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In engineering disciplines, both in scientific and practical applications, systems with a tre-
mendous number of degrees of freedom occur. Hence, there is a need for reducing the com-
putational effort in investigating these systems. If the system behaviour has to be calculated
for many time instances and/or load scenarios, the need for efficient calculations further
increases. Model order reduction is a common procedure in order to cope with such large
systems. The aim of model order reduction is to reduce the (computational) effort in solving
the given task while still keeping main features of the respective system. One approach of
model order reduction uses the proper orthogonal decomposition. This approach is applied
to Mikota’s vibration chain, a linear vibration chain with remarkable properties, where two
cases of an undamped and a damped structure are investigated.
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1. Introduction

Model order reduction (MOR) is a common method in engineering disciplines allowing for ef-
ficient calculations of e.g. dynamic behaviour of structures. The basic concept is to reduce the
order of the system, for example by reducing the number of degrees of freedom. However, the
resulting loss of information should not exceed a certain level. Several techniques for MOR exist.
Some of them are physical subspace methods such as Guyan reduction, modal subspace methods
or Krylov subspace method (Freund, 2003; Guyan, 1965). While these methods are physically
motivated, there are other approaches which do not take physical meaning into consideration.
However, these methods still require extraction of main features of the underlying system. One
method for this feature extraction is the proper orthogonal decomposition (POD). Once the
arbitrary system has been characterised by POD, it is the task of MOR to only take those cha-
racteristics into consideration which are needed to adequately describe the (dynamic) behaviour
of the system. In this contribution, the model order reduction is applied to a special vibration
chain, namely Mikota’s vibration chain. Herein, POD is used. Using Mikota’s vibration chain
has the advantage that its dynamic characteristics have been investigated quite well, such that
there exist analytical solutions which serve as reference solutions for the reduced system. Addi-
tionally, damping effects are taken into account as some damage phenomena can be modelled
by means of damping.

To cope with these tasks, Mikota’s vibration chain is introduced in Section 2. A brief descrip-
tion of the approach of model order reduction involving POD is given in Section 3. In Section 4,
POD is applied to Mikota’s vibration chain. As a next step, a discrete damping element is added
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to Mikota’s vibration chain. In doing so, the linearity of the system is kept. POD is then used
within MOR to approximate the dynamic behaviour of the damped vibration chain in Section 5.
Finally, conclusions and an outlook are given with Section 6.

2. Mikota’s vibration chain

Fig. 1. Undamped vibration chain (Weber et al., 2015)

A linear undamped vibration system with n degrees of freedom (DOF) can be described by

Mẍ(t) +Kx(t) = 0 (2.1)

with x = (x1, . . . , xi, . . . , xn)
T and ẍ = (ẍ1, . . . , ẍi, . . . , ẍn)

T representing the column matrix of
displacements and accelerations, respectively. Herein,M and K denote the (diagonal) mass and
(tri-diagonal) stiffness matrix, respectively. For a linear vibration chain according to Fig. 1 these
matrices are

M = diag (mi)

K = diag {(k1 + k2,−k2), . . . , (−ki, ki + ki+1,−ki+1), . . . , (−kn, kn)}
(2.2)

Mikota set the masses and stiffness coefficients to

mi =
1

i
m and ki = (n− i+ 1)k where i = 1, 2, . . . , n, i ∈ N (2.3)

cf. (Mikota, 2001). Herein, m is the first mass and k denotes the stiffness of the last spring.
Mikota conjectured that this specific vibration chain has eigenfrequencies

Ωl = lΩ = l

√

k

m
with again l = 1, 2, . . . , n, l ∈ N (2.4)

where Ω =
√

k/m is the first eigenfrequency. As can readily be seen, enlarging the system
from n DOF to n + 1 DOF changes the mass matrix in such a way that the element mn+1 is
appended at the lower right corner leading to Mn,n →Mn+1,n+1, while all other entries of the
mass matrix remain the same. In contrast, the corresponding matrix Kn+1,n+1 is obtained by
adding one row and one column at the upper left corner to the formerKn,n. For discussion of this
opposite behaviour in the set-up of the matrices and the resulting difficulties for proving Mikota’s
conjecture to be right, one is referred to e.g., (Müller and Hou, 2007; Müller and Gürgöze, 2006).
However, two proofs were proposed by Weber et al. (2015), Müller and Hou (2007). In order to
fully describe Mikota’s vibration chain also the mode shapes have to be looked at, which was not
the focus of Mikota’s work. An approach based on polynomial coefficients is given with (Müller
and Hou, 2007), a modification of the well-known Laguerre polynomials allowing for evaluating
the mode shapes of Mikota’s vibration chain is presented in (Weber et al., 2013). But these
approaches are quite laborious and do not reveal a structure in order to obtain general formulae
for the mode shapes ul. This gap is closed with (Weber et al., 2017), some results of the latter
contribution will be used in what follows.
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According to Kochendörffer (1963), the coordinates of the eigenvectors of a matrix – and
thus the mode shapes dealt with here – can be expressed by polynomials pl(i) in the coordinate i
leading to

ul = (ul,i=1, ul,i=2, . . . , ul,i=n)
T = (pl(i = 1), pl(i = 2), . . . , pl(i = n))

T (2.5)

For an arbitrary n DOF and l ¬ n, the first three mode shapes of Mikota’s vibration chain are
represented by the following polynomials

pl=1(i) = i

pl=2(i) = i
2 −
2n + 1

3
i

pl=3(i) = i
3 −
3

5
(2n+ 1)i2 +

1

5

[3

2
n(n+ 1) + 1

]

i

(2.6)

see (Weber et al., 2017). There, an approach for determining all n polynomials, i.e. all n mode
shapes, in a successive manner is suggested, too. For this special vibration chain it could be
proved that the polynomial degree of pl is l. Another neat property of the mode shapes of
Mikota’s vibration chain is the tri-diagonality of the matrix product UTU, where U denotes the
modal matrix. It should be noted that, in general, the mode shapes to different eigenfrequencies
are not perpendicular to each other with respect to the (standard) scalar product, as only

ulMu
T
k

{

= 0 for l 6= k

6= 0 for l = k
ulKu

T
k

{

= 0 for l 6= k

6= 0 for l = k
(2.7)

holds.
Exemplary, a graphical representation of the eigenvalues λl = Ω

2
l and the first five mode

shapes of Mikota’s vibration chain with n = 10 DOF is given in Fig. 2.

Fig. 2. Eigensolutions of Mikota’s vibration chain for n = 10 DOF, where only the mode shapes
ul=1, . . . ,ul=5 are shown. The displacements between the coordinates i are interpolated linearly, i = 0 is

at the fixed support according to Fig. 1

3. A brief introduction to MOR by means of POD

The solution of typical large systems of equations, which occur in engineering disciplines, requ-
ires a huge computational effort. Thus, strategies are sought which allow for reduction of this
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computational cost. One strategy is the model order reduction (MOR). In this strategy, the
dimensionality of the underlying mechanical system is reduced while keeping the loss of infor-
mation within acceptable bounds. For mechanical systems following the system of equations

Mẍ+Dẋ+Kx = f (3.1)

withD denoting the damping matrix, ẋ the vector of velocities and the vector of applied forces f ,
this order reduction can be performed by projecting the involved vectors from the full space Rn

to a lower dimensional space Rnred using a projection matrix Φ of dimension (n, nred)

x ≈ Φxred ẋ ≈ Φẋred ẍ ≈ Φẍred (3.2)

Inserting these quantities into Eq. (3.1) leads to

MΦẍred +DΦẋred +KΦxred = f (3.3)

Multiplying the transpose of the projection matrix from the left finally yields a reduced problem

ΦTMΦẍred +Φ
TDΦẋred +Φ

TKΦxred = Φ
Tf

Mredẍred +Dredẋred +Kredxred = fred
(3.4)

The question arises how this projection matrix Φ can be obtained. For reducing the dimen-
sionality, the main features of the system have to be extracted. Within this contribution, the
proper orthogonal decomposition (POD) is used to extract the main features and thus shall be
introduced in what follows.
In the first step, a suitable amount m of observations is necessary. These observations may

result from measurements or from analytical or numerical calculations. In the present case, ana-
lytical expressions of the displacements will be evaluated numerically and used as observations.
The displacement history obtained by the so-called pre-computations is saved in an observation
matrix

Q = [x1,x2, . . . ,xm] (3.5)

In general, the number m of observations differs from the number n of DOF and, consequently,
Q is a rectangular matrix. This observation matrix is decomposed by means of the singular value
decomposition

Q = PΣVT (3.6)

according to Golub and Kahan (1965). Herein, P denotes the matrix of the left-singular vec-
tors φk, which will be called proper orthogonal modes (POMs) in what follows. For special
cases, these POMs are equivalent to the mode shapes of the respective system. This issue will be
addressed in Section 4. The matrix Σ is a pseudo-diagonal matrix containing singular values σk,
with k ¬ min(n,m), in a descending order at its main diagonal, whereas all other entries of the
rectangular matrix are zero. The matrix V of the right-singular vectors will not be used within
this contribution.
An energy measure for the matrix Q consisting of a vector sequence is the Frobenius norm,

which itself equals the sum of the squared singular values

Epseudo(Q) = ‖Q‖
2
F =

1

m

n
∑

i=1

m
∑

j=1

Q2i,j =

min(n,m)
∑

k=1

σ2k (3.7)

see e.g., (Kerschen and Golinval, 2002). Thus, the value of σk is related to the so-called pseudo-
-energy associated to the k-th POM. As a consequence, one may choose the first nred POMs,
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with nred ≪ m, which capture a certain amount of the system total pseudo-energy. From these
POMs, the sought projection matrix

Φ =
[

φ1,φ2, . . . ,φnred
]

nred ≪ m (3.8)

is constructed.
With this projection matrix, the reduced system according to Eq. (3.4)2) is solved and the

results are transferred back to the full system by using Eqs. (3.2). For a detailed review of the
POD and some applications the reader is referred to e.g. (Bamer et al., 2017; Fangye et al., 2016;
Radermacher and Reese, 2013; Kerschen et al., 2005; Chatterjee, 2000).

4. Applying POD to Mikota’s vibration chain

As the first step, Mikota’s vibration chain is exposed to such an initial displacement which only
excites its first mode shape. Afterwards, Mikota’s vibration chain performs free vibration. By
doing so, the POD should identify the first mode shape only. This is due to the fact that the
whole (vibrational) energy of the system is kept in this mode shape. Solving the differential
equation with the following parameters

m = k = 1 and thus Ω =

√

k

m
= 1 (4.1)

n = 10 t0 = 0 ∆t = 0.01 tN = 20 N = 2001 (4.2)

where the units have been omitted, yields the displacements xi for each time step tj of N . These
displacements are written into the observation matrix Q, which is then analysed by means of
the POD according to Section 3. All calculations have been performed with Matlab R○.
As can be seen in Fig. 3, there is indeed only one (dominant) singular value. The remaining

singular values are not of practical relevance, as the quotient σk>1/σ1 < 10
−15 is in the order of

numerical accuracy. Consequently, only the first POM is plotted whereas the remaining POMs
are not taken into account. As expected, the POM 1 equals the first mode shape as given by
Eq. (2.6)1 and Fig. 2.

Fig. 3. Singular values and POM of Mikota’s vibration chain, n = 10 DOF and initial excitation of the
1st mode shape, according to the magnitude of σk>1/σ1 < 10

−15 only the first POM is plotted
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In what follows, Mikota’s vibration chain is exposed to a load with a very short time duration,
which simulates an impulse or an impact load. In detail, the force

f1(t) =

{

1 for 0 ¬ t ¬ 0.05 = δf

0 for δf = 0.05 < t
(4.3)

is applied to the 1st DOF. Compared to the lowest oscillation period (and thus the highest
eigenfrequency), the time duration δf of the load is small

Tmin =
2π

Ω10
=̂
2π

10
≈ 0.628 ≫ 0.05 = δf (4.4)

with Ω10 = 10Ω = 10 according to Eq. (2.4). The resulting displacements and velocities are
given with Figs. 4a and 4b, respectively. Some observations from these figures shall be discussed.

Fig. 4. Displacements and velocities for Mikota’s vibration chain with n = 10 DOF and impulse load
according to Eq. (4.3) applied to the 1st DOF

From Fig. 4a, it can be seen that beginning from t > 0 and starting with the 1st DOF, energy is
successively transferred to the remaining DOF. Higher DOFs are characterised by weaker springs
and lower masses, see also Eqs. (2.3). The respective displacements increase with the increasing
DOF, too. At time instances equal to integer multiples of π, all DOFs have zero displacements.
At time instances equal to integer multiples of 2π, all DOFs but the 1st have zero velocities, too.
With Eq. (4.4), the impulse load may be regarded as a Dirac-type loading. According to Müller
and Schiehlen (1985), such an applied force in fact leads to non-vanishing initial velocities while
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maintaining effectively zero initial displacements. In the present case, the 1st DOF gets an initial
velocity (more precisely, the initial velocity is at the time instance δf ). At this time instance,
the whole system effectively still is at rest, see Fig. 4a. For this reason, the system starts a
free oscillation from a state of zero displacement and, consequently, has to return into this state
periodically. This happens at the aforementioned time instances at integer multiples of 2π, where
the time duration δf has been omitted for clarity. At these time instances, all DOFs but the 1st
must have both zero displacements and velocities. The velocity of the 1st DOF equals its initial
velocity which is due to the Dirac-type loading, see also Fig. 4b. Due to the special structure of
the eigenfrequencies, which is given by Eq. (2.4), the temporal factor at integer multiples of 2π
of all n mode shapes is identical and equal to 1. Although Fig. 4a may lead to the assumption
that there exist pronounced time intervals within which one or more masses mi are at rest, it
should be emphasised that this is not the case. On the contrary, there are only distinct time
instances – at integer multiples of π as discussed above – at which all masses mj have vanishing
displacements. All masses but the first are at rest only at integer multiples of 2π.

The displacements for all time instances according to Eq. (4.2), which are plotted in Fig. 4a,
are written in the observation matrixQ, and the latter is investigated by means of POD according
to Section 3. The resulting singular values and some POMs are given in Fig. 5.

Fig. 5. Singular values and some POMs of Mikota’s vibration chain, n = 10 DOF and impulse load
according to Eq. (4.3) applied to the 1st DOF, only POMs 1, . . . , 5 are shown

Compared to Fig. 3, it can readily be seen that in the present load case the so-called pseudo-
-energy is distributed over all POMs. However, the respective values, i.e. the singular values, are
not equal. Hence, the single POMs each have a different contribution to the oscillation pattern
of the mechanical system. The descent of the singular values gives an indication of which POMs
may be omitted within the model order reduction while not exceeding the given error tolerance.
This aspect will be investigated in the next Section, where additionally damping is taken into
account.

5. Applying MOR to modified Mikota’s vibration chain including damping

In this Section, a single absolute damping element is added to Mikota’s vibration chain. By
doing so, both the eigenfrequencies and mode shapes of the system are changed. For a general
introduction to the topic of (optimal) damping, the reader is referred to e.g. (Gürgöze and
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Müller, 1992). For a brief and exemplary discussion concerning the optimal position of absolute
and relative damping elements in Mikota’s vibration chain, see Weber et al. (2008).

In order to apply a useful model order reduction, the number of DOFs of the system is
increased to n = 300. The absolute damping element is fixed at the 7th DOF. Only one non-
-vanishing initial excitation x3 = 1 is prescribed at the 3rd DOF. The other parameters are

m = k = d = 1 t0 = 0 ∆t = 0.01 tN = 20 N = 2001 (5.1)

where again the units have been omitted. It should be noted that d = 1 does not lead to
weak damping anymore. However, within this contribution, a parameter study is presented. The
resulting displacement history for some DOFs is shown in Fig. 6.

Fig. 6. Displacements for damped Mikota’s vibration chain with n = 300 DOF, initial excitation of the
3rd DOF, absolute damping element at the 7th DOF, only DOF 1, 3, 7, 100, 250 are shown

In what follows, the model order reduction using POD is performed. As the initial step, the
observation matrix Q is set by considering the displacements of all n = 300 DOFs within the
time span t = 0 to t = 10. The POD is then applied to this observation matrix leading to the
singular values and POMs as given in Fig. 7.

Fig. 7. Singular values and POMs of damped Mikota’s vibration chain, n = 300 DOF, initial excitation
at the 3rd DOF, absolute damping element at the 7th DOF, only POMs 1, 10, 50, 70, 100 are shown
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The so-called pseudo energy Epseudo of the system can be calculated using Eq. (3.7)

Epseudo =

min(n,m)
∑

k=1

σ2k = 977.5528
2 (5.2)

A common approach to the model order reduction is to consider such an amount nred of POMs
that for the corresponding pseudo energy

Epseudo,red ≈ 0.99Epseudo (5.3)

holds (Bamer et al., 2017, Feeny and Kappagantu, 1998). Kerschen et al. (2005) even recommend
Epseudo,red ≈ 0.9999Epseudo . For the present case, the former criterion is fulfilled for nred = 76
while the latter criterion gives nred = 98.
Thus, in the first step, only 76 POMs are considered. As in the present case σ77/σmax =

0.0184, this means that all POMs, for which σk / 0.018σmax holds, are omitted. Although the
observation matrix Q only contains data up to t = 10, the calculations in the reduced system
have been performed until t = 20. The resulting reduced system is solved and then transferred
back to the full system. Both the displacement and velocity history within the time interval
3.25π ¬ t ¬ 3.75π for the arbitrarily chosen 150th DOF is given in Fig. 8. Additionally, the
diagram contains the displacement and velocity history resulting from calculating the full system.
As can be seen, there is a good agreement between these two results for both the displacement
and velocity history.

Fig. 8. Displacement and velocity history of the 150th DOF for the full (“full”, n = 300) and the
reduced (“MOR”, nred = 76) system

For comparison, an additional calculation is performed with nred = 98, thus neglecting all
POMs for which σk / 2.4 · 10

−4σmax. The respective results can be taken from Fig. 9 and do
not show any (observable) differences between the results obtained with the full and the reduced
system. Besides Eq. (5.3), an additional relation is introduced to measure the deviation between
the results obtained with the full system and the results obtained with the reduced system

∆Ephase =

√

√

√

√

√

√

√

n
∑

i=1
[(xi − xred,i)2 + (ẋi − ẋred,i)2]

n
∑

i=1
(x2i + ẋ

2
i )

(5.4)

This relation gives more reliable results as compared to the relation which only takes the pseudo
energy into account. This is due to the fact that the latter relation does not reveal pronounced
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Fig. 9. Displacement and velocity history of the 150th DOF for the full (“full”, n = 300) and the
reduced (“MOR”, nred = 98) system

phase differences within the displacements and velocities, see also (Kappagantu and Feeny, 1999).
In the present case, ∆Ephase = 0.144 (compared to 0.5149 for nred = 76) thus indicating a very
good correlation between the results of the full and the reduced (nred = 98) system. Hence, the
model order reduction has been applied successfully.

6. Conclusions

An approach to the model order reduction has been successively applied to Mikota’s vibration
chain, a special vibration chain having remarkable properties. The chosen approach to the model
order reduction involves the proper orthogonal decomposition which, therefore, has been shortly
introduced. Some basic insights into the proper orthogonal decomposition were given using
the standard (that is, undamped) Mikota’s vibration chain with n = 10 DOFs. Finally, more
advanced calculations including the model order reduction were performed after introducing a
single absolute damping element into the vibration chain with n = 300 DOFs. It was observed
that the dynamic characteristics of Mikota’s vibration chain could be kept if the underlying
mechanical system was reduced in such a way, that > 99% of the so-called pseudo energy was
considered. In the present case, an excellent correlation between the results obtained with the
full and the reduced system is obtained for nred = 98 DOF or – equivalently – for reduction in
the dimensionality by ≈ 70%.

In this contribution, a linear vibration system has been investigated. However, non-linear
systems play an important role in engineering applications, too. Thus, more scientific work has
to be done in the field of model order reduction of non-linear systems. This non-linearity may
additionally be caused by damage of the respective structure. Such effects must be taken into
account if the model order reduction is used in, e.g., structural health monitoring.
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