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1. Introduction

Realization of the-shell construction often yields some deformations and since the
changes in the geometry of the middle surface are unpredictable, it is convenient to con-
sider the problem from the probabilistic point of view. There have been in the literature
up to now a few approaches to the description of the stochastic shell. C. BRANICKI and
M. SkowroNEk [1] analized stochastically nonlinear static of a shallow spherical shell,
which middle surface was a random function of a rather simple form. E. FiLirow, J. WE-
KEZER and P. WILDE [2] proposed a stochastic model for the dislocations of the surface
of a cylindrical container based on the discretization of the problem. Random fields theory
applicable to thin elastic shells was discussed in the expository paper of E. BIELEWICZ
and P. WILDE [3].

The subject of this note is a statical analysis of the spherical shell loaded uniformly by
its weight taking into consideration geometrical nonlinearity and axially symmetric random
displacement. It is proposed to describe stochastic displacement by auxiliary six dimensio-
nal two parameter random field and the corresponding Meissner-type equations are derived.

2. Description of the random shell

Let the undeformed middle surface of the shell be given by the equations in the vector
form

r=H0O, ¢, w) =0, )+7(0, ¢, w), (D

where 7, describes the points of the middle surface of the deterministic shell designed
and ¥ is the stochastic initial deformation.

In order to describe the stochasticaly displaced shell by the equations close to the
deterministic case. we rewrite equations (1) in the following equivalent form
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with the boundary condition
7‘(@0, @, m) = ;:0(@0. @), 3
O, 0,100) = 7(6, L ), )

Here ¢,, ¢, is a 6-dimensional 2-parameter random field satisfying the consistency condi-
tion

d_;z = i;J 3 (4)
g 00 - '
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Fig. |

In other worlds we assume that stochastic displacement is described by tangent vectors
which are supposed to be a sum of deterministic tangent vectors and random vectors

1., t,, the second ones will be taken small later, Note, that above description making use

of random field ;1, t, can be translated into tensor language and that our assumption is
slightly different from the on the first sight natural representation of the first metric form
of the middle surface of the stochastic shell as a sum of a purely deterministic and stocha-

stic part. Although for smaller random field ;,, tA2 both mentioned above approaches
become closer, we found our approach as given by equations (2) more consistent with
the intuition and therefore we will not deal in the sequel with the equations in the tensor

form. Morever we will restrict ourselves to axially symmetric random fields ?, g ;2 and we
will look for the equations of the stochasticaly displaced spherical shell as given on
fig. 1 loaded uniformly by its weight.

]
Further we assume that ¢, is a vector tangent to the meridian of the middle surface

?3(0. ¢, ®) = [—Bg{w)sin@cos g, — By(w)sin@sing, By(w)cosO)]
N
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where Bg(w) is a scalar ]-parameter random field. In this case 7, is uniquelly determined
by (4) and the axial symetricity

(21 “
;,((~), q.m) = [sian f B,sin@do . —cosg f Bysin@de, OJ
) Fo

Since we are in the axially symmetric case, we can use the well known Meissner-type
cquations in the form taking into account geometric nonlinearity, (c.f. [4]). Regarding

an additional assumption, that ;1 and ;2 are small when compared with the radius of the

shell (i.e. Bs < R,) we get the following system of nonlinear second order differential
equations

(D, +L)y+ Riyd+ Nyl + P9+ 09" = F, (O, w) ‘

D_3+RByp+ Py = Fi(0, w) ®)

where D are the second order deterministic differential operators of the form

E i d sin?@ ‘)
D. = cos@— - —sin@ o — )
. = cos@ 10? sin@ bTe) ( 030 +1 u)SOI (6)
L is the random differential operator
B d* o , d sin*® ., .
L= (-5° —2(5.»@‘059)71@» + (06 5in6 — 0 cosO) T ({Ez—é— S°+w)@cos(~)).
(7
R;. P;. N are some deterministic functions and F; are random functions.
Also we denoted by R, radius of the spherical shell and o = % 0o = Zl(éj Our.
0

(<]
¥ = f 0eSin@dE. v is the Poisson coeficient.
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Fig. 2
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Equations (5) contain the following unknown quantities,ﬁﬂ — is an increment of an angle
a after deformation o* = a+¢ (fig. 2)

2= ,
o Vl/ ) V= (148 ReTy (Tig. )

3. Numerical solution

For the solution of the equations (5) we have to consider the boundary conditions
e.g. we consider the shell with fixed lower boundary

O = B4, w =0, =0, ®)
and with free upper boundary
@ =06, T,= —Tsina*+Q,cosa* (fig. 3). 4 )

Determination of the mean value and the standard deviation of the random internal
forces was achieved by Monte Carlo method. For this purpose we assumed that random
function By can be represented as a series

@
By = cos@ D y,c05"20) (10)
n=0
where y, are one dimensional random variables, not necessarily independent — in the
dependent case the multidimensional distribution of y,, y,, ... is needed. Note, that for
Gaussian random function By the assumed in (10) form of B is not very much restrictive.
Indeed, any Gaussian field can be represented by a series similiar to (10) with independent
random variables and then we can each term of this series expand into a Fourier series.
Thus, up to the convergence questions, our assumption in (10) is that some of the Fourier
coeficients are zero.

As it is usual in the Monte Carlo method, after y,, y,, ... are sampled, i.e. finite
approximation of By in (10) is sampled, we have to solve a deterministic system of non-
linear differential equationé (5). To this end we used a combination of the power series
method together with the iterative procedure. Following R. NAGOrsk1 [5] with slight

changes to avoid singularities, we introduce new unknown variables X. Y defined by
w(O) = X(x)cos@, 1
#(O) = Y(x)cos@, (

where x = cos26.
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After the change of variables in (5) we expand the right hand sides of the equations (5)
in the power series with respect to x. Then we look for the coeficients in the power series
€xpansion of X and Y by iterative procedure adopted from A. Manmoup [6]. The Mah-
moud’s approach lies on the transposition of the nonlinearities to the right hand sides of
the equations (5) treating them as known. This applied to our problem gives the following
separated recurrent equations with unknown X, and Y,

(4—4,‘C2)X:,I+(6— le)X..'—(l—V)Xn T G—(x’Xn—l’ Yn—])’ : 12
@—4x) Y, +(6-10x) Y, —(1+»)Y, = G, (%, Xa_y, Yuoy). L

In (12) the right hand side functions G, can be expanded in the power series of the conver-

o0
gence radius 1, thus the solutions of (12) are given by D at x" (c.f. E. KAMKE [7]). There-

H=0
fore we get the recurrent linear equations for unknown power series coeficients
2n+3 4n*—(11v) 2(n+1)2n+1)—(112)
+ e e e —— e e T E L v DL e +
Az =~ T % T i D me2) T dwsDm+y | ot
by
BTSN CTS) M (3

el
where G, = Y bix,.

n=0

From (13) follows also, that the convergence radius of the series exﬁansion of X, and Y,
is equal 1.

Approximatively strict solutions of the system of nonlinear equations (5) are then
determined by X = limX,, ¥ = limY, together with (11).

The author checked numericaly the above procedure and it appeared, that iterative
procedure with X, = Y, = 0 works nicely for small stochastic part (5 - 10 iterations are
then sufficient).
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Pesawme

BPAUIATEJIbHO-CUMMETPHUYHOE CJIVUAMHOE COCTOSAHHE I[IEPEMENEHNIY
CPEPUYECKO!M OBOJIOUKU

B patoure npejcraBiieHbl npodJiemMbl CBA3aHHbIE CO CTATHKON TOHKOH cdepuueckoit 080 I0UKH [10CTO-
SIHHOM TOJINMHBI, HAUPY>KeHHOH COOCTBEHHBIM BECOM C YUYETOM BpPalllaTeNIbHO-CHMMETPHUUHbBIX CJIydJaii-
HbIX HaYaJIbHBIX IepeMellleHMi] BMECTEe ¢ IeOMeTpHUecKOll HeJIMHeHHOCTBIO.

CryuaiiHasi 4acTh MpOOJIeMbI PElIeHa METOOOM CHMMYJIALMH. UHCIICHHOE pelleHuHe BOSHHKHYBIIEH
JIETEPMHHUCTUUECKON 3aJaur 1IPOBEACHO METOAOM, KOTOPLIA COENMHSAET METOM CTENEHHBIX PSALIOB C HTEe-
PALHOHHBIM METOJIOM.

Streszczenie

ROWNANIA POWLOKI KULISTEJ] W PRZYPADKU OSIOWO SYMETRYCZNYCH
LOSOWYCH PRZEMIESZCZEN WSTEPNYCH

W pracy zostaly rozpatrzone zagadnienia statyki cienkiej powloki kulistej o stalej grubosci, obciazonej
cigzarem wlasnym z uwzglednieniem obrotowo symetrycznych losowych przemieszczen wstgpnych oraz
geometrycznej nieliniowosci. :

Stochastyczna cze$é zagadnienia zostala rozwigzana metoda symulacji. Liczbowe rozwiazanie za-
gadnienia deterministycznego otrzymano metoda laczaca metode szeregdw potegowych i iteracyjna.

Praca zostala zlozona w Redakcji dnia 1 lutego 1983 roku



