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1. Introduction

Buckling loads of elastic-plastic shells can be determined by means of two approaches.
In the first one, called the constant load approach, it is assumed that the external load
does not change in post-buckling state this is accompanied by arising local unloading
regions (passive processes). In the second one, the so called SHANLEY approach is assu-
med [2, 3], i.e. that the load increases in the post-buckling state, and the passive processes
develop only as a result of post-critical deflections. In paper [4] the SHANLEY approach
has been used for calculating bifurcation loads of conical shells. The presented procedure
account for the stability analysis of elastic-plastic shells basing on the two fundamental
plasticity theories, i.e.: the incremental (plastic flow) theory, and the total strain (defor-
mation) theory. It is also possible to use the results of paper [4] for analyzing elastic shells.
The problem is quite complicated when including the effects of unloading. This leads to
nonlinear differential equations; although geometrical linearity is assumed. It is the
purpose of this paper to linearize these equations for a simply supported conical shell,
with the assumption of a two-parametrical external load and a linear stress-deformation
material hardening relation.

2. Stability equations and physical relations

The basic stability equations for a conical shell, according to linear shell theory, are
as follows [4]:
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where 0M,, are the additional buckling moments per unit length, N,z are the membrane
forces, and w is the normal deflection. Eq- (2.1), is the equilibrium equation with intro-
duced force function F, and eq. (2.1), is the strain compatibility equation.

According to the constant load concept the local unloading regions appear at the mo-
ment of buckling; so the three main zones are distinguished (see I, II, III in Fig. 2). In
the first zone, a part of the shell that was deformed into the plastic state before buckling,

Fig. 2

returns to the elastic state; it is governed by physical relations of generalized Hooke’s
law. The second zone (II) is so distinguished that before buckling material is deformed
plastically, but in post buckling the state a part of the material returns into the elastic
state and the rest remains plastic. So, active and passive processes develop here. In the
third zone (III) the plastic deformations hold for the pre-and post-buckling states; the
unloading does not take place here. The physical relations in the first and in the third
zones are evident, i.e. the generalized Hooke’s law and apropriate plasticity relations,
respectively.

Assuming the Kirchhoff-Love hypotheses the additional forces and moments during
buckling in the shell are:
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When calculating the forces and the moments in the second zone each of the integrals

(2.2) should be devided into two, i.e.: <— —g—, x3o> , and <x3o, +%> ; X3¢ IS a coordi-
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nate of active and passive processes boundary. We have for example
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where X3 = 2x3/h — dimensionless variable, and E;, E, are secant and tangent modules
respectively. When appropriate calculations are made, for the total strain (deformation)
theory one obtains:
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where By, B,, D, C,, and C, are the stiffnesses of the shell, given by the formulas:
- = 1 £
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The quantities in (2.5) are as follows:
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Tap = Txp07 ',  Ox = 0.0%,+0,0%,+27,,0x,,.
If before buckling the plastic deformations are small with comparison to elastic deforma- '
tions one may put f,, = 0, then Egs. (2.5) are reduced to the form:
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The physical relations (2.4) are coupled and nonlinear, because the position parameter
X130, denoting the boundary between elastic and plastic region, is a variable and it depends
on the unknown functions [2]:
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From the first three equations of (2.2) deformations de,; may be ekpressed in terms of
the force function F. Substituting dM,; (expressing the curvatures dx,s by the deflection
w) and deyg from (2.2) into stability equation (2.1) we obtain a set of two nonlinear diffe-

rential equations for the deflection w and the force function F, to analyse the stability of
an elastic-plastic conical shell under small deflections including effects of passive processes:
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Now we come to linearizing the above equations. In the formulae for { (2.8) under the
square root there is the function @. For elastic deformations @ = 0, for pure plastic de-

formations @ = —f,. It can be prooved that || < f; < l. Substituting ¢ from (2.8) to
the eqgs. (2.9) we expand the characteristic terms in s¢ries, with respect to powers of @.
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In egs. (2.9) terms there are also which cannot be linearized. However, their influence
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is so small, when plastic deformations are smaller than the elastic ones. So the nonlinearity
parameter X3, We put X3 = —1 on one hand, or with the Iliushin hypothesis [2] assuming
zero values of force variations in the shell middle surface N, = 0N, = 6N,;, = 0 we
take a X3¢ value accordingly on the other hand. In such an approach we obtain two diffe-
rent values of buckling load, and the set of equations (2.9) is linear with variable coeffi-
cients.

3. Method of Solution

The basic functions, i.e. the deflection w, and the force function F are taken as:

w(x, @) = wesin m—ln(x—xl)cos nep, F(x, @) = Fysin m—ln(x—xl)cosmp, 3.1)

where m, and n are parameters. The functions (3.1) satisfy kinematic boundary conditions
for simply supported shell edges, but the static boundary conditions are satisfied in part
only. The previous investigations show that it is insignificant for shells of medium and
large lengths whether all of the boundary conditions are satisfied. The linearized set of
equations (2.9) we integrate using the GALERKIN type procedure. When F,, and F, are
the left-hand side of the egs. (2.9) one may put

2 x2 21 X2
” Fy(x, @)w(x, p)dxrdp = 0, U Fy(x, @) F(x, ¢)dxrdg = 0. (3.2)
0 x; 0 ay .

In the plastic range it is not possible to integrate analytically the equations, since not all
of the calculated functions have an explicit form; a numerical procedure must be used.
[f appropriate transformations are made, a set of two algebraic equations is obtained.
The resulting set of two equations is linear with respect to the vector of unknowns U =
= U(wy, Fy).

Using the static stability criterion, i.e. that the determinant of the above mentioned set
of equations must be equal to zero, we obtain

~ 2Eh ~ = ~ ~ ~ ~
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The buckling criterion, eq. (3.3) is transcendental and quite complicated, and it cannot
be solved exactly; a numerical procedure must be used. The critical load can be calculated
as the smallest positive root of eq. (3.3); however, it is necessary to minimalize it with

respect to parameters m and n. The integrals /f,-, 5,, Ap‘,-o, li-o are calculated numerically,
where for example

A, = Ao+ A, cospB, (3.4)
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here o; is effective stress, o, is plastic limit, e;; are the shell stiffnesses (¢;; depend on the
load).

4. Numerical Results and Conclusions

A research procedure elaborated by the Author [4] to find the buckling load from
the buckling criterion, eq. (3.3), is used. In this procedure we evaluate the critical load
numerically from the buckling criterion by searching for zero points of eq. (3.3) according
to Newton’s iteration technique; the integrals were evaluated by Simpson’s rule. The
buckling load is the lowest buckling load of many buckling loads for a specified range
of m and n. The calculations were made on the computer ODRA 1305. Let us consider
a circular conical shell loaded as in Fig. 1. In the presented series of investigations the follo-
wing basic data have been assumed: x; = 34.635 tm, x, = 77.635 cm, B = 20°, ay =
= px,[N, = 8. We assume a linear stress hardening material with an isotropic strain
hardening in which: E = 2-10° MPa, E, = 10000 MPa, o, = 70 MPa.

Fig 3 is a plot of curves representing the zero points p* of the stability criterion (3.3),
versus 1, (m = 1), for different assumptions accepted in this paper. A minimum of each
p* curve is the buckling load. In Fig. 3 the present solutions are also compared with the
author solutions [4] using the SHANLEY approach. Comparison of the results shows
(see Fig. 3), that the inclusion of the effects of passive processes gives a higher critical
load than the SHANLEY concept (the deformation theory in both cases is used); this
was also stated previously in the analysis of plate stability [3]. The assumption of X35 = — 1
gives the results which are in better agreement with the SHANLEY concept, than using
the ILTUSHIN hypothesis which says that the normal forces variations in the shell middle
sturface vanish in the moment of buckling. When we use the simplified physical equations,
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eqs (2.7), i.e. f,, = 0. then the results are comparable with the ILIUSHIN hypothesis
0Ny = 0.

We shall next obtain an elastoplastic solution of the cases in which a shell thickness
parameter 4 is varied, with the rest of parameters taken constant, except of the angle .
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Fig. 3

Fig. 4 shows a plot of critical load as a function of shell thickness for different § using
the simplified physical relations, f, = 0 (2.7). It was ascertained, that a shell thickness
increase is accompanied by the critical load increase; the curve shapes are approximately
linear within the range of investigations. When angle £ is increased, there is also an increase
in the buckling load. The change of these two parameters did not affect the buckling
form; m =1, n =7 (or 8).

Fig. 5 presents the results of calculations for different 4 and f, using non-simplified
physical relations (2.5), where f,, # 0. For comparison Fig. 5 shows also the curves obtained
on the basis of the Shanley concept for deformation theory (TD), and plastic flow theory
(TPF), for § = 20°. Here one can see that when including the unloading and deformation
theory of plasticity (as in this paper), the critical loads turn to be higher than when using
the SHANLEY approach (unloading not included). However, the SHANLEY concept
and incremental theory give critical loads (dotted line in Fig. 5) higher than in the case
of deformation theory and the SHANLEY concept; but these are slightly different as to
compare with critical loads obtained when including the unloading effects (see Fig. 5).

The obtained results were also the basis for plotting the diagram, Fig. 6, in coordina-
tes p, N,, that presents instability regions (ultimate load) of the shell for different coeffi-
vients ay. The points contained within an area limited by the coordinate axes and the
curves refer to a stable condition, and for combination of p and N, which corresponds to
the position on the curve or the position outside the stability region, the shell is found
to be in an unstable condition. It is seen that the curves for the SHANLEY approach and
for ILTUSHIN concept of dN,; = 0, differ somewhat in form; the inclusion of the effects
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of unloading gives higher critical loads, but the discrepancies are larger when the coeffi-
cient oy is small.

It is worthnoting that the effects of passive processes on the inelastic buckling strength
of conical shells subjected to axial compression and external pressure are significant for
some cases, and these effects may be determined by the procedure given in this paper.
The computer program developed in this research can also treat a linear elastic problem,
because the terms resulting from plastic deformations are neglected automatically by
conditional transfers in the program.
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Pesome \

JMHEAPU3ALUMS YPABHEHUH VIIPYTO IVIACTUUECKOW YCTONUMBOCTHU
KOHHUYUECKOI OBOJIOUKH C YYETOM PA3I'PY3KHU

B paBorte paccmOTpeH IIpoGJIeM YIIPYro-IUIaCTHUECKON YCTOHUMBOCTH 0GOJIOUKM B BHAE YCEUEHHOTO
KOHyCa HOR AeHCTBHEM PaBHOMEPHOrO IONEPEYHOTO JABJIEHHSA H OCEBOTO CXKAaTHA. Y paBHEeHWA 3a[auld
MOCTPOEHbLI Ha OCHOBE Ne(hOPMALIHOHHON TEOPHH MIIACTHUHOCTH H TEOPDHH IIJIaCTHUECKOTO TEUEHHsS. JTH
YDaBHEHWUSI TIOJIyUYeHb] C YYETOM Pasrpy3Ky MaTepHaya, U MX JIMHeapH3auusl CHejiaHa C [TOMOLI paciio-
YKEHHA B CTENeHHbIE PANbl HEJMHHEHHDBIX WieHOB. JIHHeapH30BaHAYe YpaBHEHHsI pellleHbl MeToaom Byo-
HoBa-I'anepruna. PesynbraTel MOTYT ObITB MCIIONB30BAaHbI AJIA ONPENEJIEHHS KPUTHUECKHX HATpy30K
B YOPYLRX, YIIPYrO-IUIACTHUECKHNX W UHCTO-IIJIACTHUECKHUX COCTOSTHHAX.

Streszczenie

LINEARYZACJA ROWNAN STATECZNOSCI SPREZYSTO-PLASTYCZNEJ POWLOKI
STOZKOWEJ Z UWZGLEDNIENIEM PROCESOW BIERNYCH

W pracy przedstawiono analiz¢ i przyklady obliczen numerycznych statecznosci sprezysto-plastycznej
powloki stozkowej obcigZonej bocznym ci$nieniem rownomiernym i $ciskajaca sila wzdluzna. Uwzgled-
niono odcigzenie materialu w chwili utraty statecznosci, a wyprowadzone réwnania zlinearyzowano przez
rozlozenie w szereg pot¢gowy czlondédw nieliniowych. Réwnania rozwigzano metoda ortogonalizacyjna
Galerkina. W przykladach obliczen numerycznych przedstawiono poréwnanie wynikdw uzyskanych
w oparciu o roézne podejicia stosowane. w teorii stateczno$ci konstrukcji plastycznych.

Praca zostala zloiona w Redakcji 15 stycznia 1983 roku




