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The subject of the paper is a beam with unsymmetrically varying mechanical properties in
the depth direction. The nonlinear hypothesis of plane cross section deformation is assumed.
Based on Hamilton’s principle, two differential equations of motion are obtained. The system
of equations is analytically solved with a view to analyse the bending, buckling and free
vibration problems of the beam. Moreover, the FEM model of the beam is developed and
deflections, critical axial forces and natural frequencies of the beam are calculated. The
results of these two methods are compared.
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1. Introduction

Elements with varying mechanical properties are applied in modern constructions. Kubiak (2005)
presented dynamic buckling problems of thin-walled composite plates with varying width-wise
material properties. Zhang et al. (2006) presented free vibration analysis of rectangular com-
posite laminated plates. Zenkour (2006) analysed bending problems of rectangular functionally
graded plates under a transverse uniform load. Birman and Byrd (2007) presented a review of
the papers published since 2000 related to the modelling and analysis of functionally graded
materials and structures. Kapuria et al. (2008) described the theoretical model of bending and
free vibration of layered functionally graded beams and its experimental validation. Debowski et
al. (2010) studied the dynamic stability problem of a metal foam rectangular plate under com-
pression in the middle plane. Magnucka-Blandzi (2011) presented bending and dynamic stability
results of studies of the sandwich beam with a metal foam core. Kubiak (2011) described an
estimation problem of dynamic buckling for composite columns with open cross-sections. Thai
and Vo (2012, 2013) presented bending, buckling, and vibration of functionally graded beams
and plates with the use of nonlinear shear deformation theories. Mahi et al. (2015) presented
bending and free vibration analysis of isotropic, functionally graded sandwich and laminated
composite plates with the use of a new hyperbolic deformation theory. Kolakowski and Mania
(2015) presented the dynamic response of thin functionally graded plates with a static unsym-
metrical stable postbuckling path. Chen et al. (2015, 2016a,b) analysed static bending, elastic
buckling and free vibrations problems of shear deformable functionally graded porous beams
and sandwich beams with a functionally graded porous core. Jun et al. (2016) studied the free
vibration problem of axially loaded laminated composite beams using a unified higher-order
shear deformation theory and a dynamic stiffness method. Mojahedin et al. (2016) presented
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the buckling problem of functionally graded circular plates with symmetrically and unsymme-
trically varying mechanical properties based on a higher order shear deformation theory. Li and
Hu (2016) analysed nonlinear bending and free vibration problems of nonlocal strain gradient
beams made of a functionally graded material. Feyzi and Khorshidvand (2017) presented the
axisymmetric post-buckling behaviour problem of saturated porous circular plates. Song et al.
(2017) described vibration problems of functionally graded polymer composite plates reinforced
with graphene nanoplatelets. Smyczynski and Magnucka-Blandzi (2018) presented a comparison
of the study results of three-point bending of a sandwich beam with two binding layers with
the use of two nonlinear hypotheses. Sayyad and Ghugal (2017) presented an extensive review
of the papers devoted to bending, buckling and free vibration problems with special attention
paid to the shear effects.
The subject of the study is a beam with unsymmetrically varying mechanical properties.

A nonlinear hypothesis of deformation of the plane cross section of the beam is developed.
Particular attention is paid to location of the neutral axis with consideration of the shear effect.
Variability of the elastic modulus – Young’s modulus in the depth direction of the beam is shown
in Fig. 1.

Fig. 1. Scheme of the elastic modulus variability in the depth direction of the beam

The values of elasticity moduli and mass density of the beam vary as follows

E(y) =
1

2
E11 + e2 − (1− e2) sin(πη)] G(y) =

1

2
G1[1 + g2 − (1− g2) sin(πη)]

ρ(y) =
1

2
ρ1[1 + ρ̃2 − (1− ρ̃2) sin(πη)]

(1.1)

where: e2 = E2/E1, g2 = G2/G1 = (1 + ν1)/(1 + ν2)e2, ρ̃2 = ρ2/ρ1 are dimensionless relative
parameters, E1, E2 – Young’s moduli, ν1, ν2 – Poisson’s ratios, ρ1, ρ2 – mass densities, η = y/h
– dimensionless coordinate (−0.5 ¬ η ¬ 0.5), h – depth of the beam.
The relationship between the relative density and Young’s moduli ratio ρ̃2 =

√
e2 is assumed

based on the papers by Chen et al. (2015, 2016b).

2. Analytical model of the beam

The nonlinear hypothesis is assumed for the purpose of modelling of the beam. A plane cross
section before bending is no longer plane after bending of the beam (Fig. 2). This hypothesis is
a generalization of the shear deformation theory for functionally graded structures.
Two coordinate systems are adopted – x, y and x1, y1 (Fig. 2). The x1 axis is the neutral

axis, therefore, the displacement v(x1, t) is equivalent with v(x, t). The coordinate y1 = h(η+η0),
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Fig. 2. Deformation of the plane cross section of the beam – the nonlinear hypothesis

where η0 = y0/h, therefore, based on the above hypothesis, the displacement is in the following
form

u(x, y, t) = −h
{
(η + η0)

∂v

∂x
− [sin(πη) + sin(πη0)]ψ(x, t)

}
(2.1)

where: v(x, t) – deflection, ψ(x, t) – dimensionless function of the shear effect.
The shear effect displacements of upper and lower surfaces of the beam are as follows

u1(x, t) = −h[1− sin(πη0)]ψ(x, t) u2(x, t) = h[1 + sin(πη0)]ψ(x, t) (2.2)

Then, the longitudinal strain

εx(x, y, t) =
∂u

∂x
= −h

{
(η + η0)

∂2v

∂x2
− [sin(πη) + sin(πη0)]

∂ψ

∂x

}
(2.3)

and the shear strain

γxy(x, y, t) =
∂u

∂y
+
∂v

∂x
= π cos(πη)ψ(x, t) (2.4)

The stresses – Hooke’s law

σx(x, y, t) = E(y)εx(x, y, t) τxy(x, y, t) = G(y)γxy(x, y, t) (2.5)

The simply supported beam with unsymmetrically varying mechanical properties of length L,
depth h and width b is subjected to a uniformly distributed transverse load of intensity q or to
axial compression force F0 (Fig. 3).
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Fig. 3. Scheme of the beam and loads

The Hamilton principle

t2∫

t1

[T − (Uε −W )] dt = 0 (2.6)

where: T is the kinetic energy, Uε – elastic strain energy, W – work of the load

T =
1

2
bhρb

L∫

0

(∂v
∂t

)2
dx Uε =

1

2
b

L∫

0

h/2∫

−h/2

[E(y)ε2x +G(y)γ
2
xy] dx dy

W =

L∫

0

[
qv(x) +

1

2
F0
(∂v
∂x

)2]
dx

(2.7)

and the equivalent – mean mass density of the beam

ρb =
1

h

h/2∫

−h/2

ρ(y) dy =
1

2
(ρ1 + ρ2) =

1

2
ρ1(1 +

√
e2) (2.8)

Substitution of expressions (1.1)1 and (1.1)2 for the elasticity moduli and expressions (2.3) and
(2.4) for strains into expression (2.7)2, after integration along depth of the beam, gives elastic
strain energy as a functional of the two unknown functions

Uε =
1

4
E1bh

3

L∫

0

[
Cvv
(∂2v
∂x2

)2
− 2Cvψ

∂2v

∂x2
∂ψ

∂x
+ Cψψ

(∂ψ
∂x

)2
+ Cψ0

ψ2(x, t)

h2

]
dx (2.9)

where

Cvv =
1

12

[
1− 48

π2
η0 + 12η

2
0 +
(
1 +
48

π2
η0 + 12η

2
0

)
e2
]

Cψ0 =
π2

4(1 + ν1)
(1 + g2)

Cvψ =
1

2π2
{(4− π2η0)[1 − sin(πη0)] + (4 + π2η0)[1 + sin(πη0)]e2}

Cψψ =
1

2
− sin(πη0) + sin2(πη0) +

[1
2
+ sin(πη0) + sin

2(πη0)
]
e2

Based on Hamilton’s principle (2.6) with consideration of expressions (2.7)1, (2.7)3 and (2.9),
two differential equations of motion are obtained in the following form

bhρb
∂2v

∂t2
+
1

2
E1bh

3
(
Cvv

∂4v

∂x4
− Cvψ

∂3ψ

∂x3

)
+ F0

∂2v

∂x2
= q

Cvψ
∂3v

∂x3
− Cψψ

∂2ψ

∂x2
+ Cψ0

ψ(x, t)

h2
= 0

(2.10)
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The bending moment

Mb(x) = b

h/2∫

−h/2

yσx(x, y) dy (2.11)

Substituting expression (2.5) for the normal stress, after integration along depth of the beam,
one obtains the following equation

Cvv
d2v

dx2
− Cvψ

dψ

dx
= −2Mb(x)

E1bh3
(2.12)

It may be noticed that for static problems this equation is equivalent to equation (2.10)1.

The position of the neutral axis is determined on the basis of the following condition – total
axial force at the cross section

h/2∫

−h/2

σx(x, y) dy = 0 (2.13)

Substituting expression (2.5) for the normal stress, after integration along depth of the beam,
one obtains the following equation

CNv
d2v

dx2
− CNψ

dψ

dx
= 0 (2.14)

where

CNv = (1 + e2)η0 −
2

π2
(1− e2) CNψ =

1

2
(1− e2)− (1 + e2) sin(πη0)

Based on this condition, the position of the neutral axis η0 = y0/h is obtained (Fig. 2).

3. Analytical solution of two differential equations of motion of the beam

The system of two differential equations (2.10) for the beam is approximately solved with the
use of two assumed functions

v(x, t) = va(t) sin
(
π
x

L

)
ψ(x, t) = ψa(t) cos

(
π
x

L

)
(3.1)

where: va(t), ψa(t) are functions of time t, which in the case of static problems become parame-
ters. These functions satisfy the conditions of a simply supported beam.

Substitution of functions (3.1) into equations (2.10) gives the following equations

{
bhρb

d2va
dt2
+
1

2

(π
L

)4
E1bh

3
[
Cvvva(t)−

L

π
Cvψψa(t)

]
−
(π
L

)2
F0va(t)

}
sin
(
π
x

L

)
= q

(π
L

)3
Cvψva(t)−

(π
L

)2[
Cψψ +

(λ
π

)2
Cψ0
]
ψa(t) = 0

(3.2)

where λ = L/h is relative length of the beam.

From equation (3.2)2, the function of time related to the shear effect is

ψa(t) =
π

L
kseva(t) (3.3)
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where the dimensionless coefficient of the shear effect is

kse =
Cvψ

Cψψ +
(
λ
π

)2
Cψ0

(3.4)

It may be noticed that the value of this coefficient decreases with increasing relative length of
the beam.

Equation (3.2)1 with consideration of expression (3.3) is in the following form

[
bhρb

d2va
dt2
+
1

2

(π
L

)4
E1bh

3(Cvv − kseCvψ)va(t)−
(π
L

)2
F0va(t)

]
sin
(
π
x

L

)
= q (3.5)

and after application of Galerkin’s method is as follows

bhρb
d2va
dt2
+
1

2

(π
L

)4
E1bh

3(Cvv − kseCvψ)va(t)−
(π
L

)2
F0va(t) =

4

π
q (3.6)

This equation is the base for detailed studies of the bending, buckling and free vibration of the
simply supported beam with unsymmetrically varying mechanical properties.

Condition (2.14) for calculation of the position of the neutral axis of the beam (Fig. 2) with
consideration of functions (3.1) and (3.2)1 and expression (3.3) takes form of a transcendental
equation

η0 − kse sin(πη0)−
( 2
π2
− 1
2
kse
)1− e2
1 + e2

= 0 (3.7)

It may be noticed that for large relative length of the beam (λ → ∞, kse = 0), the position of
the neutral axis is determined as

η
(lim)
0 = ηkse=00 =

2

π2
1− e2
1 + e2

(3.8)

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.025, 0.050, and relative length λ = 4, 6, . . . , 14,∞. The dimensionless valu-
es η0 (3.7) and η

(lim)
0 (3.8) of the position of the neutral axis of the beam are specified in

Table 1.

Table 1. The dimensionless values η0 of the position of the neutral axis

e2
λ

4 6 8 10 12 14 ∞
0.010 0.2019 0.2001 0.1995 0.1992 0.1990 0.1989 0.1986

0.025 0.1962 0.1943 0.1936 0.1933 0.1931 0.1930 0.1928

0.050 0.1870 0.1850 0.1843 0.1839 0.1838 0.1836 0.1833

The graph of the dimensionless values η0 and η
(lim)
0 of the position of the neutral axis of the

beam is shown in Fig. 4.

For the homogeneous beam (e2 = 1), the neutral axis is located in the middle depth of the
beam (η0 = 0).
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Fig. 4. The graph of dimensionless values η0 for the position of the neutral axis of the beam

4. Bending of the beam, static problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is subjected
to a uniformly distributed transverse load of intensity q (Fig. 3). On the basis of equation (3.6)
for the static problem (d2va/dt

2 = 0) and F0 = 0, the relative maximum deflection is obtained

ṽmax =
vmax
L
= kv max

qλ3

E1b
(4.1)

where the dimensionless coefficient of the maximal deflection is

kv max =
8

π5(Cvv + kseCvψ)
(4.2)

In the case of large relative length of the beam (λ→∞, kse = 0), this coefficient of the maximun
deflection is

k(lim)v max =
8

π5Cvv
(4.3)

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.50, 1.0, and relative length λ = 5, 10, 15, 20,∞. The values of the
dimensionless coefficient of the maximum deflection kvmax and k

(lim)
v max are specified in

Table 2.

The graph of the values of the dimensionless coefficient of the maximum deflection kv max
and k

(lim)
v max is shown in Fig. 5.

For the homogeneous beam (e2 = 1) of large relative length, the dimensionless coefficient of

the maximum deflection k
(lim)
v max = 48/π5.
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Table 2. The dimensionless coefficient kvmax of the maximum deflection

e2
λ

5 10 15 20 ∞
0.01 0.6215 0.5978 0.5934 0.5919 0.5899

0.05 0.5314 0.5084 0.5042 0.5027 0.5008

0.10 0.4550 0.4329 0.4288 0.4274 0.4256

0.25 0.3312 0.3116 0.3080 0.3067 0.3051

0.50 0.2431 0.2267 0.2237 0.2226 0.2213

1.0 0.1733 0.1610 0.1587 0.1579 0.1569

Fig. 5. The graph of the values of the dimensionless coefficient of the maximum deflection

5. Buckling of the beam, static problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is subjected
to axial compression with the force F0 (Fig. 3). On the basis of equation (3.6) for static problem
(d2va/dt

2 = 0) and q = 0, the critical force is obtained

F0,CR =
(π
λ

)2
kFCRE1bh (5.1)

where the dimensionless coefficient of the critical force is

kFCR =
1

2
(Cvv − kseCvψ) (5.2)

In the case of large relative length of the beam (λ→∞, kse = 0), this coefficient of the critical
force is

k
(lim)
FCR =

1

2
Cvv (5.3)
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Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.50, 1.0, and relative length λ = 25, 30, 35, 40,∞. The values of the
dimensionless coefficient of the critical force kFCR and k

(lim)
FCR are specified in Table 3. The

λ values in the buckling problem are larger than those for bending, since the critical loads
for short beams would be very high and, therefore, elastic-plastic buckling would arise.

Table 3. The values of the dimensionless coefficient kFCR and k
(lim)
FCR of the critical force

e2
λ

25 30 35 40 ∞
0.01 0.022112 0.022126 0.022135 0.022141 0.022159

0.05 0.026038 0.026058 0.026070 0.026077 0.026102

0.10 0.030629 0.030655 0.030671 0.030681 0.030714

0.25 0.042698 0.042742 0.042769 0.042787 0.042844

0.50 0.058845 0.058916 0.058959 0.058987 0.059078

1.0 0.082985 0.083091 0.083155 0.083197 0.083333

The graph of the values of the dimensionless coefficient of the critical force kFCR and k
(lim)
FCR

is shown in Fig. 6.

Fig. 6. The graph of the values of the dimensionless coefficient of the critical force

For the homogeneous beam (e2 = 1) of large relative length, the dimensionless coefficient of

the critical force k
(lim)
FCR = 1/12.

6. Free vibration of the beam, dynamic problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is not loaded
(q = 0, F0 = 0) (Fig. 3). Equation (3.6) for the dynamic problem is as follows

ρb
d2va
dt2
+
1

2

(π
L

)4
E1h

2(Cvv − kseCvψ)va(t) = 0 (6.1)
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The equation is solved with the use of the assumed function

va(t) = va sin(ωt) (6.2)

where: va is the amplitude of flexural vibration, ω – fundamental natural frequency.
Substituting this function into equation (6.1), after simple transformation, one obtains the

fundamental natural frequency

ω =
(π
λ

)2
kω

√
E1
ρbh2

(6.3)

where the dimensionless coefficient of the fundamental natural frequency is

kω =

√
1

2
(Cvv − kseCvψ) =

√
kFCR (6.4)

Taking into account expression (5.3), one formulates k
(lim)
ω =

√
k
(lim)
FCR .

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.80, 1.0, and relative length λ = 5, 10, 15, 25,∞. The values of the
dimensionless coefficient of the fundamental natural frequency kω and k

(lim)
ω are specified

in Table 4.

Table 4. The values of the dimensionless coefficient kω and k
(lim)
ω of the natural frequency

e2
λ

5 10 15 25 ∞
0.01 0.14502 0.14787 0.14842 0.14870 0.14886

0.05 0.15683 0.16034 0.16101 0.16136 0.16156

0.10 0.16949 0.17376 0.17458 0.17501 0.17526

0.25 0.19866 0.20481 0.20601 0.20663 0.20699

0.50 0.23187 0.24011 0.24173 0.24258 0.24306

0.80 0.25984 0.26954 0.27146 0.27246 0.27303

1.0 0.27465 0.28497 0.28701 0.28807 0.28868

The graph of the values of the dimensionless coefficient of the fundamental natural frequency

kω and k
(lim)
ω is shown in Fig. 7.

In the case of the homogeneous beam (e2 = 1) of large relative length, the dimensionless

coefficient of the critical force k
(lim)
FCR =

√
3/6.

7. Numerical calculations – FEM study

7.1. Numerical FEM model

The numerical analysis of the beam with unsymmetrically varying mechanical properties is
carried out with the help of the SolidWorks software. The simulation assumed the same geometry
parameters and mechanical properties as those used in the analytical calculations.

The beam is modelled using 3D finite elements in 20 layers, each with different mechanical
properties satisfying expressions (1.1). Taking into account symmetry of the structure, a half of
the beam is considered (Fig. 8).
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Fig. 7. The graph of the values of the dimensionless coefficient of the fundamental natural frequency

Fig. 8. Boundary conditions and load for the bending problem in the FEM study

Therefore, the following boundary conditions are adopted:

• for x = 0 – the simple support – v(0) displacements in the y direction are zero;
• for x = L/2 – the middle of the beam – u(L/2) displacements in the x direction are zero.

The numerical study of bending, buckling and free vibration is restrained to the xy-plane,
similarly as in the case of the analytical approach.

SolidWorks calculations have been carried out for beams with a rectangular cross-section of
depth h = 80mm, width b = 20mm, and length values L = λh (400mm¬ L ¬ 3200 mm).

7.2. Bending of the beam, static problem – numerical FEM solution

The beam is subjected to a uniformly distributed load of intensity q. A view to the bent
half-beam is shown in Fig. 9.
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Fig. 9. Deflection of the beam (SolidWorks simulation)

Results of the study are maximum deflections vmax [mm]. Based on expressions (4.1) and
(4.2), values of the dimensionless coefficient kvmax are calculated. These values are specified in
Table 5.

Table 5. The values of the dimensionless coefficient kv max of the maximum deflection (FEM
study)

e2
λ

5 10 15 20

0.01 0.6136 0.5950 0.5886 0.5875

0.05 0.5248 0.5050 0.5007 0.5000

0.10 0.4496 0.4295 0.4257 0.4250

0.25 0.3272 0.3090 0.3062 0.3050

0.50 0.2400 0.2250 0.2222 0.2216

1.0 0.1696 0.1595 0.1580 0.1569

Values of the relative difference between analytical and FEM solutions are below 2.2%. The
highest difference occurs for small relative length values λ. For greater λ values, the difference
decreases.

7.3. Buckling of the beam, static problem – numerical FEM solution

The half-beam under compression is shown in Fig. 10. Cross-sections and variation of me-
chanical properties of the beam are the same as in the case of bending. Therefore, the buckling
is analysed only in the xy-plane, similarly as for bending and free vibration. In order to avoid
lateral buckling the z-displacements in the whole xy-plane are zeroed.

Fig. 10. Boundary conditions and load for the buckling problem in the FEM study

Buckling shape of the beam resulting from the numerical study is shown in Fig. 11.

Results of the study are critical force values F0,CR [N]. Based on expressions (5.1) and (5.2),
values of the dimensionless coefficient kFCR are calculated. These values are specified in Table 6.

Values of the relative difference between analytical and FEM solutions are below 4.6%.
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Fig. 11. Buckling shape of the beam (SolidWorks simulation)

Table 6. The values of the dimensionless coefficient kFCR of the critical force (FEM study)

e2
λ

25 30 35 40

0.01 0.0211 0.0213 0.0215 0.0216

0.05 0.0252 0.0255 0.0256 0.0258

0.10 0.0300 0.0302 0.0304 0.0306

0.25 0.0424 0.0429 0.0431 0.0435

0.50 0.0591 0.0598 0.0602 0.0607

1.0 0.0806 0.0811 0.0815 0.0817

7.4. Free vibration of the beam, dynamic problem – numerical FEM solution

Free vibrations are computed with the SolidWorks software for the FEM model composed of
10 layers of varying mechanical properties. A half-beam is adopted with the boundary conditions
shown in Fig. 12.

Fig. 12. Half-beam model used in the free-vibration calculation

The middle of the beam is placed in the left-hand side of the illustration. Hence, the x and
z displacements are zeroed there. The right-hand part of the beam is simply supported and,
therefore, the displacement y is blocked.

The SolidWorks simulation tool used to compute the free-vibration frequencies provides
angular frequencies ω of particular vibration modes. Nevertheless, in order to compare the
analytical and numerical results, the dimensionless coefficient of the natural frequencies should
be calculated for each case specified in Table 4. Taking into account expressions (2.8) and (6.3),
one obtains
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kω = ωh
(λ
π

)2
√
ρ1(1 +

√
e2)

2E1
(7.1)

In the case of the example presented in Fig. 13, the following data are assumed: e2 = 0.01,
b = 20mm, h = 80mm, L = 400mm. Such a data set corresponds to the upper row and left-
-hand column of Table 4. The angular frequency in this case is equal to ω = 5093 rad/s, which
gives kω = 0.14240.

Fig. 13. An example result for e2 = 0.01 and λ = 5

The results kω of all the considered cases are presented in Table 7.

Table 7. Values of the dimensionless coefficient kω of the natural frequency computed numeri-
cally

e2
λ

5 10 15 25

0.01 0.14240 0.14609 0.14680 0.14714

0.05 0.15530 0.15987 0.16075 0.16119

0.10 0.16775 0.17326 0.17434 0.17489

0.25 0.19658 0.20426 0.20578 0.20655

0.50 0.22962 0.23955 0.24153 0.24254

0.80 0.25743 0.26893 0.27125 0.27243

1.0 0.27214 0.28435 0.28681 0.28805

They perfectly comply with the results of Table 4 obtained analytically. The relative dif-
ference values between analytical and FEM solutions are below 2%. The highest difference,
equal to 1.8%, occurs for the example case mentioned above, whereas for the others they are
significantly smaller.

8. Conclusions

The neutral axis of the studied beam deviates from the geometric centre of the rectangular cross
section as a result of unsymmetrical properties of the material. The location of the neutral axis
is affected by the shear effect (Fig. 4). This effect is meaningful in the case of short beams and
disappears for longer ones. The values of deflection, critical load and free-vibration frequencies
depend on the position of the neutral axis. Therefore, in the case of the analytical approach, the
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position of the axis should be determined first of all. The values of deflection, critical load and
free-vibration frequencies obtained analytically have been compared to those computed with the
SolidWorks software. It may be noticed that the difference between both sets of the results does
not exceed 5%.
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