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Green’s functions for a multifield material subjected to a point heat source are presented
in an explicit analytical form. The study concerns the steady-state thermal loading infi-
nite region, half-space region and two-constituent magneto-electro-thermo-elastic material
region. The new mono-harmonic potential functions, obtained by the author, are used in
the analysis. The elastic displacement, electric potential, magnetic potential and induced by
those coupled multifield physical quantities, caused by internal or external heat sources, are
limited and presented in a very useful form, exactly and explicitly.
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1. Introduction

The basic solutions, related among others to multifield materials, are Green’s functions, which
were first proposed by George Green in 1828. There are two different analysis processes for solu-
tions in scientific literature. One has focused on the displacement, electric potential and magnetic
potential, constructing equilibrium equations. The second has emphasized equilibrium equations
of stresses, electric displacements and magnetic inductions as well as compatibility equations for
strains. There is Stroh’s formalism (Stroh, 1958) and Lekhnitskii’s approach (Lekhnitskii, 1963),
for example. On the other hand, there are three commonly used methods in analyzing boun-
dary effects: the theoretical solution, numerical solution and the experiment. But, appropriate
Green’s functions for a thermoelastic half-space is a specific task. This is due to the fact that
the fundamental solution for the displacements is not limited at infinity, which is inconsistent
with the mechanical sense. For example, Hou et al. (2008) derived a solution with a logarithmic
singularity in the generalized displacement fields. Thus, the consideration of static equilibrium
of the thermoelastic half-space, a quarter of the space, an octant, a wedge, and a half-wedge
under the action of a unit point (as well as distributed) of the internal heat source and boundary
temperature or heat flux is a special and important task. The importance is dictated by the fact
that the computational scheme of many structural elements is reduced to those volume material
regions.

In the context of multifield materials, the solutions depend on a large number of material
parameters. For magneto-electro-thermo-elastic materials, it is twenty one, making any solu-
tion other than explicit analytical one impractical. The exact formulae, in terms of elementary
functions for multifield materials, are presented in this study. The generalized displacements
have been obtained with an accuracy up to arbitrary constants, which do not affect the value of
stresses. This is the major motivation of the study presented in this paper. Although it sounds
theoretically more reasonable, experiment based verification is still desired. It is mentioned here
that mono-harmonic potential functions can be found in Chen et al. (2004), but some simpler
results, obtained by the author of this paper, are presented for the reader’s convenience.
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The exact solutions related to crack and contact problems of multifield materials were re-
cently presented by Rogowski (2012-2015) for instance.

2. The thermoelastic fundamental solution for magneto-electro-thermo-elastic
multifield materials

2.1. The fundamental equations for a magneto-electro-thermo-elastic medium

We consider an axisymmetric problem. Assume that the field variables are functions of r
and z in the cylindrical coordinate system (r,6,z). Constitutive equations for a piezoelectric,
piezomagnetic, electromagnetic and thermoelastic material polarized in the positive z-direction
subjected to mechanical, thermal, magnetical and electrical fields can be written, in matrix
representation, as

oy cii ci2 ¢z 0 Upy — T 0 e3n 0 g3
og \ _ |c12 e caz 0 up /1 — 0, T n 0 e3 {¢,r}+ 0 g3 {?/),r}
o c13 c13 ¢33 0 Uy, — a1 0 es33| |9 0 g33| | %2
Orz 0 0 0 cau Uy + Uz r €15 0 415 0
Upyp + 0T
{DT}:[ 0 0 0 615] ur/r—i—arT _lEH 0 ] {¢7T}—ld11 0 ‘| {'Lﬂy,«} (2 1)
D, e31 ez ez 0 Uy + T 0 e33] |0 0 ds3| | '
Uy z + Uz r
Uy + 0T
B, 10 0 0 g5 UT/T +a, T . dip 0 Qb,r _[H1 0 ¢,r
B[ lga gn g3z 0 Uy + T 0 ds3| | 0 ps3| |¥e
U,z + Uz r

where o;;, D;, B; are mechanical stresses, electric displacements and magnetic inductions, re-
spectively; T is a temperature change; ci1, c12, 13, 33, c44 denote elastic stiffness; €11, €33,
and 11, p33 denote dielectric permittivities and magnetic permeabilities, respectively; er;, qr
and dj; are piezoelectric, piezomagnetic and magnetoelectric coefficients, respectively, and u,., u,
are mechanical displacements, while ¢ and v are electric and magnetic potentials, respectively;
a, and a, are thermal expansion coefficients. The subscripts following a comma denote partial
differentation with respect to the indicated variables. We mention that various uncoupled cases
can be reduced by setting the appropriate coupling coefficients to zero.

The equilibrium equations and the Maxwell equations, in the absence of body forces, electric
and magnetic charge densities are given by

% do,, o0 —0p _0 do,, Oo, Orz _ 0

or 0z r or 0z r (2.2)
oD, 0D, D, 0B, 0B, B,

or * 0z * o 0 or * 0z o 0

The temperature field in the medium without heat generation in a steady-state is governed by

the following equation
0?’T 10T 0*T
M — 4 22 —— =0 2.3
T(87“2+7“6r) #0922 (2:3)

where \., A\, are coefficients of thermal conductivity. Substituting constitutive equations (2.1)
into equilibrium equations (2.2) yields the basic governing equilibrium equations for the displa-
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cements u, and wu,, electric potential ¢ and magnetic potential ¢ as follows

c11Bruy + caaD?up + (13 + 644)D% + (e15 + 631)D? + (q15 + Q31)D(Z—w - ﬁ1 or =0
casBous + es3D*u + (c13 + 644)Da7[jg:f] + (e15By + es3D?)¢p
+ (q5Bo + q33D?)1 — B3DT = 0
(e15 +e31)D 8[ d + (e15Bo + essD*)u. — (e11By + e33D?)¢p (24)
— (d11Bo + d33D2)¢ +p3DT =0
(q15 +g31)D 6[ ] + (q15Bo + qzsD*)u. — (di1 By + d33D?)¢b
— (111 Bo —l— M33D )Y +3DT =0
where the following differential operators have been introduced
Bkzaa—;+%%_r_k; k=0,1 D:% Dzzaa—; (2.5)

In addition, §; are the thermal moduli and ps, 3 are pyroelectric and pyromagnetic constants,
respectively, defined by

B1 = (c11 + c12)ay + iz, B3 = 2c130, + c3300,

(2.6)
p3 = 2e310, + e33a, V3 = 2q3104 + q33002

Equations (2.1) to (2.3) contain 13 equations and 13 unknowns. The 13 unknowns are: two
elastic displacements, fourth stresses, two electric displacements and two magnetic inductions,
one electric and one magnetic potential and temperature change of the body. Therefore, the 13
unknowns can be determined by solving the 13 equations (2.1) to (2.3).

The governing equations are generalized equilibrium equations (2.4) and heat conduction
equation (2.3), which induces five unknowns. These are: two displacements, one electric and one
magnetic potential and temperature change of the body.

The transversely isotropic multifield material is characterized by 17 material constants. If
the effect of temperature change is taken into account then also four thermal constants appear
in the analysis.

Based on the method named the Schmidt method (Morse and Feshbach, 1953) the general
solution to the governing equations are obtained by the generalized Almansi theorem.

Then equations (2.4) can be further simplified to

4 A 4 1 dos
’UJT(T‘, Z) = Z ali)\i% Uy ( ) Z: )\_88()01
_ 5 2109 i 0
P(r,z) = ZO N 0 Y(r,z) = Z N 0- (2.7)
ano 0%¢o
T(T, Z) = )\—g az2
where
A A0+ b X+ e AP+ dy L asAb + bsA? 4 csAZ + ds
a1y = — as; =
YT oA 4 by A + p A2 4 dy A2 T a9 A £ by At 2 + dy 28)
as\y + byA} + )} + dy XS + DAS + eAd + dX2 + e '
Q45 = agy =

ag)\? + bg)\;l + CQ)\Z2 + dy ag)\g + bg)\é + 02)\% + do
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where A3 = \,./)\, and A? are the roots of the following characteristic algebraic equation

aX® + A At +dN e =0 (2.9)
whose parameters a, b, ¢, d and e and roots (eigenvalues) A\? (i = 1,2,3,4) are given in Appen-
dix A.

The mono-harmonic functions satisfy the equations
1 92 ,
(a+ 52 = )@ilr,2) =0 i=0,1,2,3,4 (2.10)

The parameters ai, by, c1, di, ba, c2, do and coeflicients as; and a4;, which are defined by the
coefficient ay;, are listed in Appendix A for the reader’s convenience.
The stresses are

o 8 U
Z L SOZ (c11 — 012)%—51T

4 2
as; ou
Z )\— 2 (e11 — 612) - — /T (2.11)
—0
4 4 2
Qs Qs 0o
Qs A28, T )
z; ? LA %6 >N Praoo o~
where
as; = c11a1; — €13 + e31a3; + 31044 (2.12)

The components of the electric field vector E,. and E, are

06 <~ ag 0% 06 < agi P
E.=——= — E,=—-——= — 2.13
" or z(:) \; Oroz N Zo N 022 (2.13)
The electric displacements are
B ou, Ouy ? D¢
Dr—€15(az + 5 )+€11E +diH, = Zam 59z
(2.14)
ou,  u, ou, ag;
D, —631(a +7)+633a+533Ez+d33Hz+ﬂ3 N 22
where
ag; = €15a1; + Co 8116;\322 T (2.15)
i
The components of the magnetic field vector H, and H, are
N oy Py O o 0%p;
" or Zo \; Oroz N 0z Zo N, 022 (2.16)
The magnetic inductions are
ou, Ou, 4 0%y,
B, = H, +d E, N
r Q15(az + ar )-f—,un + d1y %an D50
= (2.17)
aur Uy 6 arg 6 Pi
B, = — H, +ds3E, T=
2 Q31(ar + )+Q336 + p33H; + d3z Loz + 73 Z)\ 9.2
where
am; = qusas; + q15 + H1104; + d1103; (2.18)

2
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3. Thermal problems for multifield materials

Consider the problem of a point heat source placed within the multifield material. Introduce the
following mono-harmonic functions, which are even functions with respect to the z-coordinate

wi(r,z;) = A; {zz arcsin h(%) — RZ} 2 = ANz Ry = \/r? + 22 )
i=0,1,2,3.4

where A; are constants to be determined.
The derivatives @; are as follows

i R; Op; . % % 2
_— = —— = S h —_— = —
or T 0z; arest ( ) oroz; rR; (3.2)
Poi 1 Poi 2 Poi 109 | Poi _ '
022 R or2  r2R; or2  r Or 022
The physical multifields are as follows
Up = — Z Azalz)\z& (UZ, ¢a ¢) = Z Al(l’ —Q3i _a4i) arcsin h<ﬁ)
r r
1 oT A2z oT r
T—=A — - _A 202 = _A —
0400 Ry 92 0400 R? or 0400 R
1 R,
op = — ZAME)MZ‘E + (c11 — c12) ZAiali)\ir_Q - 5T
1 R 1
0 = — ZAiaﬁi)\iE — (c11 —c12) ZAz‘alz‘)\i(ﬁ - E) — 6T
as; 1 01 Zq Bz
=2 A+ =T o= — o Ajasi— — —=T 3.3
g Z )\Z RZ + )\% g Z as 'I"Ri )\O r ( )
Zi 1
E, ==Y Ajazi— E, =% Aiagihi
> Aas R > Asas R,
Z; 1
Hy ==Y Ajagi— H, =5 Aiagidi—
Y. Ajay R > Aiay 7
D, = Ajagir2—: D. =3 Avagih—
r 106 ZTRi z — 1067 ZR@'
B, =Y Ajaz)\2— B. = ¥ Aarhi~
r 107 Z?“RZ‘ z — 107 ZRi

where the following abbreviation notation is used > = 221:0.

multi-field material

¢, d, e, q, &, 1, , A (21 constants)

Fig. 1. A point heat source 2@ in an infinite multifield material

When we use the physical consideration that the total heat flux transmitted through a
cylinder 0 < z < a, r < b must be equal to a point heat source @ (see Fig. 1), the following
equation can be written
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b a
or or
—27A, / 5(7“’ a)r dr — 2w\, 0/ E(b’ z)dz=Q (3.4)

0

The substitution of Eq(3.3)45 and integrations yields

Q =\ )\Oaaovo/— dr + \:-b ao()A()/— dz
27 (r2 +)\2a2) (b2 +)\222)
)\aaA( ! )b )\aA(l S )a (3.5)
= AraaooAo| — — AragoAp| 1 — :
NEESvEL NEESvEYN
1
= )\raOOAO< S — " + L) = ago AoV A\
b2+ a2 0 b2 + N3a?
that is
Q
A= ——2 3.6
0 oragov s (3.6)

Note that in an infinite medium with the point heat source 2@, the constant Ay assumes the
same value. The temperature and heat fluxes are

__ @ 1 or _ _Q oz 39T __Q dor (3.7)
~2my A Ro 0z 27 R} "Or 27 R} '
Of course
0*°T 10T 0*T
(G 7o) T g =0 (38)

3.1. The half-space problem
The boundary conditions and the corresponding equations for A; are

(a) 04 (r,0) =0 is identically satisfied

4
(b) o.(r,0) =0 ZA@+ Q (51 00 50)%:0

i—1 )\ 2T A 2a00 )\0 )\0

4
¢ D,(r,0) =0 Ajagid; + ago =0
© D0 =0 3 A+ gl o

- Q
d Bz ’ = AZ i)\z’ P — =
W B0 =0 SAe L=

y Q

(e) u, is finite at r =10 Z Ajapi\? + S a1oho =0

i=1

Thus, the coupled field in a semi-infinite transversely isotropic multifield material is determined
by solution (3.3) and the following constants A;\;

as1 a5 as3 as4 7711 /Brag
A1\ 2 2 2 e V] ( + a5o)
Ao 0 AT A3 A3 Al A5 N Ao
A2)\2 - agl a2 Gg3 A4 ago (3.10)
33 21A000 | a7y apy  ar3  am azo
Aghy

a1\ a2 1303 G144 a10\o
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Generally, the permittivity and permeability of air or vacuum is about 680 and 475 times
smaller, respectively, than that of commercial multifield materials. In reality, D, and B, do
not transmit through the free boundary of half-space as assumed in conditions (c) and (d) of
equations (3.9). It can be seen from equations (3.10) and (3.3) that Green’s functions for point
heat sources applied on the boundary of the half-space are expressed exactly and explicitly
in terms of elementary functions. This will be greatly beneficial to the succeeding analysis of
thermoelastic problems of magneto-electro-thermo-elastic materials. Note that the total heat
flux transmitted through the free boundary z = 0 is

)\QZ o

Q+2wAZ/g—Zrdr:Q+QR—O —Q-Q=0 (3.11)
b 0

This is a confirmation of the correctness of the obtained result. Note again that

e1s +enas; + dijag;
2
A;

asi = €1161; — €13 + €31a3; + ¢3104 agi = €1501; +

3.12
q15 + p11a4; + drras; ( )

A2

and ay;, as;, aq; are defined by equations (3.15), see also very coupled but alternative equations
(A2) and (A3) in Appendix A and equations (3.22) in special cases.

ar; = Q15015 +

3.2. An infinite body containing a point heat source 2}

If
4 4
Z Aiali)\? =0 and Z Ai(l, —as3s;, —a4l-) =0 (3.13)
1=0 1=0

then the generalized displacements u,, u,, ¢ and ¥ caused by the internal heat source 2(Q) are
limited, but they cannot be calculated in the neighborhood of the z-axis, that is when r — 0.
The displacements which are obtained with an accuracy up to an arbitrary constant do not
affect the value of stresses. Arbitrary constants can be treated as linear displacements of the
medium as a rigid body in the axial direction without rotation.

The solution to algebraic system of equations (3.13) is
-1

Ay 1 1 1 1 1

Az _ Q agi  agz  azy 434 aso (3.14)
As 2mapoV A A, | Q41 a42 a43 Q44 a40

Ay antA? a12A3 a1303 anA; a10A3

where the coefficients aq;, ag;, aq; for i =0,1,2,3,4 are as follows

—1

a; (631 + 615))\Z2 €11 — 833)‘? di1 — d33)‘12 633)‘12 — e15 +p3a00)\i5i0
asi p=|(g31 + q15)A?  di1 — dssA?  pg — pagA? 43302 — q15 + Y3a00\i0i0
ay; c11 Al esn +essA? gs1 + gasA 3302 + c13 — (B + By ?)agoNidio

(3.15)

This is an alternative and simpler form of parameters defined by equations (A2) and (A3).
Note that the units of the elements of the last matrix are for typical multifield materials

[e] = C/m? [p3] = 1075C/(m?K) [ago] = 10°K [p3age] = C/m?
lq] = 10°N/(Am) 5] = 107*N/(AmK) [y3a00] = 10°N/(Am) (3.16)
[C] = 101ON/m2 [ﬁl,ﬂg] = 1O4N/(m2K) [(ﬂl,ﬂg)aoo] = 101ON/m2

with the multiplier € (1, 10).
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This states that the constituents of the sums are of the same order in each row of the last
matrix in (3.15).

Green’s functions for the internal heat source applied in multifield materials are determi-
ned by equations (3.3), (3.14) and (3.15). All physical components of multifield materials are
expressed in forms of elementary functions. It is very simple and straightforward to give nu-
merical results. The results may help the understanding of behaviour of “smart” devices and
“intelligent” structures made by multifield materials.

3.3. Single phase materials and multifield composite materials

Multifield composite materials usually comprise alternating piezoelectric and piezomagnetic
materials. If the material is piezoelectric then we define the matrix

(e31 +e15)AF 11 —eszA? 0

Cg = 0 0 —00 (3.17)
c11 + 3\l esr +esgA; 0

and its inverse matrix
+es3A? 0 —(e11 — e33M?)
€31 + €33A; €11 — €33A;

1
—(c11 +e1302) 0 (es1 + e15)A?

Cpl=—
Apg 0 0 0 (3.18)

Ap = (e31 + e15)A7 (ea1 + e33A7) — (c11 + c13A7) (11 — £33A7)

Of course
1 0 0
CpCz'=10 1 0 (3.19)
0 0 1
For piezomagnetic material, it is
0 —00 0
Cu= |(ga1+q5)\] 0 p11 — pssA? (3.20)
11 + 132 0 g1+ g33A?
Then we obtain
) 1 |V @t as3N? = (a1 — pssA?)
CI_{ = A— 0 0 0 391
B0 —(cin +c3A?)  (g31+ qi5)\? (3.21)

Ap = (g31 + q15) M (g31 + q3377) — (11 + c1302) (a1 — paz)F)

where C HC]ZI1 =1I; I is the square unit matrix.
Thus

E
ati 1| esi+essA? —(e11 —e33M?) es3\? — e15 + P3aooAidio
—(e11 +c13A?)  (ez1 +e1s)A? | | essA? + 13 — (B3 + B1A; 2)aooNidio

Apg
a1 g —(uy — pz?) A2 = 15 + Y3000 \i6;
1i L g3+ g3 P11 — [33A; @33N — q15 + 73a00Ai0i0
Ag |=(cin +casA?)  (g31 4 q15) N} 330 + ci13 — (B3 + B1); %)aoNidio
(3.22)

respectively for the piezoelectric and piezomagnetic thermoelastic materials.
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Note that for the piezoelectric material is as; = 0, but as; defines a7;, that is also B, by the
electromagnetic constant dq1. Similarly is for the piezomagnetic material where ag; = 0, but ay;
defines ag;, that is also D, as a consequence of the electromagnetic effect (see equations (3.12)).

Fore the two-phase multifield material, the constant Ay will be

Ao = @ (3.23)
7 (@00 A + /AL

where the material parameter of the second material is denoted by prime.

The inverse matrices are obtained as arithmetically average values in this case. Since the
plane z = 0 is a plane of symmetry (o, =0, H, =0, F,, =0, u, =0, ¢ = 0 and ¢» = 0 on this
plane), the solutions may be used for the two-phase multifield composite material.

3.4. Solution for a purely thermoelastic material

For a transversely isotropic thermoelastic medium, the temperature field is the same as that
obtained in Section 3 and described by equations (3.7). The thermoelastic solution for the purely
elastic problem can be easily derived from that of the piezoelectric material (on assumption that
£11 — 3302 — oo and e3; = e33 = ey5 = 0) or the piezomagnetic material (by assuming
pa1 — p3sA? — oo and g31 = ¢33 = ¢15 = 0). Both formulae (3.22) give the same result

3302 + c13 — (B3 + 1A %)aooNidio
c11 + 1302

and equations (2.12) and (2.8) yield

i=0,1,2 (3.24)

a1, =

044033()\(2) - )\%)()\(Q) - )\%)

as; = €1101; — C13 apo = 3.25
' ’ B1(c33AG — caa) — P3G (crs + caa) (3.25)
The remaining material parameters as;, ay4;, ag; and ay; vanish.
The constants A7 and Ay are obtained as follows
) O\ (6&?0 + 050)6112)\% — a10a52\y
1= -
27 Araoo as1a12A3 — asaa1n A3 (3.26)
) Q) (ﬁl)f;oo + a50)a11)€ — a10as1 A}
2 _
27\ rago a51a123 — as2a11 A3
for the half-space problem and
a12A3 — a0\ a11A} — a0\
2mapoV/ Ar Az @125 — a11 A} 2mago VA Az A12A3 — ap A}
for an infinite body.
The parameters A\; and Ay are the roots of the following equation
cszeut — [er1css — crz(cas + 2caa)]N? + crieas = 0 (3.28)
These parameters are the eigenvalues of the transversely isotropic material.
By defining
o — \/611633 — c13(2c44 + C13) + 2c44,/C11C33
€33C
33C44 (3.29)

5= \/611633 — c13(2c44 + C13) — 2¢44,/C11C33

C33C44
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the eigenvalues \; and Ay can be written as
1 1

It is noted that A\; and Ao can be either two positive real numbers or complex conjugate with
a positive real part. In other words, a = A + A9 and it is always real. The results are valid even
for the degenerate case of 3 = Ay — Ay = 0, including the isotropic material where \; = Ay = 1.
In this case, the limiting calculations with the use of de I’'Hospital’s rule give the solution.

4. Conclusions

e In comparison with the traditional methods applied to the solution of boundary value
problems of thermoelasticity, in the proposed method, there is no need to solve boundary
value problems of heat conduction for preliminary determination of the temperature field
(the first stage of solving the problem) and then to solve the equations of thermoelasticity
(the second stage of solving the problem).

e Green’s functions for the half-space, infinite space made by multifield materials are obta-
ined in an exact analytical form; the solutions are regular.

e For the temperature and heat flux applied along the circumference on an arbitrary plane,
the thermal loading conditions may be written by means of the Dirac delta function. Then
integration and/or superposition of Green’s functions gives the multi-field result.

Appendix A. The material coefficients for mulifield materials
A1. The material parameters in characteristic equation (2.9) are as follows
a = caallisse3s + £33q33 + C33fisacss — dss(casdss + 2es3qss)]

b= pzs3{(ez1 + e15)[2c13e33 — c33(es1 + e15)] + 2casesze31 — Cr1€35 — C33C4E11}
+e33{(g31 + q15)[2c13G33 — c33(q31 + q15)] + 2c4433q31 — C11G33 — C33Caafi11 }
- M:s:«‘ﬁ:«z:s&'2 — (es1 + 615)2(153 — (g31 + Q15)2€§3 - 044,u116§3 - C44$11¢]§3
+ 2e33q33(q31 + q15) (€31 + €15) + d33¢” + 2c33d3(es1 + e15)(gs1 + q15)
+ 2c44c33d11d33 + 2e33q33(caadiy + cr1dsz) — 2ds3(c13 + caa)le33(g31 + qus)
+ q33(e31 + e15)]

¢ = pz3{2e1s5]criess — ciz(est + e15)] + caseqy + 110}
+e33{2qi5[c11a33 — c13(g31 + qu5)] + caaq3y + 118}
+ c33caapi11€11 + Cr1caapt3zess + 2(c13 + caa)(g31 + q15)(di1ess + dszers — gszenn)
+2(c13 + ca4)(e31 + e15)(d11g33 + d33q15 — e33pi11)
+ (g31 + q15)*(c33811 + 2es3€15) + (es1 + e1s)?(esspnn + 2q33¢15)
— 2(g31 + q15)(e31 + e15)(e33q15 + g3ze1s + cazdin + caadss)
— 2c11d33(e33q15 + q33e1s) — 2caadin(gzers + €33qis)
— 2c11d11g33€33 — 2¢44d33q15€15 + 2C44G15933€11

2 2 -2 2 2
+ 2cqa€15€330011 + C11933€11 + cr1e33p11 — 2¢ d33diy — c11¢aad33 — caqc33dyq
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d = —ci1pz3(cascns + els) — criess(caapnn + qis) — caa(€dypnn + a31611) — €314%5 — @316
— p1en @ + di1 @ + 2cr1caadindss + 2c13q15931611 + 2013€15€31 111 — 2€1115G33E11
— 2cr1e15e33p11 + 201315611 + 2c13€T5 011 + 2e31€15031q15 + 2¢11€15q15d33
+ di1[—2c13e15(q15 + g31) — 2c13q15(e15 + e31)] + di1[2c11(€15G33 + qi5e33) + 2ca4€31431]

e = ciipi1els + e11qis + cascr1pnr — dii(caadis + 2e15q15))
& = ciics3 — ci3(c13 + 2c44)

A2. The parameters ay, by, ¢1, di, and ag, by, ¢z, da in Eq. (2.8) are

a1 = Bi[css(esspss — d3s) + psseds + €33q33 — 2e33dssqas] + Bs[—(c13 + caa)(es3pizs — d33)
— (e31 + e15)(133e33 — d33q33) — (31 + q15)(g33€33 — d33e33)]
+ v3[—(c13 + ca4)(dszess — q33esz) + (€31 + e15)(dszcsz + g3zess)
— (g31 + q15)(cssess + €33)] + p3[—(c13 + cas)(dszqss — e33pis3)
+ (g1 + q15) (dsscss + gssess) — (es1 + e15)(cspias + 33)]

b1 = Biess(2di1dss — eszpnn — pssen) + caa(dis — €334133) — €11033 — H11€33
+ 2d33(e33q15 + g33e1s) + 2d11€33q33 — 2q15933€33 — 2€15€33/433)]
+ B3[—(c13 + caa)(2d11d33 — €33p111 — H33E11)
+ (¢13 + q15)(q15€33 + g33c15 — di1es3 — dzzens)
+ (e31 + e15) (15133 + e33p11 — di1q33 — d11q15)]
+ y3[(c13 + caa)(di1€33 + d3zers — qi5€33 — q33€11)
— (e31 + e15)(caadss + c33d11 + qise3s + e15q33) + (g31 + qu5)(caa€33 + 33611 + 2€15€33)]
+ p3[(c13 + caa)(d11933 + d33q15 — e15433 — €33/411)
— (g31 + q15)(caads3 + c33di1 + quse3s + e15q33) + (€31 + e15)(caapzz + c33p11 + 2q15933)]

1 = Bileaa(enipss + esspnr — 2di1dss) + ess(enipnn — diy) + €33¢3s + pasels
— 2d11(€15933 + q15€33) + 2q15933611 + 2H11€15€33]
+ B3[(c13 + caa)(dFy — e11p11) — (es1 + e1s)(irers — diiqis)
— (g31 + q15)(e11q15 — di1e1s)] + y3[(c13 + caa)(qu5e11 — €15d11)
+ (es1 + es)(dircas + qusers) — (gs1 + qus)(caaens + €i5)]
+ p3[(c13 + caa)(e1s5p11 — qusdin)
+ (g31 + q15)(di1caa + qusers) — (es1 + exs)(caapr + ai5)]

dy = —Bi[caa(eripnr — d3y) + pr1eds + 11435 — 2e15q15d11]
ag = ca4[B3(e33p3s — dis) + 3(dssess + qazess) + p3(daszgss — esspas)]

by = fi[(c13 + caa)(e33pu33 — d33) — (€31 + e15)(d33q33 — pazess)
— (g31 + q15)(dszess — £33q33)] — B3[c11 (331133 + d33)
+ caa(p11€33 + p3ze1r) — 2(g31 + q15)(e31 + e1s)dsz + (g1 + Q15)2€33 + (e31 + 615)2M33]
— 13[c11(dszess — qs3e33) + caa(diress + dazers — qi5€33 — q33€11)
— (c13 + caa)dss(es1 + e15) — gss(est + e15)” + e33(g31 + q15) (13 + caa)
+ e33(g31 + q15)(e31 + e15)] — p3le11(dazgas — e3zpiss)
+ ca4(d11G33 + d33q1s — e1533 — €33p111) — (€13 + ca4)d33(q31 + q15)
— es3(q31 + q15)” + pss(es1 + es)(cis + caa) + g33(q31 + i) (es1 + ens)]



754 B. Rogowski

= B1[—(c13 + caa) (11133 + €33p011) + (€31 + e15)(d11q33 + d33q15)
+ (g31 + q15)(d11e33 + dszes) — (g31 + q15)(q15€33 + g33€11)
— (es1 + e15)(e1sp33 + eszpa1) + 2(c1s + caa)dirdss] + Ba[caa(er1pr + diy)
+ 11 (piness + pssenn) + pa(est + e15)? +enn(gs + qis)? — 2(es1 + exs)(g31 + q15)dai]
— y3lcaa(qiserr — ersdin) + (e3r + e1s)((c13 + caa)dir + (e31 + e15)q15)
— (g31 + q15)((c13 + caa)e1r + (e31 + ers)e1s) — cri(diress + ersdsz — €11G33 — €33q15)]
— p3lcaa(ersprr — qusdin) + (g31 + qi5)((c13 + caa)dir + (g31 + q15)e1s)
— (e31 + e15)((c13 + caa)pnr + (g31 + q15)q15) — c11(d11g33 + qi5dsz — p11€33 — p3zers)]

dy = Bi[(c13 + caa)eripnn — (e31 + ers)diiqis — (g31 + qus)diiers + (31 + q15)q15e11
+ (e31 + exs)pi1e1s — (c13 + caa)diy] — Bs[cin(eripan — diy)] — v3[enn (ensdin — qusenn)]
— pslen (qisdin — erspn)]

A3. The parameters as; and a4; in Eq. (2.8) are defined by the parameter aq; as follows

az; = {{ﬁl[(ezﬂ + €15)(g33 A7 — q15) — (c13 + caa) (11 — d33)])]
+ Bs[(ez1 + €15)(g31 + qu5)Ni + (caa Ay — e11)(din — dszAY)]
+ pa[Nilcrs + car) (g1 + q15) + (caaX? — e11) (337 — q15)] Fari i
+ Bil(essAf — can)(din — ds3A) — (g33A] — qu5)(e33A] — eas)]
+ BsAil(c1s + caa) (din — dssA?) — (31 + q15)(e33A] — €x5)]
+ psAil(ers + caa) (33A] — q15) — (g1 + q15) (c33A] — 644)]}
{psil(es1 + e15)(a33A? — qis) — (31 + q15) (€33N — €15)]
+ Bil(essA] — e15)(da1 — dssA?) — (g3sA} — qus) (€11 — £33A))]
+ BsAil(es1 + e15)(dir — ds3Ay) — (g31 + q15) (e11 — 33A7)]}

ag; = —{{ﬁ1[(631 + e15) (s3] — €15) — (c13 + caa) (€11 — £3377))]
+ Bsl(est + e15)?Ni + (casA? — c11)(e11 — £33A7))]
+ pa[Ni(c1s + cas)(es1 + e15) + (cashy — c11)(e33A] — e15)]Fari N
+ Bil(css Ay — caa) (11 — £3307) — (e33A7 — e15)?]
+ BsAil(c13 + caa)(e11 — €33A7) — (e31 + €15)(e33A7 — €15))]
+ pai[(c1s + cas) (e33 AT — e15) — (es1 + ers)(caz Ay — 044)]}
{psAil(est + e15)(a33A; — q15) — (g31 + q15) (€337 — e15)]
+ Bil(essA? — e1s)(dir — dssA?) — (gasAi — qus)(e11 — €33A7))]
+ BsAil(es1 + e15)(dir — ds3A}) — (g31 + q15) (e11 — 33A7)]}

A4. The roots of characteristic equation (2.9) are presented by the formulae (eigenvalues of
multifield materials)

R;
AZ:————\/R T Rg— =/2R R—|— S
1 5 6 \/ 5 — 116 R5+R

b 1 1 R
A%:—E—§VR5+R6+§\/QR5 Re + 7 S

4v/Rs5+ Rg
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b1 1 1 Ry
N= 4 — 2 /9Rs — Rp — ——— T
87 g T Vit H 2\/R5 R 4/Rs + Rg

b1 1 1 Ry

M=——+4_VRs+Rs+=/2Rs — Rg — ——————

T T TV T 6JFQ\/ * T AR 1 R

where
Ry = 2¢% — 9bed + 27ad? + 27b%e — T2ace Ry = ¢® — 3bd + 12ae
1
R3 = \/R? — 4R3 Ry = {’/5(Rl+33)
2 2 R Ry b3 4be  8d

Ry = — — — = — Rr=—— —4—

5T 42 3a 6 3aR;,  3a T3 a2 + a
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