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1. Introduction

Theoretical problems occuring in designing of the shell structures subjected to con-

centrated forces require special methods, which make it possible to examine stress concen-
trations around the loads. In particular, it is worth to consider specific problems of the
lattice shells response, i.e. grid-, perforated-, or ribbed surface structures. In the present
paper there will be presented: an approximate model of a lattice shell behaviour and its
application to the special case of a spherical lattice-type elastic shell with an isotropic and
centrosymmetric structure, being subjected to concentrated normal force. The proposed
model is based on the lattice surface structure theory developed by C. Wozniak, [1]. Thus,
the engineering problem considered here can be reduced to the analysis of one of the
fundamental solutions of the theory. Before examining this solution an approximate set
of governing equations is derived on the basis of the following assumptions often used
when effect of local loads in the classical shell theory is considered, cf [2]:
— the boundary conditions have a neglecting effect on the local response of the shell,
— the deformations coresponding to the concentrated force vanish rapidly. hence the
consideration can be confined to the small (comparing with the size of the shell) area
around the point load.

The last assumption makes it possible to carry out the simplifications analogous to
those used in Vlasov's shallow shell theory.

2. Fundamental equations and basic assumptions

Consider a point P and a vector # normal at this point to the mid-surface of the shell,
referred to the coordinate system x* « = 1, 2. The plane normal to the vector » contai-
ning P is denoted by «p. A plane coordinate system x* (obtained via parallel projection
of x* in the direction » on mp) is assumed to be i one-to-one correspondence with the
parametric lines x®. The metric tensors in plane and surface coordinate systems will be

denoted by g,s and g.s, respectively. In the course of the procedure the coordinate system
Xx* is assumed to be orthogonal.



190 T. LEWINSKI

An actual configuration of the shell is determined by functions: u*, u,v*, v, which
stand for the tangent and normal displacements and rotations, respectively.

The state of strain is described by the tensors of plane and antiplane deformation
Yap» Kaps 1.€. by the stretching and bending strain tensors; y, denotes antiplane transverse
deformations while », — plane bending deformations.

The state of stress is determined by the membrane stress measures p,;, the bending
(antiplane) moment tensor m;, the transverse (antiplane) stresses p, and the in-plane
bending moment tensor (polar moments) mi,.

The mentioned quantities here satisfy the known system of equations due to Wozniak’s
lattice — type shell theory, [1].

The constitutive relations of the isotropic shell considered herein are assumed as
follows

.1 Papg = A gaﬂ)’?a'i'?-ﬂty(aﬂ) +2d; * Yiupys my = C,* #y,

Mag = Ay Gup® ®ioF 2 fhp Heapy T 2% " Hiapy, Pa= Cp* ¥y.
Moduli 4;, u;, @;, C; characterize elastic properties related to the plane (i = ¢) and anti-
plane (i = p) deformations.

Inserting the relationships (2.1) into the equations of equilibrium and utilizing the
strain-displacement relations, the governing set of equations is obtained. Taking into
account the spherical shape of the shell and introducing all simplifications yielding from
the approximation g.5 X g«s, We have

[(u;+ o) V? —ﬁgp] U+ (A + e — o) Cu Qptipg+2 - @, - €35050 — Keygvp —
— K- [2(u+ 2)+Cpld,u+b, = 0,
(2.2) 2aeupdzup+[CV?>—40,—4K? - (p,+oJo+ K- [Co4+2(up+ 2,)] Qv+ h = 0,
C, - Keapp— K -[2(utp+ 2,) + Cpl duv + [(1, + 2,)V? — C, — K2C]v, +
+ (pp+ A, — @) Ox Opup+ Cpeqp dpt + by = 0,
K- [2(p+ A4)+ Coléqita+ Cpenp v+ [Co V2 —4K 2 (p,+ 2)Ju+b = 0,

where «, 5,0 = 1,2, p* = 81+ 83, e, — Ricei tensor, K = 1/R, R—the radius of
curvature. The components b,, b, h,, i denote resultants due to the effective external
forces and couples measured per unit area of the middle surface, tangent and normal
to it, respectively.

In the course of the derivation we shall confine ourselves to such shells, whose elastic
properties and response under local load satisfy the conditions

i. C,< 0 C, <8y,
ii. /R <1 iii. L/R < |

(2.3)

where 8 — a parameter characterizing a geometry of “microstructure” of the lattice.
[9] = m, L —the wave length of the deformation pattern.

It can be proved, that the assumptions (2.3) allowus to neglect the underlined terms
in (2.2), dependent on the second powers of the radius of curvature. The underlined terms
in the first two equations result from an influence of transverse stresses p,. The neglected
quantities in the fourth and the fifth equations result from the effect of polar moments m,.
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The assumed simplifications are weaker than those of Vlasov’s applied in the shallow
shell theory. 7

3. Normal point load — fundamental solution

The fundamental solution will be found by Fourier transform technique. After carrying
out the double Fourier transformation of the equations (2.2) with the right-hand sides
by =hy =h=0, b= P-5(x") 6(x?) and then expressing the inverse transforms in
the polar coordinates r, #(x! = rcos?, x* = rsind) and finally carrying out the % —
integration, we obtain .

w)  P-K {cosﬁ} . f V2 QRue+24 +Cp) - (up+ ) y* +2C,(u, + 4,)] Ty - ndy
u,| = 27 |sin® J M(y) s

@y, ol LGl WA [ Gl t QA G Ly iy
3.1) V5 T 2=z —cos? 5 . M(‘y) - [T

¢ =0

P f  yl@u+ A)(pt+ 0p) v+ Que+ L) C, - Y2 = K2CE] - Jo(yr)dy

27 M(y)

M(@y) = Qu,+24)  (up+a,)- C,- 76 +K2(/l,,+dp) “[dur (A+p) —
= Cp(Au +44,+ Cly* +4K 2w, - (u + 2)C, -y —
(3.2) —4K4C - (u+4y),

where J, are the Bessel functions of the first kind of order ».
Let us introduce the dimensionless variables 7 = r/ly,y = 3+ [, where

(3.3) lo = [(Qute+ 2) (o + 0)Y(AK*C, * (t+ 2]
The quantity /, exists, provided the elastic moduli satisfy the inequalities: u,+ 4, > 0,

#e >0, pp >0, @, >0, C, >0, resulting from the positive definiteness of the elastic
potential of the shell. Equations (3.1) take the form

u =

i) < P dote i s CI IR, e S
ul = 2n-C, Qu+ ) sind] ) W(y) .
3 {v,}_: L Pl A_.{—sim?}_ f»(7*—“60_-&'ﬂ;h(y‘-f)dr‘

v, 27 (uptap) | cosd| W) '

By ,“ @ +day? +do) -y Joly - 1)y
w(y) |
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where
(3.5) W) = o), oz) =3 +ay -z ta,z—1,
_ 2, A B L Ru+24+C KR
o+, Quit24+4C,)"  ° Qu,+ )
66 a e KBt 1)=Co Gutan OB Gl
. i Qu+ 1) - C, ; : (o +ap)’
4 K2 18 (ot 40) R

a, = (0]

CQuAR) ey T Qe A) ()

The series expansions of the integrals (3.4) with respect to the variable r depend on
the roots of the polynomial w. In view of the obvious fact, that one of the real roots is
positive, the polynomial @ can be written in the form

w(z) = (z*—a?) (22 +cy z+¢), ¢ > 0.
Let us consider the three cases!’

1. The polynomial p(z) = z*+4c¢,z+ ¢, has no real roots, so that the following ine-
quality hold true

37 (% ’(12—-(;212)3+[%~(&2214+3)— —217-&2] > 0.
Thus the polynomial W can be written in the form
W)= @*—a®) @*+sy+q) @*—s y+q), s,9€R
2. The polynomial p(z) has positive real roots. W(p) takes the form
W) = (7*—a®)(y,—b*) - (*~¢?), b,c>0.
3. The polynomial p(z) has negative real roots. Hence, we have
W) = (—a®)- (2 +b2)- G2 +¢), b, e > 0.
To carry out a complete analysis of the behaviour of functions u®, u, v*. the cases
1 -3 will be considered separately.

Ad. 1. Decomposing the integrands in (3.4) into a sum of simple fractions and using
the definitions (1, 2) of special functions examined in the Appendix, we find

e (o (F =y — R T
:“2 (r, 19_)} = alr . O RE ) RS, Q) lsinﬁ]’
e [e l e ; L —sind}|
|, (F, '19)| = 0 (e OF- )= hiThEr 2 5 VAR 4, q)) { cOsﬂ]"
u(r, 9) = £ (go(r, @); KL (s 5, @); h§R(r, 5, 9)),  o(r, #) = 0.
The expression Z(f,: ...; f,) means the linear combination of the functions f;. ..., f..

Ad 2. Proceeding similarly as in the first case, the equations

) The case of double roots is omitted.
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1 _ cos¥
{ZZ (r, 19)} = -Z}(gl("’a); g.(r, b); g,(r, ‘)) =sim9 }’

3.9) lvl
l'Uz

“(F, 79) = 3(80(7, a): go(;, b); gO(;r C)), v(;! ‘19) = 0*

> ~ f—sind
(r,t?)} = Z (5, a); 8, b);8,F, C))- | cos.g}’

are obtained.
Ad 3. In this case, we have

]ux :. P =cosz9}

lu2 (r! 19)} = 'Z}(gl(;aa)ufl(r: )9.,.1(;, C)) Sin’l? 3

—sind
cosﬂ}’

(3.10) {:‘ @, 19)} = Z(g,(r,a); fi(r, b); /i (F, r))'{

ur, 9) = L (go(F, @i folFs B): folFr ©)),  oF, #) = 0.

Strains and stresses can be found with the aid of the straindisplacement and consti-
tutive equations.

The results obtained in the Appendix enable us to prove, that in each of the cases
considered above functions &%, u, ¢* in the vicinity of point P can be approximated by

3.1 ] U, - cos? | {‘vx} {—V;sim?} ] <
( . I) {u2} o {UZ'Sin'ﬂ r-inr, v, ~ Vzcosﬂ reinr, U ~ ' Inr.

Hence, the following singularities of the components of the state of stress can be found

1 )
Pax ~ Puy - Inv, pINPl.,—_’ Piz=p2y=p, =0,
(3.12)
Mag ~ Mgg-Inr, m; ~ M, -r-Inr, m; =0.

4. Grid shell

The results obtained at Secs. 2 and 3 can be applied to the analysis of a grid shell of
isotropic structure. The considerations will be confined to the so called geodesic lattice
domes constructed by three families of bars, formed on the basis of icosahedron by means
of the known methods, due to Fuller [3] or Tarnai [4], cf. [5). The desired properties,
namely the isotropy and centrosymmetry are satisfied with the sufficient accuracy for the
engineering practice. Effective elastic moduli of such structures have been given in [1];
it is worth mentioning, that the relations 4; = u;— oy, i = p, ¢, hold true. In the case of
slender bars, conditions (2.3), are satisfied. Furthermore it can be proved, that for all
real grid shells of this structure the inequality (3.7) is valid; thus displacements and rota-
tions of nodes are approximated by means of the formulae (3.8). *

A quantitative analysis of the response of geodesic grid shell subjected to normal point
load will be presented in a separate paper.
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5. Concluding remarks

In the paper one version of simplifications of the governing system of equations o
Wozniak’s lattice-type shell theory has been proposed. The aim of the model is to describe
special type of deformations occuring in shells subjected to local loads. An analysis of
the response of the spherical lattice shell to the normal point load confirmed, that the
model is useful to both quantitative and qualitative considerations. In particular, it is
possible to prove, that in the case considered, the singularities of the displacements and
stresses are of the same order as those in the classical Keissner's type theory of shells,
cf (3.11-3.12) and [2]. '

Nevertheless, the proposed model can not be used when boundary value problems of
shallow lattice shells are considered since there the governing set of equations does not
satisfy the strong ellipticity condition.
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Appendix

Evaluate the improper integrals

20

I - J(x-y) x7"dx J.(x-y) xt~vdx
j»'(y’ a) = f By (4 Y'Z)'*' 3 x' gv(y) a) = ‘( 7'):)"‘“' -
0

a? !
)
h,u(y;r,q) = f

0

J,.(x'y)'x”dx ‘V’,u"_“ovl) a,q,l‘eR
xI4+r-x+q = —d4g+r* <0, q>0.

In the paper the following functions are also used

@ hS(y:r.q) = b (y;r,)+h (y: ~r,q),
' B rg) = B OB Al Sl S =T g

1. Integrals f,, g,
According to the tables [6], we have
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4
fO(y’a)= KO(/,a'y)1 g go(}’,a)= 2l 2 | Yo(a'}’),
(3)
yeir=mbi ol Sl ol i s I
fl(y’a)=7a” Iiai’;/_Kl(a.y)], gl(yya) - - a[z Yl(a’ .V)+ 21_.3;‘ »
where Y,, Y,, Ky, K, are Bessel functions and modified Bessel functions of order zero
and one, [6, 7]. Expansions of f,, g, in the vicinity of y = 0, take the form

1
) Jo 8o~ —Iny, fi,g ~ =y Iny.

2. The integrals 4,

The author has not fiund expansions of the integrals 4, , in the available monographs
on the special functions. A method of evaluating of the integrals based on the Poisson’s
integral representation of Bessel functions is presented briefly. Some ideas of the proce-
dure. has been taken from the paper of Simmonds and Bradley, [8], where the integral

+0 4o

exp(—i(e* x+ 8- y))dodp
i[n @y i+ kpy - LD

has been examined.
Starting from the identity

5 xt (x4 —x=,‘i.(“‘____ lv) ,,"Au,.( b =1 )
(5) X (X241 x+4q) Wi\ %=z, P + =

where
2 1/2
p=0,1, ¢ =a+bi, ¢, =a-bi, a= —, b=( —7’—-) ,

one obtains

~ - ] .
( oy g) = - (B = HE) o 0y, (HEQHHED,
6

TN e
He = [ DA
o x—C;

Recalling the integral representation of Bessel functions J,

(7) J"(x . y) = 21. _f e—l'xy-COS'I‘. COS"(pd(p, Y = 0’ ]’
£
and interchanging of orders of integrations, we find
2n w
: I AL /.L . exp(i- w(p) - x)dx
(8) HE) = - f cosvg - F(g)de,  Fu(y, ¢) =f ( ,7_% )*”’
0 0 -

2zt
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where o (¢) = — y cosg. The function F) can be expressed by means of the complex
exponential integral E, |

) F,’;_(y, @) = e"””l{El(i o E)+ nz- £ - (1+sgn(Re&y))- (sgnm+sgn([m&‘1))}.

For the sake of brevity the proof is omitted. Expanding E, into power series, inserting
(9) to (8), and carrying out the ¢ — integration with the aid of the equations

) 27 2—’” 2k s
(10) Sn = 5 f cos"xdx = - (k)’ g
73 0 n=2k+1, k=0,1, ..,
2
(11) Thi= 4 f cos™ - In|cosx|dx =
2n s
: 2k (f)k)y
\ | 272k (2k)!
koo ok _ 21 — 9
= ,-g_; AR Rl e Ty =)
0 n=2k+1, k=01,
where:
—in2 k=0
7, = 4(:-])’”1 1 4
'2' |k| k _tl, +2 »
| o
(12) v, = { sgn( —cosx) - cos"xdx =
2 §
0 n = 2k,
2k ]

the expansions of the complex functions H) and real functions 4, , are found. Finally,
we obtain

: : | S AR o
(13) hoolyir.g) =, +Iny- Z S2 " & @) 7"+ ./.?_4 U 5 ) Gt
1

)
R :
=+ Z h})’f},(ﬁ) *Sopt ).211‘
0

o

l -“1 (¢ T120 7 C(1) {4 2n
hio(yir.g) = = -lny-__,}Jf;:wn-.sz,.”-y- s Eo fDB) - Vangs - P+
o
R
+ D RO span T

0



SPHERICEAL LATTICE-TYPE SHELI 197

o

= 7
ho, (vir,q) = In¥- Z (—‘; fEP(9) —fc‘:’(ﬂ)) T T
0

; = a . w‘ -
(13) [cont] P | 5’( L) +fc<:>w>) STTRS T N TR )
\ 2 ‘TJ b 40_1

25}

hy (y;r,q) = =Iny* E ( Z-fél"(‘ﬁ)+/él"(‘l9)) PV Tl v
(]

7 ‘1 Qs+, : = E‘ =
= > ( () _fc(":)(ﬂ))‘vzw P R Sang 2 - Y270,
T 0

where y=y-o0,0= q‘/Z, cosy = —r/2 Vq, sind > 0.
The functions f{>(#),i = S, C,j = s, ¢ are the coefficients in the series expansions

. sin(x-cosﬂ-)} _ \%!fé;"(ﬂ)}' -
Sh(x - sln‘ﬁ‘) . {cog(x . R = ,ﬁ fs(:)(ﬁ) X0,

(14)

2n

sin(x - cosﬁ)} m 2 { JE(D) - x

Ch(x - sin- 83)- !cos(x - 00E ) F0) i

n=0

In order to save space, the complex definitions of the coefficients A$"} will not be given
here.

In the neighbourhood of point y = O the series expansions (13) with the first few
terms written out explicitly have the form

sin2d¢ . a—1 1

hoo(yir, q) ~ i Iny+
0.0(Virs q 40 - sin? ) *

e e
o-sind 2o -

sin 29 :

hyo(yir, q) ~ — -
Loly;r, q) 30 sind "

1 ! |
. oy . (g — 2— . —D]-7—
20 Iny: v+ 2 [ctg?-(m—~H)+(In2 ye— 1]y

S0

(15) ho (3310, q) ~ =Iny+ 4 sind -yp?elny—y- cosd,

] l . -
5 + 5;{;5—[(7!—19) -cos29+ (In2—yE—0,5) - sin2d] - y
where y; = 0.5772 — Euler's constant. Hence, for vy = 0

ho,o = (@—H[(o-sind), h; =0, h ,=05.

The function #, , has a logarithmic singularity at point y = 0.

hl.l(y;",q) ~ cos?y-Iny+

6 Mecch. Teoret i Stos. 2—3/83
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Peswme

JEMCTBUE COCPEIOTOYEHHOIT HOPMAJIBHOM CHJIBI HA IIOJIOI'VIO,
CPEPUYECKYIO CETUYATYIO OBOJIOYKY-OYHIAMEHTAJIBHOE PEHIEHHE

B paGore mpuBoguTCa CTATHYECKHH aHANH3 nepejayd HOPMANIbHOH COCPEeXOTOYEHHON CHIbI Ha
chepHUecKyIO CeTUYaTyIo -000JI0UKY O H30TPONHOH M HEHTPOCHMMETpHuecKol crpyktype. Ilpumeneno
Teoprio ceTyaThix obonouex Bosusika. IlpeacraBnena npo6nema MpHBOOUTCA K aHAIM3Y OMHOTO H3 dyH-
[aMEHTUILHBIX peLIeHMIT 3TOil TeopHH.

B nepBoil YacT# NONyyeHb! NPUOIMKEHHblE YPABHCHHMA paBHOBecHA (B omelleHHsx) 6asupys ua
NPEIONOMKEHUAX OTHOCHTENLHO CNabIuMX OfI THX, MPH MoMoLH koTopbix B. 3. Bnacos cdopmympo-
BaJl TEOPHIO IOJIOTHX, OTHOPOAHLIX 000JIOYEK.

DyHIAMEHTATbHOE peIlleHHe HaiJEeHO C IOMOLIBIO MHTErpatbHoil Tpalchopmaunn Pypee, ITpo-
aHATMPHU30BAHO CHHTYPSAPHOCTH NepeMelleHnii, nedopmanyii 1 HanpsxKeHHit.

Streszczenie

DZIALANIE NORMALNEJ SILY SKUPIONEJ NA MALO WYNIOSLA SIATKOWA POWLOKE
KULISTA — ROZWIAZANIE PODSTAWOWE

Przedmiotem pracy jest analiza statyczna niewielkiego obszaru sferycznej powloki siatkowej o struk-
turze izotropowej i centrosymetrycznej wokol punktu przylozenia normalnej sity skupionej. Wykorzy-
stano teorie powlok siatkowych Wozniaka. Postawiony problem sprowadza si¢ do analizy jednego z roz-
wigzan podstawowych tej teorii.

W pierwszej czeéci pracy wyprowadzono réwnania przemieszczeniowe malo wyniostej, sferycznej
powloki siatkowej. Przyjeto zalozenia relatywnie slabsze od uproszczen W.Z. Wiasowa bgdacych pod-
stawa teorii jednorodnych powitok potogich.

Rozwiazanie podstawowe znaleziono za pomoca calkowej transformacji Fouriera. Zbadano rzgdy
osobliwosci sktadowych stanu przemieszczenia, odksztalcenia i napigcia.

Praca zostala zlozona w Redakcji dnia 26 stycznia 1983 roku
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