MECHANIKA TEORETYCZNA I STOSOWANA 2, 17 (1979)

PODŁUŻNA STATECZNOŚĆ DYNAMICZNA ŚMIGŁOWCA Z PODWIESZONYM ŁADUNKIEM W ZAWISIE

WIESŁAW ŁUCJANEK, KRZYSZTOF SIBILSKI (WARSZAWA)

Podano model fizyczny jednowirnikowego śmigłowca z podwieszonym ładunkiem oraz równania opisujące ruch podłużny tego zespołu w stanie zawisu. Uwzględniono trzy stopnie swobody: pochylanie śmigłowca oraz poziome przemieszczenia smigłowca i ładunku. Stateczność zanalizowano metodą małych zaburzeń stanu równowagi. W oparciu o dane liczbowe dla typowego lekkiego śmigłowca określono postacie ruchu układu oraz wpływ ciężaru ładunku, długości liny i miejsca jej zamocowania do śmigłowca na stateczność zespołu.

Spis ważniejszych oznaczeń

- A bezwymiarowa macierz bezwładności występująca w równaniach (4) i (16). W rozważanym w pracy przypadku jest to macierz jednostkowa,
- $A_w = \Omega \cdot R^2$ pole powierzchni zakreślanej przez końce łopat wirnika nośnego [m²],
- $a = dC_z/d\alpha$ pochodna współczynnika siły nośnej profilu łopaty względem kąta natarcia [rad⁻¹],
- $a_0 = (t_4 \cdot \vartheta_R t_5 \cdot \vartheta_T t_3 \cdot \lambda_0)/(\gamma + c_k)$ kąt stożka wirnika nośnego [rad],
- a_{1c} amplituda kąta wahań łopat wirnika nośnego odniesiona do płaszczyzny tarczy sterującej, mierzona w płaszczyźnie podłużnej śmigłowca [rad],
 - **B** bezwymiarowa macierz tłumienia określona w równaniu (6),
 - b liczba łopat wirnika nośnego,
 - C bezwymiarowa macierz sztywności określona w równaniu (7),
- $c_k = 8 \cdot k_H / \varrho \cdot \Omega^2 \cdot R^4 \cdot a \cdot c_0$ współczynnik sztywności łopaty w przegubie poziomym,
- c_0 cięciwa łopaty wirnika nośnego u nasady [m],
- $c_T = M \cdot g/\varrho \cdot V_T^2 \cdot A_w \cdot \sigma$ współczynnik ciągu wirnika nośnego śmigłowca bez podwieszonego ładunku,
- C_z współczynnik siły nośnej profilu lopaty,
- D bezwymiarowa macierz wyrazów wolnych określona w równaniu (8),
- d odległość punktu zamocowania liny z ładunkiem od środka ciężkości śmigłowca mierzona wzdłuż prostej przechodzącej przez środek piasty wirnika nośnego i środek ciężkości śmigłowca [m],
- E macierz jednostkowa,
- g przyspieszenie ziemskie [m/s²].
- h odległość środka piasty wirnika nośnego od środka ciężkości śmigłowca [m],

- I_F moment bezwładności łopaty wirnika nośnego względem przegubu poziomego $[kg \cdot m^2]_1$
- I_y centralny moment bezwładności śmigłowca wyględem osi y [kg · m²],
- K macierz określona w równaniu (17),
- k_H sztywność zamocowania łopaty w przegubie poziomym [N · m/rad],
- 1- długość liny, na której jest podwieszony ładunek [m],
- M masa śmigłowca bez podwieszonego ładunku [kg],
- m --- masa podwieszonego ładunku [kg],
- $\overline{m} = m/M$ względna masa podwieszonego ładunku,
- q wektor stanu określony w równaniu (15),
- q prędkość kątowa pochylania śmigłowca [s⁻¹],
- R macierz określona w równaniu (16),
- R promień wirnika nośnego [m],
- $r_y = \sqrt{I_y/M}$ centralny promień bezwładności śmigłowca względem osi y [m],
- T ciąg wirnika nośnego [N],
- t czas [s],
- $t_a = M/\dot{\varrho} \cdot V_T \cdot A_w \cdot \sigma$ czas aerodynamiczny, [s]
- t* --- zbieżność łopaty wirnika nośnego,
- $t_i = 4 \cdot \int_{x_0}^{x_k} (1 t^* \cdot x) x^{i-1} dx$, $(i = 1 \dots 5)$ współczynniki charakteryzujące kształt łopa
 - ty wirnika nośnego [8],
- $V_T = \Omega \cdot R$ prędkość końców łopat wirnika nośnego [m/s],
- V prędkość pozioma śmigłowca [m/s],
- x --- wektor określony w równaniu (5),
- x_k promień wirnika nośnego z uwzględnieniem strat siły nośnej na końcach lopat [m],
- x_l współrzędna środka ciężkości podwieszonego ładunku [m],
- x_s współrzędna środka ciężkości śmigłowca [m],
- x_z współrzędna punktu zamocowania liny z ładunkiem do śmigłowca [m],
- x_0 odległość od środka piasty do przekroju łopaty u nasady [m],
- $x_1 = (M \cdot x_s + m \cdot x_l)/(M + m)$ współrzędna środka ciężkości układu śmigłowiecpodwieszony ładunek [m],
- $x_2 = x_l x_s$ odległość środka ciężkości śmigłowca od środka ciężkości podwieszonego ładunku mierzona wzdłuż osi x [m],
- α kąt natarcia profilu łopaty [rad],
- $\gamma = 8 \cdot I_F / \varrho a \cdot c_0 \cdot R^4$ stała masowa łopaty,
- δ_3 współczynnik sprzężenia wahań i przekręceń łopaty,
- η część urojona wartości własnej λ (bezwymiarowa częstość oscylacji),
- Θ kąt pochylenia śmigłowca [rad],
- Θ_L kąt między liną z podwieszonym ładunkiem i pionem, mierzony w podłużnej płaszczyźnie śmigłowca [rad],
- Θ_r kąt między wektorem ciągu wirnika nośnego i prostą łączącą piastę wirnika ze środkiem ciężkości śmigłowca mierzony w podłużnej płaszczyźnie śmigłowca [rad],
- ϑ_R kąt nastawienia łopaty wirnika nośnego [rad],

264

- ϑ_T kąt skręcenia końcowego profilu łopaty wirnika nośnego względem profilu przy nasadzie [rad],
 - $\lambda = \xi \pm \sqrt{-1} \cdot \eta$ wartość własna macierzy **R**,

 λ_0 — współczynnik przepływu pionowego,

 $\mu_0 = M/\varrho \cdot R \cdot A_w \cdot \sigma$ — względna gęstość śmigłowca,

 ξ – część rzeczywista wartości własnej λ (bezwymiarowy współczynnik tłumienia), ρ – gęstość powietrza [kg/m³],

 $\sigma = b \cdot c_0 / \pi \cdot R$ — współczynnik wypełnienia wirnika nośnego,

 $\tau = t/t_a$ — czas bezwymiarowy,

 (\cdot) — pochodna względem czasu bezwymiarowego,

(⁻) — wielkość bezwymiarowa.

1. Wstęp

Coraz szersze stosowanie śmigłowców do prac dźwigowych stwarza potrzebę zbadania stateczności śmigłowca z podwieszonym ładunkiem. Opublikowane piśmiennictwo na temat dynamiki układu śmigłowiec-podwieszony ładunek jest stosunkowo ubogie. Wprawdzie ukazały się prace dotyczące zarówno rozważań teoretycznych [1], [2], [3], jak i wyników prób w locie [4], [5], jednakże mają one charakter analiz wstępnych, obejmują proste modele fizyczne (np. śmigłowiec jest traktowany jak punkt materialny [3]) i stanowią próbę przede wszystkim oszacowań jakościowych.

Praca niniejsza stanowi próbę analizy ilościowej. Parametrami zagadhienia są: długość liny, na której jest podwieszony ładunek oraz stosunek masy ładunku do masy śmigłowca i odległość punktu zamocowania liny z ładunkiem od środka ciężkości śmigłowca. Wybór tych parametrów jest podyktowany względami poznawczymi, a ponadto w przypadkach szczególnych umożliwia porównanie wyników z rezultatami prac innych autorów, np. przy zerowej masie podwieszonego ładunku z wynikami dotyczącymi śmigłowca izolowanego, lub przewidzenie rezultatu na podstawie przesłanek fizycznych, np. przy podwieszeniu ładunku w środku ciężkości śmigłowca — rozprzęgnięcie wahań ładunku i pochylania śmigłowca.

2. Zalożenia

1) Ruchy: podłużny i boczny układu śmigłowiec-podwieszony ładunek są rozprzęgnięte.

2) Równania opisujące ruch podłużny śmigłowca i ładunku można rozdzielić na dwa niezależne układy, z których jeden dotyczy przemieszczeń śmigłowca i ładunku wzdłuż osi poziomej oraz pochylania śmigłowca, a drugi przemieszczeń układu wzdłuż osi pionowej. Uzasadnienie tego założenia można znaleźć np. w pracach: [6], [7] i [9].

3) Przemieszczenia układu wzdłuż osi pionowej nie będą uwzględnione, gdyż w przypadku śmigłowca izolowanego ta postać ruchu jest nieoscylacyjna i tłumiona [9], a wpływ z założenia małych ruchów podwieszonego ładunku jest niewielki.

4) Śmigłowiec jest traktowany jako sztywna bryła o masie M i centralnym momencie bezwładności I_y .

5) Na śmigłowiec, poza jego ciężarem, działają następujące siły zewnętrzne: ciąg pojedynczego wirnika nośnego i naciąg pojedynczej liny, na której wisi ładunek.

6) Ciąg wirnika jest stały i równy sumie ciężarów śmigłowca i ładunku.

7) Tarcza sterująca wirnika nośnego jest nieruchoma (stateczność "z trzymanym drążkiem").

8) Ładunek jest reprezentowany przez punkt o masie m zawieszony na nieważkiej i nierozciągliwej linie (wahadło matematyczne) w odległości d od środka ciężkości śmigłowca.

9) Stanem równowagi śmigłowca jest zawis.

10) Zaburzeniami są małe zakłócenia stanu równowagi.

3. Modele: fizyczny i matematyczny

Ruch zespołu: śmigłowiec-podwieszony ładunek jest opisany w prostokątnym prawoskrętnym układzie współrzędnych x, y, z związanym z Ziemią. Oś z jest skierowana pionowo do góry, a oś x leży w podłużnej płaszczyźnie śmigłowca i jest skierowana do przodu kadłuba (rys. 1).

Dla rozpatrywanych trzech stopni swobody zespołu: poziome przemieszczenie śmigłowca x_s , pochylenie śmigłowca Θ i poziome przemieszczenie podwieszonego ładunku x_t , można otrzymać następujący układ równań opisujących ruch śmigłowca i ładunku [7] (oznaczenia jak na rys. 1):

(1)
$$M\frac{d^2x_s}{dt^2} = (M+m)g\sin(\Theta+\Theta_T) - mg\cos\Theta_L\sin\Theta_L$$

(2)
$$m\frac{d^2x_l}{dt^2} = mg\cos\Theta_L\sin\Theta_L,$$

(3)
$$I_y \frac{d^2 \Theta}{dt^2} = (M+m)gh\sin\Theta_T + mg(x_z - x_s)\cos^2\Theta_L + mgd\cos\Theta_L\sin\Theta_L,$$

gdzie: $x_z = x_s - d\sin\Theta$ oraz $\sin\Theta_L = (x_z - x_l)/l$.

Układ ten po linearyzacji względem małych zaburzeń stanu równowagi, wyrażeniu kąta Θ_T przez pochodne aerodynamiczne wirnika [8] i zmienne stanu oraz zamianie współrzędnych x_s i x_l na wielkości x_1 i x_2 , w formie bezwymiarowej¹ przybiera postać [7]:

$$(4) \qquad \qquad \mathbf{A}\ddot{\mathbf{x}} + \mathbf{B}\dot{\mathbf{x}} + \mathbf{C}\mathbf{x} + \mathbf{D} = \mathbf{0},$$

gdzie:

(9)

(5)
$$\mathbf{x} = \operatorname{col}[\overline{x}_1, \Theta, \overline{x}_2],$$
$$\mathbf{p} = \begin{bmatrix} b_{11}, & b_{12}, & b_{13} \\ b_{22}, & b_{23}, & b_{23} \end{bmatrix}$$

(6)
$$\mathbf{B} = \begin{bmatrix} b_{21}, b_{22}, b_{23} \\ b_{31}, b_{32}, b_{33} \end{bmatrix},$$
(7)
$$\mathbf{C} = \begin{bmatrix} 0, c_{12}, 0 \\ 0, c_{22}, c_{23} \\ 0, c_{32}, c_{33} \end{bmatrix},$$

(8)
$$\mathbf{D} = \operatorname{col}\left[0, \frac{\overline{m}}{r_{y}} \cdot (1 + \overline{d}/\overline{l}) \cdot c_{T} \cdot \mu_{0} \cdot \overline{s}, -(1 + \overline{m}) \cdot c_{T} \cdot \mu_{0} \cdot \overline{s}/\overline{l}\right].$$

Elementy macierzy B i C można obliczyć z zależności:

$$\begin{cases} b_{11} = \frac{\partial a_{1c}}{\partial \overline{V}} \cdot c_T \cdot \mu_0, \quad b_{12} = -\left(\frac{\partial a_{1c}}{\partial \overline{q}} \cdot \frac{da'}{da_1} - \overline{h} \cdot \frac{\partial a_{1c}}{\partial \overline{V}}\right) \cdot c_T \cdot \mu_0, \\ b_{13} = \frac{\overline{m}}{1 + \overline{m}} \cdot \frac{\partial a_{1c}}{\partial \overline{V}} \cdot c_T \cdot \mu_0; \\ b_{21} = -(1 + \overline{m}) \cdot \overline{h} \cdot \frac{\partial a_{1c}}{\partial \overline{V}} \cdot \frac{c_T \cdot \mu_0}{\overline{r}_y}, \\ b_{22} = -(1 + \overline{m}) \cdot \overline{h} \cdot \left(\frac{\partial a_{1c}}{\partial \overline{q}} \cdot \frac{da'}{da_1} - \overline{h} \cdot \frac{\partial a_{1c}}{\partial \overline{V}}\right) \cdot \frac{c_T \cdot \mu_0}{\overline{r}_y}, \\ b_{23} = -\overline{m} \cdot \overline{h} \cdot \frac{\partial a_{1c}}{\partial \overline{V}} \cdot \frac{c_T \cdot \mu_0}{\overline{r}_y}; \\ b_{31} = (1 + \overline{m}) \cdot \frac{\partial a_{1c}}{\partial \overline{V}} \cdot c_T \cdot \mu_0, \\ b_{32} = -(1 + \overline{m}) \cdot \left(\frac{\partial a_{1c}}{\partial \overline{q}} \cdot \frac{da'}{da_1} - \overline{h} \cdot \frac{\partial a_{1c}}{\partial \overline{V}}\right) \cdot c_T \cdot \mu_0, \\ b_{33} = \overline{m} \cdot \frac{\partial a_{1c}}{\partial \overline{V}} \cdot c_T \cdot \mu_0; \end{cases}$$

¹⁾ Zasady przekształcenia równań z postaci wymiarowej w bezwymiarową są opisane np. w [9] (s. 191– 193), gdzie jako podstawowe wielkości odniesienia przyjęto: R, V_T i $\sigma \cdot A_w$.

(10)
$$\begin{cases} c_{12} = c_T \cdot \mu_0; \\ c_{22} = -\frac{\overline{m}}{\overline{r}_y} \cdot \overline{d} \cdot (1 + \overline{d}/\overline{l}) \cdot c_T \cdot \mu_0, \quad c_{23} = -\frac{\overline{m}}{\overline{r}_y} \cdot \frac{\overline{d}}{\overline{l}} \cdot c_T \cdot \mu_0; \\ c_{32} = -(1 + \overline{m}) \cdot (1 + \overline{d}/\overline{l}) \cdot c_T \cdot \mu_0, \quad c_{33} = (1 + \overline{m}) \cdot \frac{c_T \cdot \mu_0}{\overline{l}}. \end{cases}$$

Pochodne aerodynamiczne wirnika: $\frac{\partial a_{1c}}{\partial \overline{V}}$, $\frac{\partial d_{1c}}{\partial \overline{q}}$ i $\frac{da'}{da_1}$ zostały określone na podstawie [8] i mają postać:

(11)
$$\frac{\partial a_{1c}}{\partial \overline{V}} = \frac{(2t_3 \cdot \vartheta_R - 2t_4 \cdot \vartheta_T - t_2 \cdot \lambda_0) + (a_0 \cdot t_3/t_4 + 1) \cdot (c_k + t_4 \cdot \operatorname{tg} \delta_3)}{\mu_0 \cdot [t_4 + (c_k + t_4 \cdot \operatorname{tg} \delta_3)^2/t_4]}$$

(12)
$$\frac{\partial a_{1c}}{\partial \overline{q}} = -\frac{2[\gamma + (c_k + t_4 \cdot \operatorname{tg} \delta_3)/2]}{\Omega \cdot t_a \cdot [t_4 + (c_k + t_4 \cdot \operatorname{tg} \delta_3)^2/t_4]}$$

(13)
$$\frac{da'}{da_1} = \frac{3}{2} \cdot \left(1 - \frac{t_3 \cdot \vartheta_R - t_4 \cdot \vartheta_T}{24c_T}\right).$$

Równania (4) tworzą układ trzech liniowych niejednorodnych równań różniczkowych drugiego rzędu, który można przekształcić do układu sześciu równań rzędu pierwszego o postaci:

(14)
$$\dot{\mathbf{q}} - \mathbf{R}\mathbf{q} + \mathbf{K} = \mathbf{0},$$

gdzie:
(15) $\mathbf{q} = \operatorname{col}[\bar{\mathbf{x}}, \ \dot{\boldsymbol{\Theta}}, \ \bar{\mathbf{x}}, \ \bar{\boldsymbol{X}}, \ \boldsymbol{\Theta}, \ \bar{\mathbf{x}}_{1}]$

268

STATECZNOŚĆ DYNAMICZNA ŚMIGŁOWCA

(16)
$$\mathbf{R} = \begin{bmatrix} -\mathbf{A}^{-1}\mathbf{B} & -\mathbf{A}^{-1}\mathbf{C} \\ \mathbf{E} & \mathbf{0} \end{bmatrix},$$

(17)
$$\mathbf{K} = \begin{bmatrix} \mathbf{D} \\ \mathbf{0} \end{bmatrix}.$$

W celu określenia stateczności układu zostaną wyznaczone wartości własne macierzy \mathbf{R} , a w celu określenia postaci ruchu śmigłowca i podwieszonego ładunku — odpowiadające tym wartościom wektory własne.

4. Przyklad obliczeniowy

Ze względu na złożoną postać równań (14), zbadanie stateczności ich rozwiązań na drodze analitycznej jest praktycznie niemożliwe. Wobec tego wykonano obliczenia numeryczne dla lekkiego śmigłowca klasy "Mi-2" o następujących danych: b = 3, $t_i =$ $= 4(0,96^i - 0,1^i)/i$, R = 7,25 m, M = 2.600 kg, dla zakresu parametrów: $0 \le \overline{m} \le 0.4$, $0 \le 1 \le 30$ m, $0 \le d \le 1$ m. Przykładowe rozwiązanie jest przedstawione na rys. 3. Moduły wektorów własnych zostały unormowane w ten sposób, że suma ich kwadratów jest równa jedności dla każdej wartości własnej λ macierzy **R** [10].

Z porównania wysokości "słupków" na rys. 3, a także z dalszych wykonanych w ramach tej pracy obliczeń wynika, że poszczególne wartości własne charakteryzują następujące ruchy:

 a) λ_l = ξ_l± √-1 η_l — wahania ładunku podwieszonego pod śmigłowcem,
 b) {λ_{1,2} = ξ_{1,2}± √-1 η_{1,2} — wolne rozbieżne oscylacje lub ruchy nieoscylacyjne odpolub wiadające pochylaniu śmigłowca i prędkości poziomych λ₁ = ξ₁ i λ₂ = ξ₂ przesunięć środka ciężkości układu,

W. ŁUCJANEK, K. SIBILSKI

c) $\lambda_3 = \xi_3$ — silnie tłumiony ruch nieoscylacyjny odpowiadający pochylaniu śmigłowca i prędkości poziomych przesunięć środka ściężkości układu,

 $\lambda_4 = 0$ — niezależne od czasu położenia środka ciężkości układu.

d)

5. Wyniki

Wyński obliczeń zostały przedstawione w formie wykresów obrazujących zależność wartości własnych (poza $\lambda_4 = 0$) od rozpatrywanych parametrów.

Wpływ odległości *d* punktu podwieszenia liny z ładunkiem od środka ciężkości śmigłowca został określony dla jednej długośći liny (l = 5 m) i dwóch ciężarów ładunku: $\overline{m} = 0.15$ i 0.30. Typowe wyniki obliczeń są przedstawione na rys. 4.

Rys. 4

Zwiększeniu odległości punktu zamocowania liny od środka ciężkości śmigłowca towarzyszy zmniejszenie λ_3 , czyli wzrost tłumienia postaci ruchu odpowiadającej tej wartości własnej. Charakter zmian dla obu ciężarów jest taki sam, przy czym większemu ciężarowi odpowiada większe tłumienie.

W przypadku $\lambda_{1,2}$ dla obu ciężarów ładunku ruch jest rozbieżny, przy czym występuje krytyczna odległość d_k , rozdzielająca wolne (0 < $\eta_{1,2}$ < 1) oscylacje dla $0 \leq d < d_k$ od dwóch ruchów nieoscylacyjnych dla $d > d_k$; wielkość d_k jest mniejsza przy większym ciężarze ładunku ($d_k \cong 0,65$ i 0,50 odpowiednio dla $\overline{m} = 0,15$ i 0,30).

Na wartość λ_i położenie punktu zamocowania liny wpływa głównie poprzez jej część rzeczywistą, przy czym maleniu *d* towarzyszy spadek ξ_i , tak, że dla *d* bliskich zera może wystąpić $\xi_i < 0$, czyli tłumienie wahań ładunku. Dla lżejszego ładunku ruch ma mniejszą częstość i staje się tłumiony przy większej wartości *d*. (0,16 m i 0,08 m odpowiednio dla $\overline{m} = 0,15$ i 0,30).

Rys. 5

Wpływ długości liny *l* został określony dla dwóch miejsc jej zamocowania do śmigłowca (d = 0 i d = 1 m) i dwóch ciężarów ładunku ($\overline{m} = 0,15$ i 0,30).

W przypadku podwieszenia liny w środku ciężkości śmigłowca (d = 0, rys. 5) jej długość wpływa istotnie tylko na ruch ładunku. Częstość wahań η_l , jak łatwo przewidzieć, pamiętając, że ładunek jest modelowany wahadłem matematycznym, maleje ze wzrostem długości l i jest mało wrażliwa na ciężar ładunku, natomiast przebieg funkcji $\xi_l(l)$ wykazuje minimum, co oznacza, że istnieje optymalna z punktu widzenia tłumienia ruchu ładunku długość liny, w rozpatrywanym przykładzie $l \approx 12$ m, praktycznie niezależna od ciężaru

Rys. 7

podwieszonego ładunku. Ten wynik jest jakościowo zgodny z informacją podaną w [3], gdzie jednak ze względu na bardziej uproszczony model układu, maksimum tłumienia występowało dla znacznie dłuższych lin.

W przypadku d = 1m (rys. 6), wzrost długości liny dla obu ciężarów podwieszonego ładunku wpływa przede wszystkim na tłumienie ruchu ładunku (niekorzystnie, bo $\xi_l(l)$ jest funkcją rosnącą).

Wpływ długości liny na ruch śmigłowca dotyczy przede wszystkim wartości własnej $\lambda_{1,2}$, która przy pewnej długości liny l_k staje się zespolona, czyli początkowo istniejące dwa nietłumione ruchy nieoscylacyjne przechodzą w rozbieżne oscylacje o małej częstości. Wzrostowi ciężaru ładunku towarzyszy wydłużenie $l_k(l_k \cong 10 \text{ m i } 25 \text{ m odpowiednio} \text{ dla } \overline{m} = 0,15 \text{ i } 0,30).$

Wpływ ciężaru podwieszonego ładunku został określony dla dwóch długości liny: l = 5 m i 20 m i dwóch miejsc jej zamocowania do śmigłowca: d = 0 i d = 1 m.

W analizie wpływu ciężaru ładunku szczególne znaczenie ma rozwiązanie dla $\overline{m} = 0$, gdyż w tym przypadku ulega uproszczeniu układ równań (1)—(3), (np. znika równanie (2)). Obliczenia wykonano jednakże w oparciu o układ (14), co umożliwiło porównanie tego szczególnego rozwiązania numerycznego z danymi dla śmigłowca izolowanego, publikowanymi nawet w literaturze podręcznikowej, np. [9]. Jak było do przewidzenia,

8 Mech. Teoret. i Stos. 2/79

wystąpiły tylko trzy, zamiast pięciu, niezerowe wartości własne, charakteryzujące pochylanie i poziome przemieszczenia śmigłowca: jedna rzeczywista ujemna, odpowiadająca silnie tłumionemu ruchowi aperiodycznemu λ_3 i dwie zespolone $\lambda_{1,2}$ opisujące nietłumione wolne oscylacje.

W przypadku d = 0 (rys. 7) wzrost ciężaru ładunku wpływa głównie na tłumienie ξ_i , powiększając je, z tym, że przy krótszej linie wzrost tłumienia jest wolniejszy.

W przypadku d = 1m (rys. 8) wpływ ciężaru jest ogólnie bardziej wyraźny niż poprzednio. Ruch ładunku jest niestateczny, przy czym ze wzrostem ciężaru ładunku i długości liny staje się szybciej rozbieżny. Ruch śmigłowca $(\lambda_{1,2})$ jest też nietłumiony, a przy pewnej wartości \overline{m}_k pojawiają się dwa ruchy nieoscylacyjne. Wartość \overline{m}_k wzrasta ze wzrostem długości liny (0,075 i 0,25 odpowiednio dla l = 5m i 20m).

6. Wnioski

Z rezultatów obliczeń wynika, że wszystkie badane parametry w pewnym stopniu wpływają na ruch układu, śmigłowiec jednakże zawsze pozostaje niestateczny, a obecność ładunku tę niestateczność powiększa. Stosunkowo najmniej niekorzystnie wpływa ładunek podwieszony w środku ciężkości śmigłowca, co jest konsekwencją najsłabszego sprzężenia ruchu ładunku z ruchem śmigłowca. Fakt ten jest uwzględniany w konstrukcjach śmigłowców przewidzianych do pracy w charakterze dźwigów.

Zachowanie się śmigłowca z podwieszonym ładunkiem w zawisie było przedmiotem badań doświadczalnych [5] ilościowych, a także opartych o wrażenia pilotów wyrażone w 10-punktowej skali Coopera [11] (1 punkt — aparat optymalny, 10 punktów — lot niemożliwy). Wyniki tych badań są jakościowo zgodne z rezultatami opisanych w tej pracy obliczeń.

Literatura cytowana w tekście

- 1. T. A. DUKES: Maneuvering Heavy Sling Loads Near Hover. Part 1: Damping the Pendulous Motion. J. American Helicopter Society, 18, 2, April 1973.
- 2. L. B. LUCASSEN, F. J. STERK: Dynamic Stability Analysis of a Hovering Helicopter with a Sling Load. American Helicopter Society Journal, 10, 2, April 1965.
- 3. E. M. CLIFF, D. B. BAILEY: Dynamic Stability of a Translating Vehicle with a Simple Sling Load, J. Aircraft, 12, 10, October 1975.
- 4. D. J. DICARLO, H. L. KELLEY, K. R. YENNI: An Exploratory Flight Investigation of Helicopter Sling Load Placements Using a Closed-Circuit Television. NASA TN D-7776, November 1974.
- "Śmiglowiec "Mi-2". Wyniki badań w locie z ladunkiem podwieszonym pod kadlubem". Sprawozdanie Instytutu Lotnictwa Nr 4/70/ZA, Warszawa 1970 (niepublikowane).
- 6. A. R. S. BRAMWELL: Longitudinal Stability and Control of the Single Rotor Helicopter. R. and M. No 3104, January 1957.
- K. SIBILISKI: Wpływ podwieszenia ładunku na podłużną stateczność dynamiczną i osiągi śmigłowca w zawisie. Praca magisterska wykonana na Wydziale Mechanicznym Energetyki i Lotnictwa Politechniki Warszawskiej, 1976 r. (niepublikowana).
- 8. P. R. PAYNE: Helicopter Dynamics and Aerodynamics. London, 1959.
- 9. A. R. S. BRAMWELL: Helicopter Dynamics. London, 1976.
- 10. J. KLIMKOWSKI, W. ŁUCJANEK: Teoretyczna analiza bocznej stateczności dynamicznej miękkoplata. Arch. Bud. Masz., 1, 24, 1977.
- 11. G. E. COOPER: Understanding and Interpreting Pilot Opinion. Aero. Eng. Rev., 3, 16, March 1957.

Резюме

ПРОДОЛЬНАЯ ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ ВЕРТОЛЕТА С ВИСЯЩИМ ГРУЗОМ НА РЕЖИМЕ ВИСЕНИЯ

В работе дана физическая модель одно-винтового вертолета с висящим грузом и урабнения движения этой системы на режиме висения. Рассматривались три степени свободы: наклон вертолета и горизонтальные перемещения вертолета и груза. Устойчивость была проанализирована методом небольших возмущений состояния равновесия. На основе численного примера для легкого вертолета определены формы движения системы, а также влияние на устойчивость системы веса груза, длины троса и места его крепления к вертолету.

W. LUCJANEK, K. SIBILSKI

Summary

LONGITUDINAL DYNAMIC STABILITY OF A HOVERING HELICOPTER WITH A HANGING LOAD

Physical model and equations of motion of a hovering single-rotor helicopter with a hanging load are given. Three degrees of freedom are considered: pitching of the helicopter as well as horizontal translations of the helicopter and the load. Stability is analyzed by the method of small perturbations. As a numerical example, the modes of motion of the helicopter-load system as well as the influence of the load mass, the link length and the suspension offset of the link are investigated for the typical light helicopter.

POLITECHNIKA WARSZAWSKA

Praca zostala zlożona w Redakcji dnia 29 maja 1978 r.