 0
(RSY —R,(1+x)Mycosp—@'RN,+RR,p, = 0 (1.6
(RM,) + R,(1+1) Mysinp+RR,S = 0,
where S = .§/280 T— shearing force (reaction), p, = 13,,]17/2&0 T — normal pressure. For

the uniform presenting of the final system of equations, we transform the upper system
(1.6) to the convenient, incremental fashion:

RON,+ R ON,+ R, [sing(1 4 x) 0Ny +Na(1 + 1) cos pdp + Npsinpox] +
+ RSO¢" + Ry’ 0S5 = 0,

RS+ R'6S+ R,[(1 4 k) Mysingpdp— (1 + k) cos pd My — My cos pdx + Rdp,] —
+ RN, 0’ — Re’'6N, = 0,

ROMy+ R Mg+ R, [(1+x) OM,sing+ (14 1) Mycos pdp+
+ M, dxsingp+ RAS] = 0.

(1.7

2. Physical relations

The material of working sheets of perfect sandwich-wall is assumed to be elastic/per-
fectly-plastic, isotropic, perfectly incompressible and to obey the Huber-Mises-Hencky
yield condition, Under the assumption of plane stress state, this condition takes the form:

(03)—0305+(03)* = 1 @D
The similarity of deviators will be generally applied in this paper as the physical law.

From among six possibilities postulated in Table 1 which complete those discussed in {2}
to the case when elastic strains are allowed for we shall use here the Prandtl-Reuss theory.

Table 1
: Incremental theory of plasticity
Deformation theory lasti .
of plasticity ) i elastic strains )
neglected allowed for
‘ 1
Small er = Ps; de; = Sys de; = Sys;+ E65,
strains Hencky-Ilyushin H-I Levy-Mises L-M
y-lyusn evy-iviises Prandtl-Reuss P-R T
' i
Large el = As§ dell = 6As§ delf = 045§+ —Os§
strains Nadai-Davis N-D I Nadai-Davis N-DII 26
Prandt]-Reuss P-R II
C — Cauchy stress tensor, H — Hencky strain measure, i = @, &, z. Variants of constitutive equa-

tions
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Since in the problem considered we deal with irrotational deformation, we need here
only the principal components of Hencky strain tensor instead of its tensorial expansions
in broader case of deformation [4]. Introducing dimensignless scalar factors dp* =
= 89*/36, and dimensionless Kirchhoff’s modulus G = G/d,, we obtain:

(deg)t = —61—6.- (200 — 8oF) + 8y* (20 —o})
(2.2)
(665)1 = 61*G (200} — 6o‘$)+ dptQof — o'qf)

Equations of internal equilibrium (1.7) and kinematic relations (1.2) - (1.4), together with

the physical equations (2.1-2.2), constitute system of fundamental governing equations.
They determine the vector of unknown variables

(2.3)

where in (2.3) the two last are loadings parameters. We assume the vector as the basic
in our approach, other uknowns Ny, M, and scalar factors dyp* can be simply eliminated
by applying (2.1) and (2.2). In this way the problem may be reduced to the solution of
system of six nonlinear, coupled, partial differential equations, linear with respect to the
time-like parameter 7.

3. Basic differential equations
In the P-R I formulation we consider time derivatives of first six components of vector

I' (2.3) three kinematic — du,, du,, d¢ and three static — ON,,, 8M,,, 65 as basic uknowns
for the governing system of differential equations:

dp' = —%Rq,(éF"‘ —6F),
Ou, = —R,dpcosp— %Rq,((SF“‘ +d0F )sing,

511; = _Rwd(psinq)-l-%.Rq,(dF*-F 6F_)COS<P, (3.1)
8N, = R, {6N,sing — 6N,(1 +x)sing—Np[(1 +x)cos pdp +sin pdx] } /R —

/85— %Rq,(cSF* —8F)S,
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OM, = R, {dM,sind — SMy(1 +1)sing— M,[(1 +1) Spcosp+singpdu] }/R— (3.1)
[cont.]
+R,4S,
8S" = R,{0Ssin ¢+ ONy(1 +x)cosp+Ny[Orcos p— dp(l +x)sing] }/R+

+R¢[%(5F+ —OF )N+ ¢ ON,— 51;"1 s
where, new uknown is defined
OF* = 2[61_G (0N, F 0M,)+ dp=(N, F M,,.)} - lg% (ONy F OMy)+ op*(Ny ¥ M) | (3.2)

and scalar factors dy* takes the form:

‘0 for elastic domain.
oyt = |

{[614,(1 +x)/R+ ox(l +u./R)]— 616[2(5N0 FOM;)— 53

+ (0N, ¥ 6Mq,)]}/ [2(Np ¥ My)— (N, F M,)] for elastic domain.

To determine all eigth components of vector I' (2.3), we have to complete the system of
differential Eqs. (3.1) by two additional equations — equation of trajectory

“h(I) =0 (X))
and definition of a monotonically increasing quantity as time-like parameter

T =d(l"). (3.5

4. Numerical solution of the problem

The basic system of equations (3.1 - 3.5) as the system of partial, differential equations
describes the initial/boundary problem. It can be reduced to two independent problems,
initial and boundary problems, by discretization of time-like parameter T along the tra-
jectory (3.4) into intervals A<, with 7, = 0 corresponding to the beginning of the process.
For each step of time z;, we assume, the simplest, linear extrapolation for vector I" accor-
ding to Euler’s formula:

I1|,=,, = F|,=,‘_1+5F|,=,,_l, i=z1 “.1)

which is also valid for the derivatives with respect to ¢ variable of I'. The above relation
(4.1) must be completed by the condition at = = 7, (the initiation of the process) which
takes, generally, the form:

FIT:TO = FO- (42)

For the problem considered the vector of initial condition has the form:
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(4.3)

'OOOOOOO-$

Other forms of the initial vector I'y depend on the assumed material of the shell (for
a rigid /perfectly-plastic material the seven or the eight component of I, must be different
from zero) or on the considered initial, geometrical imperfections of torus.

Replacing all components of vector I” and its derivatives with -respect to ¢ variable
in the system of equations (3.1 - 3.5) by the relation (4.1) we obtain at each step of time
7;(i = 1) the system of ordinary differential equations with respect to ¢ variable for the
uknown increment 6I’|T=TM. Finally, for each step t; we need eight boundary conditions.
Generally, they takes the form:

Lellgeg, = Ve, LoTlgeg, = Vo (4.4)

where L., Lp are arbitrary operators and V., V), — arbitrary vectors. In the case consi-
dered in this paper, the meridional section remains closed and symmetric about ¢ = 0
so e = 0 and ¢ = 7. Thus, the operators I, Ly has following representation

I LC = LD = [(S’ (5> 0> 0; 0) (s: 69 (S] (45)

and first six components of ¥, and ¥V}, are equal to zero. Using the semi-inverse method
(shooting method) the two-point boundary problem (4.4) ca be converted into Cauchy’s
problem. By employing Newton-Raphson’s method one can determine, missing, initial
components of vector I" at ¢ = ¢ by assuring the boundary conditions at ¢p = ¢p. To
improve the effectiveness of the iterative (Newton-Raphson’s) procedure, the Lagrange
quadratic extrapolation formula is used in searching of uknown, missing, initial compo-
nents of vector 61" at ¢ = ¢ . We start our calculation at v = 7, where the initial vector
I’y is known (4.3) and the whole shell is elastic. Applying the numerical integration along
the coordinate ¢p (for example Runge-Kutta IV) after extrapolation (4.1) and the usage
of shooting method, we find the distribution of 6]’,,,,0 along ¢ variable. Then, we cal-
culate I'|,... according to the scheme (4.1) and get the distribution 67|, for the new,
initial values .l’["_,l. The described procedure can be repeated along the trajectory (3.4)
with increasing time-like parameter = — (3.5). We assume the distribution of elastic and
plastic zones at the beginning of each time step 7; (it is identical to the distribution at
7 = 7;_,). The assumed zones are corrected by checking the condition (2.1) and scalar
factor dy* at ¢, such as to fulfill the mentioned conditions as well as the boundary con-
ditions {4.4). The procedure is continued to the appearance of singularity of equations
(3.1-3.3) which corresponds to the zero of the denominator of dy*, when

265 —of = 0 (4.6)
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5. Numerical examples

The initial geometry of a torus is completely defined by two dimensionless radii which
were assumed in numerical calculations as follows

R, =150, R, = 1000. 6.1
To illustrate different processes of plastic deformations of the shell we restrict our consi-
derations to two strictly determined cases-of the loading trajectory (3.4) and the time-like

parameter (3.5). In the first case we assume the loading stations and the independent
parameter 7 in the following way:

=20,
Py =T (5.2)
and in the second case
Pn = CK,
= (5.3)

where ¢ is an arbitrary, real constant. On each step 7,, the boundary conditions (4.4)
takes the following, explicit form:

(8¢, Su,, 6S, 6k, dp,] = [0,0,0,0, dz] for ¢ = 0An 5.4)
in the case of the relations (5.2) and
[6, du,, 8S, ok, dp,] = [0,0,0, dv,cdz] for ¢ = O0Am (5.5)

in the second case (5.3).
The process of acting of internal pressure is the elastic one. The first point of plasti-
fication of the shell (at ¢ = x/2) corresponds to termination of the process (the limit
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carrying capacity — L.P.) because the conditions (2.1) and (4.6) are satisfied simulta-
neously. Redistributions of meridional and circumferential stresses are shown in Fig. 2
and 3.

The influence of bending (the second analyzed case — (5.3) and (5.5)) causes antisy-
mmetry of redistribution of meridional stresses as well as the great development of plastic

——— elastic |zone
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Re=50, p,=0192 \ g
05— \

\ %=0.04
\\ o
\
\ \_,
10
30° 60° 90° 120° 150° ¢
Fig. 5

zone — elastic zone exists only in the neighbourhood of ¢ = 7/2 (see Fig. 4,5). The limit
point (4.6) — L.P. is also achieved at the edge of elastic zone at ¢ = =2, so the evolution
of meridional strains is inconsiderable — Fig. 6. Similar results concerning to in-plane
bending with internal pressure was obtained by C. R. Calladine [6]. The presented examples
show also essential influence of type of material of working sheets compare the results
with [5].

The form of the limit carrying capacity curve in the p,—x system will be discussed se-
parately,
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Peawme

OCHOBGIE YITPABHEHUSA CHMMETPUUHBIX YIIPYT'OITJIACTUUYECKUX
TEDOPMAITUN TOPOUTAILHLIX OFOJIOUEK

B pafore npencrasnesa ocHoBHaA cucTeMa AU((EPEHIMATLHELIX YPABHEHHH OTMUCHIBAIOIIME YIIpY-
ToIacTuyeckue Aecopmanuu BadelbHoH, TopoHARIbHON 060JIOUKH I0ABEPIrHYTO! H3rHOy B IJIOCKOCTH
TNaBM3HbI U AEHUCTBMIO HOpMaisHOro AaBiieHua. IlpobGiema ccopmyimpoBaHa Ha OCHOBAHMM TEOPHM
manbix pecopmaumu Ilpanarns-Peitcca (Mo KoHeuHbIx mepememermit). [Ipeamonaraerca 4ro MaTepuat
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HECYLUHX CJIOEB YIPYTO-KAEANBHOIUIACTHYUCCKHA, HEC)KHMAEMBIH H NOMUMHAETCA YCJIOBHIO TEKYUECTH
XyGepa-Museca-Teniu. Paccy)geHbl pa3Hble BAPHAHTDI YIIPABJIEHHST IPOUECCOM W PA3HbIE ONPEAEIICHHS
rmapameTpa Bpemern. IIpemiomiceH METON HYMEPHYeCKOro PELIeHHsT 9TOH Npobiemsbl.

Streszczenie

PODSTAWOWE ROWNANIA SYMETRYCZNYCH ODKSZTAECEN
SPREZYSTOPLASTYCZNYCH POWELOKI TOROIDALNEJ

W pracy przedstawiono podstawowy uklad rownai rézniczkowych opisujacych sptezysto-plastyczne
odksztalcenia sandwiczowej powloki toroidalnej zginanej w plaszczyznie krzywizny glownej i obcigzonej
ci$nieniem normalnym. Problem zostal sformutowany w oparciu o teori¢ malych odksztalcen Prandtla-
Reussa (uwzgledniono jednak skoficzone przemieszezenia). Zalozono, Ze material warstw noé$nych toroidu
jest sprezystofidealnie-plastyczny, nieSci$liwy i podlega warunkowi plastyczno$ci Hubera-Misesa- Henc-
kye’go. Rozwazono mozliwosci roznorodnego sterowania procesem jak roéwniez roznych definicji umo-
wnego parametru czasowego, Zaproponowano takze metode numerycznego rozwiazania tego problemu.

Praca zostala zlozona w Redakcji dnia 31 stycznia 1983 roku
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