JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
55, 3, pp. 779-786, Warsaw 2017
DOI: 10.15632/jtam-pl.55.3.779

CHAOTIC VIBRATION OF AN AUTOPARAMETRICAL SYSTEM WITH
THE SPHERICAL PENDULUM!

DANUTA SADO, JAN FREUNDLICH, ANNA BOBROWSKA
Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland

e-mail: dsado@poczta.onet.pl

In the paper, the dynamics of a three degree of freedom vibratory system with a sphe-
rical pendulum in the neighbourhood of internal and external resonance is considered. It
has been assumed that the spherical pendulum is suspended to the main body which is
then suspended to the element characterized by some elasticity and damping. The system
is excited harmonically in the vertical direction. The equation of motion has been solved
numerically. The influence of initial conditions on the behaviour of the spherical pendulum is
investigated. In this type of the system, one mode of vibration may excite or damp another
one, and for different kinds of periodic vibrations there may also appear chaotic vibrations.
For characterization of an irregular chaotic response, time histories, bifurcation diagrams,
power spectral densities, Poincaré maps and the maximum Lyapunov exponents have been
calculated.
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1. Introduction

The subject of this work is investigation of the effect of initial conditions on the dynamics
of a three degree of freedom system with a spherical pendulum. Dynamical systems having
an element in the form of a mathematical or physical pendulum have important applications.
Different kinds of coupled autoparametric oscillators with simple pendulums are presented in
the book by Sado (2010). Furthermore, the numerical and analytical methods of researching the
dynamics of two degree and three degree of freedom vibratory systems with the pendulums are
presented in this book. There are shown: the influence of initial conditions on the behaviour of
the vibratory system, the characteristic of vibrations, and how to manipulate the vibrations.

The real pendulum is of spherical type. The spherical pendulum was investigated by many
researches. The spherical pendulum subjected to parametric excitation was studied by Miles and
Zou (1993). They investigated the non-linear response of a slightly detuned spherical pendulum
with natural frequencies. In that model, no stable harmonic motion was possible, therefore the
motion of the system was either periodically modulated by a sinusoid or becomes chaotic. The
numerical integration was supported by analytical predictions, which also uncovered that the
limit cycles and chaotic motions overlaped those of stable harmonic motion.

In paper by Naprstek and Fischer (2009), the pendulum vibration damper modelled as a
two degree of freedom strongly non-linear auto-parametric system was investigated. There was
a kinematic external excitation applied to a point. In that model the excitation was considered
to be horizontal and harmonically variable in time. The solution and the stability were analysed.
Therefore, the biggest attention was paid to the resonance domain. In certain domains of the
pendulum and excitation parameters, the semi-trivial solution did not exist in that domain
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and various post-critical three-dimensional regimes occurred. Some of them were non-stationary
despite the harmonic excitation. Three different types of the resonance domain were investigated.
Their main properties depended on dynamic parameters of the pendulum and the external
excitation amplitude. An analytical and numerical study brought some recommendations for
designers of such devices. Their aim was to avoid any post-critical response rules risking the
pendulum functionality.

The bifurcation behaviour of a spherical pendulum where the suspension point is harmo-
nically excited in both vertical and horizontal directions was presented by Leung and Kung
(2006). The equations of motion for a lightly damped spherical pendulum were considered. The
point of the suspension was harmonically excited in both vertical and horizontal directions. The
equations were solved with approximation in the neighbourhood of resonance by including the
third order terms in the amplitude.

A mathematical model of the spherical pendulum with a moving pivot was suggested by
Mitrev and Grigorov (2009) and later developed. Such a model allowed studying the influence
of different kinematic excitations applied to the pivot point. That required the kinematical
and dynamical parameters of the pendulum which also determined the force in the rope. A
numerical simulation for spatial curvilinear and planar with straight line motions trajectories
was performed. The stochastic analysis of a spring spherical pendulum was done by Viet (2015).
The vibration was reduced by a spring and damper installed in the radial direction between the
point mass and the cable. Under the sway motion, the centrifugal force resulted in the radial
motion, which in its turn produced the Coriolis force to reduce the sway motion.

The dynamics of coupled spherical pendulums (where two lower pendulums were mounted
at the end of the upper pendulum) was considered by Witkowski et al. (2014). The analysis
showed that three rotating modes existed. The linear modes helped to understand the nonlinear
normal modes, which were later visualized in plots. When there was an increase of energy in
one mode, we could see a symmetry pitchfork bifurcation. In the second part of the paper, the
energy transfer between pendulums was investigated. The results for co-rotating (all pendulums
rotated in the same direction) and counter-rotating motion (one of lower pendulum rotated in
the opposite direction) were presented.

In the present paper, it is assumed that the spherical pendulum is suspended on a flexible
element, thus in this system there may occur an autoparametric excitation as a result of inertial
coupling.

2. A model of an autoparametric system with a spherical pendulum

The investigated system is shown in Fig. 1. The system consists of a body of mass my suspended
to the flexible element. This flexible element is characterised by the stiffness £ and damping c.
This system also consists of the spherical pendulum of the length [ and mass ms which is
suspended to the body of mass mj. The body of mass m; is subjected to the harmonic vertical
excitation F(t) and the spherical pendulum is subjected to the horizontal excitation Fy(t).

The spherical pendulum is similar to the simple pendulum but it moves in 3D space, so
we need to introduce a new variable ¢ in order to describe rotation of the pendulum in the
plane XY. The position of the body of mass my is described only by the coordinate z. However,
the position of the pendulum is described by the coordinate z and two angles: 6 and . The
angle 0 is the deflection of the pendulum measured from the vertical line. This system has three
degrees of freedom. The equations of motion are derived as Lagrange’s equations.

The kinetic energy T is the sum of the energy of the two bodies

- mivd  mavl B m1z3 mao(i3 + 95 + 43)
T=—t+ =" 5 (2.1)
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Fig. 1. A model of an autoparametric system with a spherical pendulum

where
o = Isin 6 cos ¢ yo = [sin @ sin 29 = 21 +1lcos0
mi+m (2-2)
21 = 2+ Zst Zst:( 1]{ 2)9

The kinetic energy T is given by the expression

1 1 . .
T=50m+ my)i* + §m2(l92 +12p%sin? 0 — 2120 sin ) (2.3)
The potential energy V is given by the expression
k(z + zst)?
V =—(m1+ma)g(z + zs) + mag(l —lcos @) + % (2.4)

Assuming that the exciting forces are in the form: Fy(t) = P; cos(vit), Fa(t) = P;cos(vat), the
dissipation function D = c£?/2, the equations of motion of the system are as follows

(mq 4+ mo)Z — malfsin @ — molf%cosO + kz + ¢ = Py cos(v1t)
mal?0 — mylz sin @ — mal?p? sin 6 cos 6 + mogl sin @ = [ cos O sin @ Py cos(vat) (2.5)
mol?psin? 0 + 2m2l2gb9 sin @ cos @ = [sin 6 cos O P, cos(vat)

By introducing the dimensionless time and parameters

k

T:wlt u)%zi w%:g :g
mi + meo l w1

c _ 4 ma 9

(m1 4+ ma)w: ! my 4 my (26)

Py Py 1z 12
Ay — 1 Ay — 2 _n _
! (my + mg)w% 2 mglw% i w1 H2 w1

after transformation (2.5) into the dimensionless form we obtain

5 —afsinf — 02 cos O+ z + vz = Aj cos(u17)

0 — #sinf — p*sinfcosf + F*sin @ = Ay cos 0 sin p cos(pi27) (2.7)
@sin b + 240 cos § = Ay cos 0 cos(ipT)

where the overbars denoting non-dimensionalisation are omitted for convenience.



782 D. Sado et al.

After transformation, the equations of motion can be written in a simpler form for numerical

calculations:
1 .
Z=———5—[(Arcos(u17) + 62 cos@ — z —v2) + asinO(p? sinf cos § — 52 sin 0)]
1 —asin“6
. 1
0 = m{g@2 SinHCOSG — ﬁ2 Sine

(2.8)
+ [A; cos(p17) + ab? cos § — z — 2 + asin O(p? sin f cos § — 32 sin )] sin@}

1 .
¢ =—— 5 (Ag sin 6 cos ¢ cos(paT) — 240 sin 0 cos 0)
sin

3. Numerical simulation results

The equations of motion of the given model are solved numerically using Runge-Kutta method
with a variable step length. The calculations are carried out for different values of parameters
of the system and for different initial conditions. Exemplary time histories of the displacements
z and 0 are obtained for parameters of the system a = 0.8, 3 =0.5,v =0, A; = A = 0 and for
the initial conditions: z(0) = 0.1, 6(0) = 0.005°, »(0) = 0, 2(0) = A(0) = H(0) = 0 are presented
in Fig. 2, where we can observe the energy transfer between the modes of vibration in a closed
cycle. In this case, the spherical pendulum behaves in the same way as a simple pendulum, and
motion of the pendulum is in the vertical plane (angle ¢ is constant and it depends on the initial
conditions, so it is equal to 0 for ¢(0) = 0).
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Fig. 2. Time history for (a) oscillator, (b) pendulum for a = 0.8, 3 =0.5, vy =0, A; = A2 =0,
2(0) = 0.1, 6(0) = 0.005°, ©(0) =0
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Fig. 3. Internal resonance for: a = 0.8, v =0, A; = A2 =0, 2(0) = 0.1, §(0) = 0.005°, ©(0) =0

The diagram of internal resonance for the same initial conditions put on the displacements
is presented in Fig. 3, and it is similar to a simple pendulum presented in the work (Sado, 2010).
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We observe the resonance excitation for the frequency ratio 5 = 0.5. In this case, there is an
assumption that the simple pendulum results are good.

On the other hand, when the initial conditions are put on the displacements and also on the
velocities (in this example: z(0) = 0, 2(0) = 0, 8(0) = 5°, H(0) = —0.04, ©(0) = 0, $(0) = —0.96),
we can observe the influence of angle ¢ (Fig. 4). For these initial conditions, we observe the
oscillation displacements z and 6 with the same frequency.
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Fig. 4. Time history for: a = 0.5, 8 = 0.51, v =0, Ay = A3 = 0, 2(0) = 0, 2(0) = 0, 6(0) = 5°,
0(0) = —0.04, ¢(0) = 0, $(0) = —0.96

With the same initial conditions for displacements and velocities, the internal resonance is
observed for the frequency ratio § = 0.51 (shown in Fig. 5a).
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Fig. 5. Internal resonance for: (a) a = 0.5, v =0, A; = A2 =0, 2(0) = 0, 2(0) = 0, 6(0) = 5°,
6(0) = —0.04, p(0) = 0, $(0) = —0.96; (b) a = 0.2, y = 0, Ay = Ay = 0, 2(0) = 0, 2(0) = 0.65,
0(0) = 50°, 6(0) = —0.04, »(0) =0, $(0) = —0.296

For different parameters of the system: a = 0.2, v =0, A1 = A5 =0, f = 0.75 and for initial
conditions which are put on the displacements and also on the velocities (z(0) = 0, 2(0) = 0.65,
0(0) = 50°, (0) = —0.04, ©(0) = 0, H(0) = —0.296) there is visible an influence of the angle ¢,
and the internal resonance area is observed for the frequency ratio near § = 0.75 (Fig. 5b). In
this example, the angle ¢ describes rotation of the pendulum around the axis z.
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Assuming the model of the pendulum as a spherical pendulum, we obtain results more similar
to the real system.

Next we prepare diagrams of the external resonance. An example is considered when the
initial conditions are imposed on the displacements: ¢ = 0.8, f = 0.5, v = 0, A1 = 0.001,
Ay = 0, 2(0) = 0, 8(0) = 0.005°, ©(0) = 0. In that case, the diagram shows the external
resonance for both the coordinate z and the angle 6 with the vertical excitation force Fj(t).
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Fig. 6. External resonance for the coordinates z and 6 for: a = 0.2, 3 = 0.5, v =0, 4; = 0.0001,
2(0)=0,v=0

Near the internal and external resonances depending on the selection of physical parameters,
the amplitudes of vibrations of the coupled system may be related differently. The motion in
terms of z and 6 are periodic or quasi-periodic vibrations, but sometimes the motion of the
body of mass my and the pendulum are chaotic. To characterize an irregular chaotic response,
bifurcation diagrams are constructed.

Exemplary bifurcation diagrams for the displacements z and € versus bifurcation parame-
ter A1 with parameters of the system: a = 0.2, 8 = 0.5, v = 0.00081443, 1 = 0.99 are presented
in Fig. 7 (it is assumed that the bifurcation parameter is the amplitude of excitation Aj).
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Fig. 7. Bifurcation diagrams for the coordinates z and 6 for: a = 0.2, 8 = 0.5, v = 0.00081443, p1; = 0.99

As it can be seen from the bifurcation diagrams, motion of the oscillator and the spherical
pendulum depends of the amplitude of excitation A; and can be of different character: it maybe
periodic, quasi-periodic or chaotic. Several phenomena can be observed: the existence of a simple
or a chaotic atractor, and various bifurcations. All these phenomena have to be verified in
the phase space. Therefore, the Poincaré maps and Lyapunov exponents are then constructed.
Exemplary results of the Poincaré maps (Fig. 8) and the maximum Lyapunov exponents (Fig. 9)
are presented for the amplitude of excitation A; = 0.0029.

It is visible that the Poincaré maps trace strange atractors and the maximum Lyapunov
exponents are positive, so the motions with respect both coordinates are chaotic.
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Fig. 8. Poincaré maps for the coordinates z (a) and 6 (b) for a = 0.2, § = 0.5, v = 0.00081443,
w1 =0.99, A1 = 0.0029
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Fig. 9. Maximum Lyapunov exponent for the coordinates z (a) and 6 (b) for a = 0.2, 8 = 0.5,
v = 0.00081443, p1 = 0.99, A; = 0.0029

4. Conclusions

The influence of initial conditions on the behaviour of an autoparametric system with a spherical
pendulum is very interesting, because sometimes when the initial conditions are imposed on the
displacements of the spherical pendulum it behaves similarly to a simple pendulum (angle ¢
is constant), but when the initial conditions are put also on the velocities, we observe some
influence of the angle . It is important, because near the internal and external resonance
area there may appear different motion — regular or chaotic. Autoparametric systems are very
sensitive to nonlinearities and the energy is transferred between modes of vibrations in a closed
cycle. The time of this cycle depends on the values of parameters, and numerical calculations
should be carried for a satisfactorily long time. Assuming the model of the pendulum as the
spherical pendulum, the obtained results are more similar to those obtained for the system with
the simple pendulum.
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