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1. Iniroduction

Formulated via phenomenological considerations micropolar theory of elasticity (cf. [1])
can be applied for continuum description of dense, regular grids. This has been noted and
applied by WoZniak et al. in numerous papers pertaining to lattice-type shells and plates,
cf. [2]. Wozniak’s approach is based on variational methods; an adequacy ofthe proposed
differential model of a body with additional degrees of freedom is ,,a priori” assumed. In
the first-order approximation (see Sec. Il in [2]) an in-plane plate motion is described by
means of three independent functions approximating displacements and rotations of nodes.
The governing equations of the theory have a similar form to those of the plane-stress
theory of micropolar media. Therefore the WozZniak’s approach is a heuristic one thus
the recalled above procedure does not allow us to perform a physical correctness analysis
of the model provided appropriate numerical tests are not carried out.

In the case of simple layout grid plates (in which neighbourhoods of all nodes are con-
gruent) Wozniak’s algorithm leads to one set of effective constants describing elastic pro-
perties of the structure. However in the case of complex layout grids, one can derive at
least two sets of B and C tensors (cf. [3]). In the present paper an attempt is made to eluci-
date questions concerning the mentioned difficulties in formulation of Cosserat-type mo-
dels of complex geometry lattice plates. An attention will be focused on hexagonal grids
belonging to the class of complex layout structures. In order to have a new look at Wozniak’s
continuum models results of the work [4] (pertaining to differential models due to Rogula-
Kunin’s approach) are applied.

It is easy to note that Cosserat-type equilibrium equations expressed in terms of dis-
placements cannot be obtained by asymptotic method, e.g. by formal simplificatiohs
(neglect of terms of higher order) of equilibrium equations found in [4] by Rogula-Kunin’s
procedure; thus a simple correspondence between the latter and Wozniak’s-type equa-
tions is not valid. This fact is obvious since differential models derived in [4] (just contrary
to theories outlined in [3]) do not satisfy stability conditions.

In Sec. 5 a simple modification of the second-order differential approximation (obtai-
ned in [4]) will be proposed. The aim of the procedures is to formulate a well-established
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Cosserat-type equations, so called »- versions. In Sec. 6 an attempt is undertaken to examine
a range of applicability of the latter versions as well as of two variants resulting from
Wozniak’s concept, see [3].

2. Basic assumptions

A subject of our considerations is a plane-stress statical problem of a honeycomb grid
composed of bars whose axes constitute hexagons of sides being equal to /, cf. Fig. |,
In order to make final results as clear as possible the bars are assumed to be prismatic
(thus their heights /2 are constant while their depth is of unit dimension) and made of an"
isotropic, elastic material whose properties are characterised by Young modulus £ and

intermediate hode:

Fig. 1

Poisson’s ratio ». External loads (subjected to lattice joints only) are assumed to yield
plane-stress plate response hence the external forces are supposed to be subjected in-plane
while moments should be normal to the mid-surface of the grid. A slenderness ratio of
lattice rods is defined by, cf. [3]

n = *|h>

A parameter g defined as a quotient of opening’s dlameter to a spacing between centres of
neighbouring openings, see [3], reads

3

o =(V3n-1)1V3 @.1)

As it has been pointed out in [3] EJ//? = E[12n%? where J denotes a moment of inertia
of a constituent bar’s cross section. Lattice rods are assumed to be sufficiently slender so
as to known methods of the theory of structures could be applied. Analogously to [3, 4]
lattice nodes are divided into two families of main and intermediate ones, see Fig. 1.
Displacements and rotations of main nodes are approxunated by continuous functions
w(xP) and ¢ (xﬂ) External loads subjected to main and intermediate nodes are characteri-

sed by functions F¥, M F M, respectively.
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3. Two versions of Wozniak-type continuum descriptions

3.1. Equilibrium equations In terms of displacements. A set of the title equations has a form
similar to that known from plane-stress problem of micropolar media, see 31

[Qu+A)0% + (u+ )03 u’ + (A+ u—0)d0,u* + [B(3} — 93) + 2ad, )@+ p* = 0,
A+ p—0)d1 020" +[(2u+ A3 + (p+ &) 01u* +[— 2B2, 5 — 200 ]p+ p* = 0, (3.1)
[B(03 — 82) — 208,]u" +{ — 2B, 8, + 200, +[C(D% +02) —dol p+'¥? = 0, -
where .
P = pa._l_(')ﬂ[";ﬂa, 'y3 = )’3+3al;1“+€aﬂ;J“ﬁ,

*o op3ye3 % p Y .(3'2)
(P 0% Y3, V%) = (FFS M, M)IP,  p = 1,5/3P

Ricci tensor is denoted by e,s, an area of a recurrent hexagon amounts to P. The effective
moduli 4, 4 and « are uniquely defined in both Wozniak-type versions examined in [3]
whereas B and C moduli can be defined twofold

1) Klemm-WozZniak’s version (Sec. 3, [3])

v 2y3. 9y EJ v ;/3(377+17+1) EJ
B _ . C L AR M S, S . . \
T 3GEy T (3.3)

ii) the second, author’s variant (Sec. 4, [3])~
B 2V3mCGn=m) BT a _V3AGn-m+ Guam] BT
M+1-Gn+n) P27 3@+ 1)-(@+3n) l '
where 7j = n+2.4(1 +).

The tensors p* and m* are dependent upon the loads subjected to intermediate nodes;
their definitions are given in [3], [6].

3.2. Strain energy as a positive definite function. Strain energy of the structure is postive
definite provided, [3]

>0, a>0, wpu+i>0, C>0, B*<C-pu. (3.5

4. Unstable quasicontinuum micropolar-type equilibrinm equations

4.1. Derlvatlon of governing equations. Focus attention on Cosserat-type equations (3.1). On '
noting that B ~ [, C ~ [2 one can make following remarks:

a) two first equilibrium equations involve zero-order (with respect to powers of /)
terms of displacement-type and a first-order term relevant to nodal rotations;

b) the last equation involves first-order terms of displacement-type and a second- order
term depending upon the rotations.
The procedures put forward in [3] did not explain why:

a) two first equations do not involve first-order terms being dependent on dlsplacements

Does it yield from approximations only or result from specific properties of the hexagonal
grid?
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b) the last equation does not involve second-order terms of displacement-type; also
herein the same question arises.

Answers to the above questions are supplied by quasicontinuum considerations, [4].
Compare consequent second-order equations ((6.1) in [4]) with Eqs. (3.1) of Cosserat-type
theory. First of all it can be stated that moduli A, # and « (being involved in both compared
sets of equations) have been identically defined (cf. (3.8),_5 in [3] and (6.2),_; in[4]).
Thus both approaches (based on Wozniak’s [3] and Rogula-Kunin’s, [4], concepts) result
in the same definitions of elastic moduli 4, # and « being dependent upon slenderness ratio
of bars only and thus being independent of the internode spacing .

Note that equations similar to the Cosserat-type (3.1) can be derived from the second-
order Eqs. ((6.1) in [4]) provided in the latters all the terms involving derivatives up to the
second order are retained:

[p+ A)0% + (u+ )03 + (A+ p — )19, w? + [BY(9% — 03) + 2005 ] @ + B ~ 0,
A+ p— )0, 020t + [(Qu+ 23 + (u + 0)03]u? + [ — 2B°0,0, — 20d,] ¢+ p* = 0, (4.1)
[BO(6% — 03) — 200 ] ut 4+ [ — 2B° 8y 02 + 208 (] u* + [CO(9% + 83) — 4] @ + ¥ =0,
where
B® = pl, C°=yl (4.2
Moduli 8 and y have been defined by Egs. (6.2)4,6 in [4]. Hence we obtain
PERERENES NE SV
2 7 \3n+y 7+l 2’
co_ V3 [Cn-m? 7 ]E_J
7 3Gn+m T+wl T

Quantities p* and ¥ are equal to functions’p* and ‘Y3 employed in [4]. In a zero-order
approximation we have

4.3)

* ° n— *

3n’iﬁe°‘ﬂapr3, Y3 =y34 :7‘7+—§:77 Y3, (4.4)
The derivation of Eqs. (4.1) (which will be called further quasicontinuum micropolar-type
equilibrium equations) violates accuracy principles formulated in [4] where the approxi-
mation procedure has been called consequent provided all the terms proportiohal to
I’,p < 5, (s is fixed) are being retained. In the next section an improved accuracy analy-
sis will be presented. The approximations of governing equations correspond to a certain
form of density of strain energy of the structure. Thus various approximations of three
equilibrium equations are reflected in the form of the one scalar function which stands for
the energy of the grid. This method of error analysis is not new, the idea was originated by
Koiter in the paper [5] pertaining to the Kirchoff-Love shell theory and up till now it is
often applied to the accuracy analysis of so called improved theories describing plate and
shell behaviour, see [6].

j,a=pa+5a+

4.2. The micropolar-type approximation as a model of ,;moderate’” rotations. The energy criterlon,
Strain energy of the infinite hexagonal grid amounts to ,
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1 1
= P DB, 0 f=1,2,3
m, n

where the hexagon’s area of a side / has been denoted by P, P = 1.5]/5' 125 w® = 1,
w? = @; the summation has been implied over all main nodes which constitute a plain
(Bravais-type) lattice of the grid. The values of @} functions were given in [4]. On
passing to k-representation we arrive at (the proof. is omitted here) -

E. = [eMdk, k) =
J ,

<o W) By (1) A7),

A’k = 4-n2-dic,dl, /P

where the domain of the unit cell of the reciprocal lattice has been denoted by 13 a discrete
Fourier transform of a discrete-argument function f™ has been denoted by f(K). Certain
approximations of of @ap(k) cf. [4], result in differential models, particularly (as it will
be shown further) — in Cosserat-type models.

Introduce dimensionless variables W* = u* [L, where [L] = m. Let L = //e. The
density of strain energy of the grid

N 1 *
e(k) = 8P : p) (gpa@aplpﬁ)_'_ _[T‘z@aS‘P'}“P@Salp ]+(‘P¢33¢)} w0 f =12
can be rearranged to the form
2 1 41 Grij2, 1 22, L A2
e(k)=’—2 —2—(111'|[ | +—2—a22-|¥/| +'—033'|<P| +
4 3 Rc{alzg/ g/ +al3Y/ (p+a23 g/ (p} (4.5)

Let us define dimensionless quantities v and 6 by means of the formulae
= lk|, cos@ =k,/k|, sin@ = k,/k|.

Within the fourth-order approximation (with respect to the powers of k,) the coefficients
a,s can be expressed by means of the following equations, cf. Eqs. (6.1) in [4]

72 .n 372 72 .
4y =—3 (p+a)-g(2+,u—a)cos @——»1—6—(,u+a)——7(}.+,u—d)cos o|,
' 2 . 372 372
sy = —:7 [(/1+,u—a)sm2@+(y+a)-— I—TG—(,u+a)— —1%(1+,u—oc)-

. (—- —;—cos‘*@+sin40+ 25in200052@)],

A33 = da 4 y7? — T36—r4~y,

2

X i
ayy = %2— [(l+ p—o)cos Osin@ — —T8~(l+ u—a)cos @sin@(cos?O + 3sin*@) +

+ 18- cos@(cos?@ —3 sinz@)] ,
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3
ays = % [rﬂcos?.@— 116—(5cos4@—3sin40—600s2@sin2@)+
. » 3,
+i —2asm@+—4—r sin@||,

Ay = £[~rﬁsm2@+ —Bsin20(cos*® + 3sin? @)+z(2acos@~ —i—r occos@)]

The d modulus has been defined by (6.2)5 in [4]. Let 4; means a wavelength of the defor-
mation pattern in k direction; 1; = 27/lk|.
Thus the magnitude 7 is:

v =2mil, = 222 L a6075 0

V3T

where b = 11/ 3 stands for the spacing of main nodes. From now on the 7 quantity will be
supposed to be less than one, T < 1; this yields 1, > 3.6275 b. The parameters = and &
are interrelated by means of the formula z/e = 2zl [44.

Let @, and %, stand for the absolute values of the transforms @ and max #* measured
at the fixeQ node O of the grid."The parameter ¢, * /iy = ((po/ll’ ) ¢ determines the rela-
tion between rotation and dlsplacements of the node O. Depending upon the assumed
estimates of value of this parameter three types of equations describing hexagonal grid
behaviour can be distinguished:

a) (}70 s/@’o ~ 72 — the state (model) of infinitesimal rotations,

b) <p0 s/![’o ~ 7 — the state (model) of small rotations,

C) Po &~ SPO — the state (model) of moderate rotations.

The relation a ~ b (which reads: g is of the same order as b) should be understood in
the sense similar to that used in the literature devoted to the thin shell theories, cf. {5, 6].

Within the frames of the mentioned deformation classes differential models of an arbi-
trary accuracy order can be formulated. A brief analysis of approximation of strain energy
density ¢ in two cases b) and c) will be carried out below. The case a) will not be dealt
with here. :

Ad b) On inserting @, ~ %1’})0 into (4.5) we have

2 °B
&(k) ~ l(%) Z ), (@)r’"]l‘l’ 2.
m=0
Three first terms of this expansion correspond to the approximation of & which yield a se-
cond-order model derived in [4], Sec. 6, Egs. (6.1). The presented derivation provndes
a deeper insight into the assumptions (1mp11c1t1y and tacitly assumed in [4]) which are
a basis of this model. -
On neglecting all the terms except_ for the two first ones the first-order model, cf. [4],
Sec. 7, occurs.
The first term of the expansion is related to the zero-order, asymptotic or Horvay's
theory, see [4], Sec. 8.
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A 1. A .
Ad ¢) On substituting @y ~ ~6—‘I/0 into (4.5) we obtain

[2e)
k) ~ [61— P eEﬁ,’>(9)-f’"]l¥’o|2-
m=0 :

By neglecting the terms of higher order than second (i.e. proportional to z?, p > 2) we
arrive at the expansion which corresponds to the micropolar-type approximation. Also
herein it can be pointed out that the approach presented has revealed and elucidated
aésumptions which constitute a basis of the Cosserat-type models of fine hexagonal net-
works.

4.3. Stability. Necessary and sufficient stability conditions of Eqs. (4.1) (in the spirit of
Kunin, [7]) will be arrived at. According to this definition stability of equilibrium is satis-
fied provided an energy expressed in terms of the wave vector components k, is positive
definite. Stability implies both existence and uniqueness of solutions.

The Egs. (4.1) are stable in the considered meaning when and only when the matrix

Qu+0)x*+(p+a)y* (A+p—a)xy BO(x?— y*)+ 2ay-i
Alx,y) = |G +p—o)xy Qu+2y*+ (p+ou)x* —(2B%xy + 2oxi)
BO(x* — p?) — 2api —(2B%.y—2a-x-i) COx*+y*)+4o

is positive definite-for arbitrary x, y € R. It can be shown (cf. [8]) that the above condition
"can be reduced to the system of inequalities involving effective moduli 4, u, o, B® and C°

u>0Ad>0A2u+2 >0n
<B°)2) ( - (B ” (4.6)
Ce .
it vie > p+ia >2#+1
By virtue of the definitions (6.2),_, [4], of 2, » and « moduli it can be stated that « < p+
+ A. The last condition (4.6), reduces to the form
C® > C2 = (BY)*/(u+a). 4.7

The moduli A, u and « satisfy the conditions (4.6),_ 5 whereas the inequality (4.7) is not
fulfilled for real grids. Therefore Egs. (4.1) obtained by formal (allthough justified in the
previous section) simplifications of the second-order Egs. (6.1), [4], are unstable in the
meaning of Kunin.

[(a< p+AACo >

4.4. Strong ellipticity. Strong ellipticity of a partial-differential equation system implies
(see [9]) the solutions featured by the properties similar to those known from a classical
theory of well-established boundary value elliptic problems involving a one function to be
sought. If boundary conditions are admissible the strong ellipticity suffices for existence,
uniqueness and continuous dependence the solution upon the boundary conditions.

Consider a correctly supported hexagonal grid plate. Solutions are unique and always
exist as it clearly follows from the theory of structures. This continuum theories ought to
ensure (apart from specific cases which are not dealt with here) the solutions to be unique
that holds good provided the moduli A, z, «, B® and C° satosfy the strong ellipticity condi-
tion.
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The set of Egs. (4.1) is strongly elliptic when and only when the matrix

Qu+Nxt+(u+o)y* A+p—o)xy BO(x% — y?)
E(x,p) = |(A+p—0)-xy Qu+Hy*+(p+ou)x* —2B%y
BO(x?*—y?) —2B%xy CO(x? + y?

is positive definite for arbitrary x, y € R. On using Sylvester theorem necessary and suffi-
cient conditions of strong ellipticity, [8]

2u+A >0Aputa>0n
(B°)2) ( 0 (B°)2) (4.8)
0 _
[(oc</z+l/\C ># pod A4 x> pu+AnCl > 0t ]

are arrived at. Therefore stability implies strong ellipticity condition so that ellipticity
analysis does not yield additional restrictions imposed on moduli B® and C°. Thus Egs.
(4.1) are not strongly elliptic.

5. Formulation of stable quasicontinuum Cosserat-type x-models

5.1. Modification of the modulus C°, In the preceding sections instability and non-ellipticity
of Egs. (4.1), which approximate difference equilibrium equations (3.4), [4], on their
solutions, have been shown. In order to construct a stable system of equations (which will
be called » — equations) a modification of the last equation (3.4);, [4], expressing
a balance of moments of the main node i, will be carried out. The modified equation reads

L310) + L3 + L 33() + £ 5(F,, F2, M) = 0, .1
where

o= (g, u%), @ =(px, @), o=1,2, K=1,..VI,

4 #* * * * * (5.2)
Fcz = (Fg,Fg, Fg’ Fa): M = (Ma,Mh, C)M)




PHYSICAL CORRECTNESS 61

Quantities (#%, px), K =1, ..., VI, denote displacements of main nodes surrounding the
main node i to which Eq. (5.1) is referred, cf. Fig. 2, (%, ¢) mean displacements in the

i node; ;‘ s .ilj, J = a, b, ¢, denote forces and moments subjected to intermediate modes
surrounding i; F*, M stand for similar quantities referred to the latter node .By means of
L35, £ difference operators determined by the coefficients @ and S{¢ (see Eqs. (3.5)
in [4]) are denoted.

The object of the modification is an operator .#,,

| 4 2 I+, 2 (Bn-w)?
2’()={[—-_ — - == = — +
P Y3 nl+m)  y3 7 3y/3 nGn+n) |7
2 2 3 2 c J
\ —_ —~
+[—___ 2 Gn=m ] My, £ (5.3)
3Y3(t+m)  9Y3 A+ | T
Let the differential expression
Co'(,,)V2<p(x°)—4oup(x°), V2 =3240%, a=1,2 5.9
be approximated by a weighted difference expression % 5;(¢p)
Z23(@) = CoyViep —40p (55)
where '
1 . vI 174
2 3 - 1—-x
Vi = o | —dpt > Dol @ =mpr T D, (5.6
3 3 J=1I 6 J=1

The parameter # is taken from the interval [0,1] hence the weighted coefficients are assumed
to be positive. The expression ¢ approximates the value @(i) with an error of order /2
The expression V¢ approximates the laplacian V2p with an error of fourth order. Thus the
RHS of Eq. (5.5) approximates (5.4) with an error of second order. By equating (5.3) with
the RHS of (5.5) two relations involving Cf,, and « are obtained. The first one yield the
known definition (6.2)5, [4], of the modulus «. The second one results in ,

C’ = C°+3(1—x)al?

0 - ]/ 3 — ., ]/3_77 EJ
Con ={W[9'ﬁ2+6'(2—3”)77‘77+77]—W}T- (5.7
If % = 1 we have C{;, = C°. Thus a simple generalisation of the definition (4.3), is found.
The modulus Cg,, (being dependent upon x parameter) varies considerably when » changes
its value from zero to one. If % = 1/3

o = Y3@n+7+1) EJ
1/3) 3(77_’_1) ]

and thus the Wozniak-Klemm’s modulus C*, see (3.3),, occurs. It is worth mentioning that
the modulus C*, (3.4),, resulting from the second version of constitutive equations, differs
inconsiderably from C{, = C° provided the bars are sufficiently slender (7 = %)

=C" (5.8)
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U ‘/§ _ﬁ) _/j _.Ei = C* .
1y = ('3—_ 1+,’7 l 3 ] (59)
5.2. Stability condition. Lower and upper bounds of the modulus CZ,. Examine for what values of
» the modified system of Eqs. (4.1) (viz. in which a quantity C° is substituted by CLy)
satisfies stability as well as ellipticity conditions. Stability (or strong ellipticity) cond1t10n
4n:
cg, > co= BV
uta
implies the domain of variation of » parameter to be decreased to the interval [0, ,) being
dependent upon the slenderness ratio .
If 3§ =~ u we can evaluate

249> + 266y + 17

= L~ 0.7 : .
Hy = a7 +360;7+36 0 for u» 25

One can require the Cg,, modulus to satisfy inequality (3.5); resulting from positive de-
termination of strain energy expressed in terms of strain components y,, and x,.

Coy > Cha. = (B [u : (5.10)
that decreases the upper bound of x: % € [0, x%;) where %4 < »,. The definition of x4 ex-
_pressed in terms of 1 will not be reported here.

The upper bound of CQ, : Co, < Cd, does not follow from physical considerations but

from the condition of positivity of weighted coefficients in (5.6),. Thus the modulus
Cg, can vary in the limits ,

Cra. < Cl<Chy or CY<CQy >Ch. (5.11)

5.3. K-representation interpretation-of the proposed ,,stabilisation procedure”. Remarks on the range of
applicability of the micropolar-type x-models. The proposed modification of #;; operator can
be interpreted as an approximation of the function P~*. @a’; (k) defined by Eq. (3.5) in [4].
Accuracy analysis of this approximation is outlined below.

The function P~!®,4(k) can be expressed by the formula

o 1
A — 3 —
Pridsk) = BR 42060 D cos(ly/Tkt)) = 4 %y Dleosliy3ut) -1] - .12
T=1 ' T=1
where the relations )
6D+ B = ha,  —ASOL) = y

have been applied. The constants « and y have been defined by Egs. (6.2)3, in- {4]. Com-
ponents of t; vectors are, see Fig. 1 in [4]

tr = (=05, —¥32), tu =105 —V3/2), tu=(0.

It can be shown that the function @aa(k) varies almost independently of the wave vector
direction provided = = /- k| < 3, thus,
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m nr
Zcos(ll/ikn) & 2005(11/3—(0, |k|)tJ) = 2.cos(l.57)+1
=1 I=1
hence
- 8
P '®y5(k) = da— -»g-y[cos('l.Sr)—l], (5.13)

The modification proposed in Sec. 5.1 corresponds to the approximation

P*l,qc)ga(k) = dot+ oo P k|2 = da+t p -T2 (5.14
where yy = Cooll*, vy =9, yw >y, if =€,
Fig. 3 displays variations of the function f

f(o) = a—l_l;és”(k) ~ 4+ %% (1 - cos(1.57)) (5.15)

and its approximation (Eq. 5.14)
~ L4 Y Yo 2
g(”)('f) ~ 0(.?4333(]() ~ 4+ —OC" 7—'{ (5.16) .

The diagrams in Fig, 3, are found for n = % = 50 (//h = 7) thus p/a = 0.6275.

As it was possible to suspect it can be stated that g, curve yields the best ap’broxima—
tion of f. For wave vectors satisfying the condition = < 1.5 a relative error of approxima-
tion of f by g(1, is less than 109 and less than 2.5% provided = < 1. If an accuracy analysis
is confined to the behaviour of the function (1;33(k) one can conclude that unstable Cosserat-
-type model which employs the set of moduli 4, 4, «, B°, C{;, approximates ,,rotational
waves” (i.e. two-variable continuous functions interpolating rotations of main nodes) of

s

2n , ..
lengths 4, = _Ik—y], > 27/ with some per cent errors only. Considerably worse result is yielded

from the set of moduli (1, g, &, B®, C,). If T < 0.25 a relative error approximation of
£ by g is less than 4.7%,. The latter condition means that ,,rotational waves” of lengths
A > 87l x 23.14 | are admitted with 5% error whereas the wave patterns of 1, > 4- 7/
are related to 18% of error. Therefore according to the choice of the parameter » € (0, 1) the
,,rotational wave patterns” of lengths 4; > A, where 4, € (6.28 /, 25.14 /) are admissible.

10

. o/ /lowre’ Y

8 7 7

. / // y//

. //// A

== [

2

1

0 01025 05 10 15 20 25 30 15 40
1= k|

Fig. 3
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The above analysis is somewhat incomplete since our attention has been focused on the
function ®;;(k) only. _To make-up the considerations a complete analysis of approxima-
tions of all functions @aﬁ should be given.

Mention yet that the constant function 4(r) = 4 supplies a better approximation of the
function f that g, functions provided ,

Yaoly > 2. (.17

Therefore » parameter cannot be to small; if not the carried out modification of @3 3 induces
the greater error than a simple neglect of the term C°V?g in (4.1);. It is easy to show that
lower bounds of C°: C3, and C? do not satisfy (5.17), ie. Cpq4. > 2C%y =2y 2,
Nevertheless it is more purposeful to retain the term C°V2gp in (4.1); than to neglect it
(and further to eliminate rotations ¢ from Eqs. (4.1).,, see [4], Sec. 6) in order to formulate
well-established stable theory. However the stability is achieved at the sacrifice of the ap
proximation condition.

6. Comparison of WozZniak’s and x-models.
Further remarks on accuracy analysis

6.1. Governing equations. Governing equations (3.1) and (4.1) have similar forms. As it
has been mentioned is Sec. 4 both systems of partial differential equations involve the same
moduli 4, # and &. Qualitative differences distinguish between two sets of moduli B and C;
to this topic Sec. 6.4 will be devoted. Essential quantitative differences occur in functions
approximating effects of external loads. Definitions (4.4) of p* and ¥3 cannot be rearranged
to the form (3.2), viz. Egs. (3.2) do not involve ;)“ but their derivatives only. The latter
fact can be treated as a shortcoming of the theory. The definitions of Y3 and 'Y? are also
different. In the case of slender rods (I/h > 7, n > 49, say) 'Y? depends inconsiderably on

*
Y? and, if n - o we have 'Y? - Y3, on the other hand in x»-models there is: Y3 — Y3~

*
—0.5Y3 provided 5 — 0.

6.2. Existence and uniqueness of solutions. The existence and uniqueness of solutions are
ensured by:

a) stability (4.6) or strong ellipticity (4.8) condmons —in the case of x-models;

b) positive definiteness of strain epergy expressed in terms of y and » tensors (3.5) —
in both approaches due to Wozniak’s concept.

It is worth stressing that the latter condition is stronger than the former.

6.3. Boundary conditions. In Sec. 4 boundar‘y conditions of »-versions have not been formu-
lated. However, since the governing equations of these models have similar form to Woz-
niak’s equations it seems reasonable to subject the solutions to similar boundary conditions,
cf. Egs. (7.3) in [3].

6.4, Analysis of moduli B and C, In the papér [3] (cf. Sec. 3 of the present work) two ver-
sions of constitutive equations of Wozniak-type models resulting in different moduli B
(B, B")and C(C", C") have been proposed. Considerations based on the quasicontinuum
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approach (Sec. 4) yield the one definition (4.3) of B® and C°. In Sec. 5 the one-parameter
definition (5.7) of the modulus C{,, has been derived.

Variations of moduli B(p), o € [0.8, 1] (ratio ¢ being defined by (2.1)) are plotied in
Fig. 5 in the case of » = 0,3 (so that % = 5+3.12). The following inequalities hold true

B(0) < B%) < B'(), 0<[0.8,1].

Differences between B” and B° are considerable. If one assumes B° as exact difinition of B
deviations of B" from B° attain to 100% relative error.

: V= 0.3r
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Fig. 4

Consider variations of moduli Cg,(e), C"(g) and C' (). The family of curves Cg, (o)
covers the area between C%,(p) and C2(o) or C2.4 (o) curves. In Fig, 4 two curves C (o) =
= C{ 3y and C{ 2, lieing within the mentioned ,,admissible” area and a curve C” (¢) outsi-
de this region are plotted.
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6.5. A range of applicability of two models due to Wozniak’s concept. Analogously to the method
applied to »-versions, cf. Sec. 5.3, an accuracy analysis of the two models due to Wozniak's
concept -can be carried out: )

i) Wozniak-Klemm's variant.

Examine approximations of functlons @aﬂ(k) (see [4]) correspondlng to Egs. (3.1) of
I version in which moduli A, u, &, B" and C~ are employed. An analysis will be restricted to
@, and Qﬁk;, (k = 1, 2, 3) functions approximations of which are non-trivial i.e. do not
result from neglect of higher order terms in the expansions (5.2), [4]. By virtue of an equality

&%k = (13,‘3 it is sufficient to analyse three functions (13,‘3, k=1,2,3, only.

Approximation analysis of @33(k) outlined in Sec. 5.3 makes it possible to evaluate the
errors of approximation of this function induced by Wozniak’s models. Namely, bearing
in mind that Eq. (5.8) holds good, an analysis of approximation by the I model reduces to
the analysis of the case of » = 1/3. A curve g(y,3) is displayed in Fig. 3. On assuming the f
function to be approximated by gy, with a 125 error a quantity A, (cf. Sec. 5.3) amounts
to Ayjay = 4+ 7+l 2.7.26b. Thus only smooth regular long ,,rotational waves” ¢ of 1; >
> A3 may be admitted.

Consider a function @ 13(k) and its approximation related to the I version. First few
terms of (1313 written out explicitly read,'

A 4 . .
P“éqﬁls(k) = é [120052@— %(cos“@——3{sin“@—~60052@sin2@)}+ 6.1

- i_z—sin O(8 — 312

where (acc. to notations 1ntroduced in Sec. 4.2) I- kX = 7 (cos @, sin @) whereas the follo-
wing expressmn

Pt id)”(k) /3 20032@ 2ivsin®,  fY = Bl (6.2)

corresponds to the first (I) version. The approximation errors being induced by (6.2) depend
considerably upon the wave vector direction and attain the greatest values when k, = 0.
One can show that if lattice bars are slender (y > 50, say) a relative error of evaluation of
absolute values of complex function @')13 is not less than 159 for arbitrary k; > O and
amounts to 17% if cos @ = 0.25. Thus no matter how the functions 4* and @ are regular
approximation errors of |ﬁ>13| are at least about 15%;. In the case of k, = O the errors
induced by (6.2) are less than in the previous case and tend to zero provided 4, — 0. Defor-
mations of k = (0, kz) direction and of wavelengths 4; > 87zl are associated with 4.6%
error of evaluating of |®13|, and if 4; > 4:7'51 the errors increase to 15%.
Consider the errors of evaluating of |d5,_3(k)l ”lhe first few terms of @23 are

P“—aéd;zg,(k) =~ %rzco__s'@.sin@ [ —2-F TT (cdsz@ +3 sin-?-@) -+

+i[2rcos@_— %ﬁcos@]. (6.3)
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Equations of the (I) version result from the approximation

v

!
(]323(k) »~§———r cos@sm@—{-mrcos@ (6.4)

If k1 = 0 the apploxxmdtmn errors vanish. For k, =0a wavelength 8- nl couesponds to
2.2%, error of evaluating of |<1723| if Ay = 4zl an error amounts to 8.5%. In the case of
k; = k, (O = n/4) wavelengths 4, > 8/ correspond to 5% error, and if 4, > 4al —to
15% error.

The above analysis proves that approximation errors of |([)k3|, k=1, 2 3, are of the
same order (129,—15%) in the case of wavelengths 1, > 4l

i) Variant I1. ' , _

In this version approximation of |(3533| is considerably better than in the first (1) version.

A curve &

A 1A
8() = —basll) = 4+ L

[

< [~

2, p=Cl?

approximates the function f (cf. Fig. 5.2) with an error of 12% provided Ag > —g 7l 5 2.42b, |

and with 3.2% error for A4 > 27l.

Consider (1313 function. According to the wave vector dlrectxon a relative error of
evaluating of |G513| is less or great than that induced by Klemm-Wozniak’s equations. In
the case of k; = 0, k5 > 0 an error of 9% is associated with deformations of wavelengths
Aa > 4wl (in I version — 15%). The error decreases to 0% provided k, — 0. Assume
that k, > 0, k, = 0. If k; — O the error tends to 439/ and decreases (what is a paradox) to
17% for A4 = 27/. In the case f of k; = k, the errors induced by both (I) and (II) versions
are identical. A ' R
Consider approximations of |@,5(k)|. In both cases: k;, = 0,k, > Oand ky> 0, ky =0
the errors are equal to those induced by the I version: 2. 2/ for A4 > 8x/ and 8.5 o if
A4 > 4zl In the case of k, = k, an approximation error of |(_152 3l is equal to 16.5% provi-
ded 4; > 8l thus it is greater than in the I version where this error is about 5%, -

Therefore approx1mat10n errors of |Q>3k| hesitate: from 1ncon51derable errors induced
by the approximation of |d>3 3| to essential errors related to (_1513 in the particular case ‘of
k, = 0. Note that in the case of deformations relevant to the vector k = (0, k), displa-
cement waves of 1, > 4zl correspond to 10% errors what'is rather a small value if one
takes into account that a wavelength A,d min = 4/ is relatively short with respect to the
internode distance. Displacement waves of the direction k = (k;, 0) are related to the
errors of about 40%. Thus the II variant is chardcterized by the lack of symmetry of
approx1mat10ns directions k, and k, are not equlvalent here. ‘

7. Concluding remarks

Three Cosserat-type models for fine hexagonal grids have been analysed:
i) wariant I (due to WozZniak and Klemm) mvolvmg moduli 4, u, « B and C _
ii) wariant Il in which moduh A, u, , Band C are employed

s
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iif) x-models with moduli A, u, o, B® and C%,, x € [0, #,).

In order to estimate ranges of applicability of the mentioned models approximation
errors of (133,3 and (ﬁﬂs, 8 =1, 2, 3, induced by each approach, have been examined.

Ad i) It has been shown that approximation errors of |<i5k3| are equal to ~ 159 for
deformation patterns of wavelengths 14 > 4xl. This value of errors results from the,
approximation of all of the functions 423,‘3, k=1273

Ad ii) The considerable approximation errors pertain to the functions (3“3, =12
These errors depend upon the wave vector direction. To wave deformation patterns of

= (k,, 0) a 40, error of evaluation of |<D13[ is related

Ad iii) The essential errors occur in approximation of the function @33 and strongly
depend on a choice of a parameter . In the limiti ng case of » = 0 an 189 error is related
to rotational wave patterns of A4 > 4nl whereas if x = 1/3 an analogous error is equal to
12%.

The presented error analysis is obviously simplified since no relations between resulting
errors of the sought functions #* and ¢ and errors of approximations imposed on functions
, (5, ;(k) have been given. Nevertheless the proposed accuracy analysis allows us to formulate
the followmg remarks.

. It is impossible to suspect which of the versions consndered (i + iii) induces the
greatest errors of evaluating displacements »* and »* whereas it is almost apparent that
the (ii) version should yield the best evaluation of nodal rotations ¢.

2. The unstable variant »# = 1 (iii) can be employed for examining local effects resulting
for instance from an influence of concentrated nodal loads.

3. The version (iii) allows us to consider an effect of changes of the parameter x» on
solutions of boundary value problems. Computations performed for several values of
x € (0, %) yield results which are divisible into two groups (a) and (b). Results of (a) type
are stable with respect to variations of » whereas the (b)-results do not satisfy the latter
condition. Apart from this, a zero-order Horvay’s asymptotic model (see [4]) involving
displacements #*, u? only, can be employed. Results of (a) type vary inconsiderably thus
only these results are reliable. Nevertheless results of (b) type are of great interest, because
despite the fact that their values are evaluated incorrectly, valuable qualitative information
is obtained. In cases of simple states of stress, to (a) group displacements belong while
rotations belong to (b) group.

- The remarks formulated above are confirmed in [10] in the specific case of infinitely
long grid strip of hexagonal structure subjected to longitudinal forces. Specifically, the
remark 1 occured to be accurate; allthough approximations of nodal rotations are charged
with errors, the II version seems to induce the smallest ones. Nonetheless it should be
pointed out here that the Cosserat-type models provide the description qualitatively correct,
particularly the alternate vanishing variation of rotations of main and intermediate no-
des lieing along the lines perpendicular to the strip’s horizontal axis being successfully
predicted.
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Pesome

AHAJIN3 P®U3HUYECKOH MPABHIIEHOCTHU MO;IIEJIEI;I THIIA KOCCEPATOB ]I
CETYATLIX T'EKCATOHAJIbHBIX ITJIACTHHOK

B paGote paccmaTpHBaeTca npobilema QHU3HYECKON KOPPEKTHOCTH MUKPONOASPHOM MOLENH CTEpXK-
HeBBEIX [EKCArOHANbHBIX NNACTHHOK. IIpoaHanW3HPOBAHLI TpH BapHaHTA TAKMX TeOpHH: [IBE BEpPCHH
mopenu BosHsKa H NCEBIOKOHTHHYANbHBIE %-MOJCIH HNOMYYEHb! IIYTEM COOTBETCTBYIOLINX MO DHKAIMI
ypasuenuii Porynn — KyHuna. .

Yrnpyrue cBoHCTBa PEIUETIM ONPENEIIAIOTCA NPH Nomolny apderuBHbIx Mopynedt A, 4, o, B u C.
TlepBble TPH KOHCTAHTbI ONpEHeJIeHbI OHO3HAYHO, B TO BPEMA 1KaK ,,MHKponossapHeie’” mogymu B u C
326HCHT OT BLIOOPSA BapHaHTa MCTONA KOHTHHYAHOH onucH perérxu. Kpome TOro, aHanusHpOBIHHLIE
TEOpUH PasHbIM 00pa3oM YUHTBIBAIOT BIIMAHME HATPDY30K B ,,JIOCPEACTBEHHBIX’’ y3718X KOHCTPYKIIHH.

Karxpo#t Bepcun onucr tuna KoccepaTos oTsevaeT HCKOTOPAs, aulporcumalusa (GyHxumu Pop(x)
B oxpectHocTH K = 0. TIpencraBieH aHayun3 NpUOIIDKEHHH Tex (DYHKUMH C IIOMOLLIO KOTOporo dopmy-
JHPYIOTCS THIIOTE3bI KACAIOWIMECH IPAHMUL NpHMereHHsa guddepeHUMARBHBIX MOLEIEH.

Streszczenie

ANALIZA FIZYCZNEJ] POPRAWNOSCI MODELI TYPU COSSERATOW
PRETOWYCH TARCZ HEKSAGONALNYCH

W pracy podjeto problem fizycznej poprawnosci modelu mikropolarnego pretowej tarczy heksago- -
nalnej. Dokonano analizy trzech wariant6w teorii wykorzystujacej ten model: dwie wersje teorii WoZniaka
oraz pseudokontynualne » — modele otrzymane droga modyfikacji réwnan Roguli i Kunina.

Wiasciwosci siatki sa okres$lone za pomoca moduléw zastepczych A, u, «, B i C. Pierwsze trzy stale sa
jednoznacznie okreslone, podczas gdy moduty ,,mikropolarne” B i C zaleza od wyboru wariantu metody
kontynualnego opisu tarczy. Ponadto analizowane wersje w rézny sposob uwzgledniajg obciazenia przy-
lozone do wezidw posrednich. ) N

Kazdej wersji opisu typu Cosseratow odpowiada pewna aproksymacja funkcji @yp(k) w otoczeniu
k = 0. Przeprowadzono analize aproksymacji tych funkcji i na jej podstawie sformulowano hipotezy do-
tyczace obszarow stosowalnoéci omawianych modeli roézniczkowych.

Praca zostala zlozona w Redakcji dnia 19 wrze$nla 1983 roku



