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Primary parametric resonance and stability of an axially accelerating and current-carrying
beam subjected to static loads in magnetic field are investigated. The nonlinear magneto-
-elastic vibration equation is derived. The approximate solution of the static problem and the
disturbance deferential equation of the beam with two sides simply supported are obtained.
The frequency-response equation of primary parametric resonance is further achieved by
a multi-scale method. According to stability conditions, the stability of the steady-state
solution is also discussed. By numerical examples, the amplitude versus different parameter
curves and the bifurcation diagrams of the amplitude are acquired. The effects of magnetic
induction intensity, axial speed, detuning parameter and static loads on nonlinear vibration
characteristics are also analyzed.

Keywords: current-carrying beam, primary parametric resonance, magnetic field, axial mo-
vement, static loads

1. Introduction

In modern engineering life, with the rapid development of science and technology and wide
application of axially moving systems, electromagnetic structures have been gradually applied
in many significant industrial fields, for instance, aerospace and heavy-duty machinery. When
interfered by electromagnetic field, mechanical field and parametric resonance, magneto-elastic
structures may cause large amplitude vibration or even result in the loss of stability. There-
fore, it is important to analyze nonlinear dynamic characteristics of axially accelerating beams
in magnetic field when the beams are under coupled vibration. The nonlinear vibration model
of electroconductive plate in the magnetic field has been established (Hasanyan et al., 2001)
and the investigation of vibrational behaviors have also been made by means of the Hamilton
principle and multi-scale method (Hasanyan et al., 2005). The dynamic stability and nonlinear
subharmonic resonance of conductive plates under magnetic field have been investigated (Zheng
et al., 2005; Hu and Li, 2009). Wang et al. (2003) analyzed magneto-thermo-elastic instability
of simply supported ferromagnetic plates subjected to thermal and magnetic loadings and in-
vestigated effects of thermal and magnetic fields in some detail. Hu et al. (2015) analyzed the
strong nonlinear subharmonic resonance of an axially moving plate and employed the singularity
theory to analyze the corresponding transition variety and the effects of parameters on system
bifurcation. Ghayesh and Balar (2008) studied the stability condition of the Rayleigh beam by
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the Routh-Hurwitz criterion. Non-linear parametric vibration and stability of an axially moving
Timoshenko beam with two dynamic models were investigated by Ghayesh and Balar (2010).
Principal parametric resonance of an axially accelerating viscoelastic beam was studied with two
models: one was partial differential nonlinear model and the other an integro-partial differential
nonlinear model (Chen and Yang, 2005). Chakraborty and Mallik (1998) investigated the effects
of the parametrically excited nonlinear moving beam with and without an external harmonic
excitation. Based on the Timoshenko model, parametric resonance of axially moving beams and
dynamic stability of a viscoelastic variable motion beam were studied (Tang et al., 2009; Chen
et al., 2010). Hu and Zhang (2013) analyzed the primary parametric resonance of a rectangular
thin plate in magnetic field and the effect of different parameters on dynamic behaviors. The
nonlinear resonance of a rotating circular plate with initial deflection in magnetic field was stu-
died by Hu and Wang (2015). Wang and Chen (1998) applied the Galerkin integral method to
obtain the differential equation of flexible circular plates and discussed the influence of initial
deflection on vibration characteristics. The effect of initial deflections on natural vibration fre-
quencies of shells was analyzed by Matsner (1978). However, these investigations are all limited
to primary parametric resonance of current-carrying structures with initial deflection. Thus it
is still imperative to understand nonlinear dynamic behaviors of axially accelerating structures
subjected to static loads under magnetic field.
In this article, the primary parametric resonance of an axially accelerating and current-

-carrying beam subject to static loads under magnetic field is investigated and the stability
of the steady-state solution is also discussed. Detailed numerical examples are employed to
demonstrate that the system presents typical nonlinear vibration characteristics and complex
dynamic behaviors.

2. Magneto-elastic vibration equations of the axially moving and

current-carrying beam

An isotropic current-carrying beam under a magnetic field B = [0, B0y , 0], a uniformly distribu-
ted axial tension F0x and a uniformly distributed transverse load Pz, travels along the centroidal
axis x-direction with an axial speed C. As shown in Fig. 1, the beam with length l, width b, thick-
ness h and mass density ρ is charged with the electric current density vector Je = [J0x(t), 0, 0].
And t is time variable.

Fig. 1. Mechanical model of an axially accelerating and current-carrying beam in magnetic field

2.1. Kinetic energy

The transverse velocity of the axially accelerating beam can be expressed as follows

V0z =
dw

dt
=
∂w

∂t
+ C
∂w

∂x
(2.1)

where w(x, t) is the transverse displacement.
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For this system, the total kinetic energy T is

T =
1

2
ρ

h

2∫

−
h

2

b

2∫

−
b

2

l∫

0

(C2 + V 20z) dx dy dz =
1

2
ρA

l∫

0

[
C2 +

(∂w
∂t
+ C
∂w

∂x

)2]
dx (2.2)

where A = b× h is the cross-sectional area of the beam.

2.2. Potential energy

According to the Euler-Bernoulli beam theory, the total potential energy of the beam is com-
posed of three parts, namely, the strain potential energy U1 induced by axial tension, the bending
strain potential energy U2 and the in-plane strain potential energy U3. The total potential energy
of the beam can be represented as follows

U = U1 + U2 + U3

=

l∫

0

F0xεx dx+
1

2

h

2∫

−
h

2

b

2∫

−
b

2

l∫

0

E
(
−
∂2w

∂x2
z
)2
dx dy dz +

1

2

h

2∫

−
h

2

b

2∫

−
b

2

l∫

0

Eε2x dx dy dz

=

l∫

0

[
F0xεx +

1

2
EI
(∂2w
∂x2

)2
+
1

2
EAε2x

]
dx

(2.3)

where εx = (∂w/∂x)
2/2 is the normal strain component of the beam, E is Young’s modulus,

I =
∫ h/2
−h/2

∫ b/2
−b/2 z

2 dy dz is the cross sectional moment of inertia.

2.3. Virtual work by the external force

Transverse external forces acting on the beam include the transverse uniformly distributed
forced excitation Pz and electromagnetic force Fz. Hence, the virtual work generated by Pz can
be expressed as

δW1 =

l∫

0

Pzδw dx (2.4)

Neglecting the effect of magnetization and displacement current, the Lorentz force of a good
conductor can be expressed as

f = J×B (2.5)

where J is the electric current density in the beam.

Equation (2.5) can be rewritten as below

f = J0x ×B+ Jx ×B =

∣∣∣∣∣∣∣

i j k

J0x + Jx 0 0
0 B0y 0

∣∣∣∣∣∣∣
= (J0xB0y + JxB0y)k (2.6)

where i, j, and k are the unit vectors in the x, y, and z directions, respectively, Jx = −σ0V0zB0
is the induced current density component in the conductive beam due to the external magnetic
field along the x axis, and σ0 is the electric conductivity.
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The electromagnetic force per unit length can be derived from Eq. (2.6)

Fz =

h

2∫

−
h

2

b

2∫

−
b

2

(J0xB0y + JxB0y) dy dz (2.7)

So. the virtual work due to the electromagnetic force can be represented as

δW2 =

l∫

0

Fzδw dx (2.8)

2.4. Establishing the vibration equation by the Hamilton principle

Based on the Hamilton principle, which is one of the most important integral principles of
mechanics, one can get

t2∫

t1

(δT − δU + δW1 + δW2) dt = 0 (2.9)

where δT is the variational expression of kinetic energy and δU is the variational expression of
potential energy.
Substitution of Eqs. (2.2), (2.3), (2.4) and (2.8) into Eq. (2.9) yields the nonlinear magneto-

-elastic vibration equation of the axially accelerating beam

ρA
∂2w

∂t2
+ 2ρAC

∂2w

∂x∂t
+ ρAC2

∂2w

∂x2
+ ρA

∂C

∂t

∂w

∂x
− F0x

∂2w

∂x2

−
3

2
EA
(∂w
∂x

)2∂2w
∂x2
+ EI

∂4w

∂x4
= Fz + Pz

(2.10)

where

Fz = AB0yJ0x −Aσ0B
2
0y

(∂w
∂t
+ C
∂w

∂x

)

3. Disturbance differential equation of the axially accelerating beam subjected to

static loads

When a system is under a constant forced excitation (Pz = Pc) and a constant magnetic induc-
tion intensity (B0y = B0) and charged with a direct current (J0x = Jc), the value of AB0yJ0x is
constant. Let Qz = AB0Jc, Q = Pc+Qz, and Q is a uniformly distributed static load. Equation
(2.10) can be expressed in the following form

ρA
∂2w

∂t2
+ 2ρAC

∂2w

∂x∂t
+ ρAC2

∂2w

∂x2
+ ρA

∂C

∂t

∂w

∂x
− F0x

∂2w

∂x2
−
3

2
EA
(∂w
∂x

)2∂2w
∂x2

+ EI
∂4w

∂x4
+Aσ0B

2
0

(∂w
∂t
+ C
∂w

∂x

)
= Q

(3.1)

It is assumed that the beam has a tiny static deflection w0 under the uniformly distributed
static load Q and a deflection w1 when it vibrates. Therefore, the total deflection of the system
can be given as below

w = w0 + w1 (3.2)
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Therefore, Eq. (3.1) can be rewritten as

ρA
∂2w1
∂t2
+ 2ρAC

∂2w1
∂x∂t

+ ρAC2
(∂2w0
∂x2
+
∂2w1
∂x2

)
+ ρA

∂C

∂t

∂w1
∂x

− F0x
(∂2w0
∂x2
+
∂2w1
∂x2

)
−
3

2
EA
(∂w0
∂x
+
∂w1
∂x

)2(∂2w0
∂x2
+
∂2w1
∂x2

)

+ EI
(∂4w0
∂x4
+
∂4w1
∂x4

)
+Aσ0B

2
0

[∂w1
∂t
+ C
(∂w0
∂x
+
∂w1
∂x

)]
= Q

(3.3)

The initial deflection w0 satisfies the following equation

ρAC2
∂2w0
∂x2
− F0x

∂2w0
∂x2
−
3

2
EA
(∂w0
∂x

)2∂2w0
∂x2
+ EI

∂4w0
∂x4
+Aσ0B

2
0C
∂w0
∂x
= Q (3.4)

According to the axially moving beam simply supported on two sides, its boundary conditions
are

x = 0 : w = 0
∂2w

∂x2
= 0

x = l : w = 0
∂2w

∂x2
= 0

Assume that the static deflection displacement satisfies the boundary condition

w0 = f0 sin
πx

l
(3.5)

After substituting Eq. (3.5) into Eq. (3.4) and using the Galerkin method, we can get

l∫

0

[
ρAC2

∂2w0
∂x2
− F0x

∂2w0
∂x2
−
3

2
EA
(∂w0
∂x

)2∂2w0
∂x2

]
sin
πx

l
dx

+

l∫

0

(
EI
∂4w0
∂x4
+Aσ0B

2
0C
∂w0
∂x
−Q
)
sin
πx

l
dx = 0

(3.6)

After integration, the following formula is obtained

a2f
3
0 − (a3 − a1)f0 + a4Q = 0 (3.7)

where

a1 =
EIπ4

2l3
a2 =

3EAπ4

16l3
a3 =

ρAC2π2 − F0xπ
2

2l
a4 = −

2l

π

The real root of Eq. (3.7) is

f0 = Z0 −
a1 − a3
3a2Z0

(3.8)

where

Z0 =
3

√√√√
√(a1 − a3

3a2

)3
+
(a4Q
2a2

)2
−
a4Q

2a2
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Considering Eq. (3.4) for the initial static deflection w0 in Eq. (3.3), we can write the following
equation for the deflection w1

ρA
∂2w1
∂t2
+ 2ρAC

∂2w1
∂x∂t

+ ρAC2
∂2w1
∂x2
+ ρA

∂C

∂t

∂w1
∂x
− F0x

∂2w1
∂x2

−
3

2
EA
[
2
∂w0
∂x

∂w1
∂x

(∂2w0
∂x2
+
∂2w1
∂x2

)
+
(∂w1
∂x

)2∂2w0
∂x2
+
(∂w0
∂x

)2∂2w1
∂x2

+
(∂w1
∂x

)2∂2w1
∂x2

]
+ EI

∂4w1
∂x4
+Aσ0B

2
0

(∂w1
∂t
+ C
∂w1
∂x

)
= 0

(3.9)

For the axially accelerating beam, its axial speed and axial tension can be assumed as follows,
respectively

C = C0 + C1 cos(ω1t) F0x = F0 + F1 cos(ω2t) (3.10)

According to the simply supported boundary condition, the deflection w1 can be denoted as

w1 = s(t) sin
πx

l
(3.11)

where C0 is the axial constant speed, C1 is the amplitude of the time-variant axial speed, F0 is
the axial constant tension, F1 is the amplitude of the time-variant axial tension, and ω1 and ω2
are the frequencies of the time-variant axial speed and time-variant axial tension, respectively.
Substituting Eqs. (3.10) and (3.11) into Eq. (3.9) and using the Galerkin method yields the

dimensionless magneto-elastic parametric vibration differential equation

q̈(τ) + 2ζ̃ q̇(τ) + ω20q(τ)− [k̃1 cos(2τ) + k̃2 cos(4τ)− k̃3 cos(2τ)]q(τ)− α̃4q
2(τ) + α̃3q

3(τ) = 0

(3.12)

where

q =
s

h
2τ = ω1t 2τ = ω2t ζ̃ =

σ0B
2
0

ρω1

k̃1 =
8C0C1π

2

ω21l
2

k̃2 =
2C21π

2

ω21l
2

k̃3 =
4π2F1
ρAω21l

2

ω20 =
4π2F0l

2 + 4π4EI + 92EAπ
4f20 − 2ρAl

2π2C21 − 4ρAl
2π2C20

ρAl4ω21

α̃4 =
9f0Eπ

4h

2ρω21l
4

α̃3 =
3Eπ4h2

2ρω21l
4

4. Solving the primary parametric vibration problem by the method of multiple

scales

In order to analyze the problem of principal parametric resonance of Eq. (3.12), a small para-
meter ε is introduced

q̈(τ)+2εζq̇(τ)+ω20q(τ)−ε[k1 cos(2τ)+k2 cos(4τ)−k3 cos(2τ)]q(τ)−εα4q
2(τ)+εα3q

3(τ) = 0

(4.1)

where

ζ =
ζ̃

ε
k1 =

k̃1
ε

k2 =
k̃2
ε

k3 =
k̃3
ε

α3 =
α̃3
ε

α4 =
α̃4
ε



Primary parametric resonance of an axially accelerating beam... 821

When solving the problem of the principal parametric resonance, we let

ω0 = 1 + εσ (4.2)

where σ is the detuning parameter.
The first-order approximate solution to the vibration differential equation can be found

through the method of multiple scales (Nayfeh and Mook, 1979). Meanwhile, the fast time scale
T0 = τ and the low time T1 = ετ scale are introduced. The approximate analytical solution of
parametric resonance can be drawn as

q(τ, ε) = q0(T0, T1) + εq1(T0, T1) (4.3)

Substituting Eqs. (4.2) and (4.3) into Eq. (4.1), and equating the coefficients of ε0 and ε1 on
both sides, one can conclude that

D20q0 + q0 = 0

D20q
2
1 + q1 = −2D0D1q0 − 2ζD0q0 − 2σq0

+ [k1 cos(2τ) + k2 cos(4τ)− k3 cos(2τ)]q0 − α3q
3
0 + α4q

2
0

(4.4)

where D0 = ∂/∂T0 and D1 = ∂/∂T1.
The general solution of zero-order approximate Eq. (4.4)1 can be expressed as follow

q0 = A0(T1)e
iT0 +A0(T1)e

−iT0 (4.5)

where i2 = −1, A0 is an unknown complex number and A0 is the conjugate complex of A0.
Substitution of Eq. (4.5) into first-order approximate Eq. (4.4)2 gives

D20q
2
1 + q1 = −2iA

′

0e
iT0 − 2iζA0e

iT0 − 2σA0e
iT0 − 3α3A

2
0Ae
iT0 + α4A

2
0e
i2T0 +A0A0

− α3A
3
0e
i3T0 +

k1 − k3
2
(A0e

i3T0 +A0e
iT0) +

k2
2
(A0e

i5T0 +A0e
i3T0
)
+ cc

(4.6)

where A′0 = ∂A0/∂T1, cc stands for the conjugate complex part of the function on the right-
-hand side of Eq. (4.6).
Eliminating the secular term from the particular solution to Eq. (4.6)

−2iA′0 − 2iζA0 − 2σA0 − 3α3A
2
0A0 +

k1 − k3
2
A0 = 0 (4.7)

Express now A0 of Eq. (4.7) in the polar form

A0 =
1

2
a(T1)e

iϕ(T1) (4.8)

where a and ϕ are real.
Substituting Eq. (4.8) into Eq. (4.7) we separate the conclusion into its real and imaginary

parts, and arrive at

a′ = −ζa+
k1 − k3
4
a sin(2ϕ) aϕ′ = σa+

3α3
8
a3 −

k1 − k3
4
a cos(2ϕ) (4.9)

There are a′ = 0 and ϕ′ = 0 according to steady state motion of the system. So, we conclude

ζa =
k1 − k3
4
a sin(2ϕ) σa+

3α3
8
a3 =

k1 − k3
4
a cos(2ϕ) (4.10)

The frequency-response equation is achieved according to Eqs. (4.10)

(ζa)2 +
(
σa+

3α3
8
a3
)2
=
(k1 − k3
4
a
)2

(4.11)
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5. Stability analysis of steady state motion

We determine the stability of steady-state motion by investigating the nature of the singular
points of Eqs. (4.9). To accomplish this, we let

a = a0 + as ϕ = ϕ0 + ϕs (5.1)

where a0 and ϕ0 are equilibrium solutions of the steady motion, as and ϕs are tiny disturbance
values.

Substituting Eqs. (5.1) into Eqs. (4.9), expanding for small as and ϕs, noting that as and ϕs
satisfy Eqs. (4.10) and keeping linear in as and ϕs, we obtain

a′s = −2a0
(
σ +
3α3
8
a2
)
ϕs ϕ′s =

3η3a0
4
as − 2ζϕs (5.2)

Thus, the stability of steady-state motions depends on the eigenvalues of the coefficient
matrix on the right-hand sides of Eqs. (5.2). Using Eqs. (4.10), one can obtain the following
eigenvalue equation

∣∣∣∣∣∣∣

−λ −2a0
(
σ +
3η3
8
a20

)

3η3a0
4

−2ζ − λ

∣∣∣∣∣∣∣
= 0 (5.3)

The solution of the system is stable only if the real parts of the eigenvalues are negative
according to the stability theory. Based on the Routh-Hurwitz criteria, we conclude

3α3
2
a20

(
σ +
3α3
8
a20

)
> 0 (5.4)

6. Analysis of numerical illustrations

The numerical results are based on a copper beam model with length l = 0.3m, width b = 0.02m,
thickness h = 0.01m, Young’s modulus E = 108GPa, mass density ρ = 8920 kg/m3, Poisson’s
ratio µ = 0.33, and electric conductivity σ0 = 5.7143 · 10

7 (Ω · m)−1. Figures 2-7 represent the
response curve of amplitude a versus the detuning parameter εσ, the amplitude of time-variant
axial tension F1 and the static load Q. The solid lines represent the stable solutions and the
dotted lines represent the unstable solutions. Figure 8 demonstrates the bifurcation diagram of
the amplitude.

6.1. The curve of the amplitude-detuning parameter

For the given range in Fig. 2 in which the detuning parameter εσ changes from negative to
positive, the amplitude a drops gradually to zero. The unstable solutions have tend to decrease
as the axial constant velocity C0, the amplitude of the time-variant axial speed C1, the amplitude
of the time-variant axial tension F1 increase and the magnetic induction intensity B0, the static
load Q decrease. It is also noted that the resonance region between the unstable solutions and
the stable solutions broadens as C0, C1 and F1 increase and B0 decreases. In Figs. 2a and 2e,
the curves intersect and have different variation on both sides of the intersection point due to
the value of k1 − k3 and ω0 varying with C0. An increase of the static load Q leads an increase
of ω0 (Eqs. (3.8) and (3.12)). In Figs. 2b, 2c and 2d, we can note that the amplitudes of the
stable solutions increase as C1 and F1 go up and B0 comes down.
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Fig. 2. The curve of amplitude frequency, Jc = 0.02A/mm
2:

(a) C1 = 3m/s, B0 = 0.01T, F1 = −1000N when Pc = 0N/m and F0 = 30kN;
(b) C0 = 60m/s, B0 = 0.01T, F1 = −1000N when Pc = 0N/m and F0 = 30kN;
(c) C0 = 60m/s, C1 = 3m/s, F1 = −1000N when Pc = 0N/m and F0 = 30kN;
(d) C0 = 60m/s, C1 = 3m/s, B0 = 0.01T when Pc = 0N/m and F0 = 30kN;
(e) C0 = 50m/s, C1 = 3m/s, B0 = 0.01Ṫ, F1 = −1000N when F0 = 15kN

6.2. The curve of the amplitude-parametric excitation

Figure 3 represents the response curve of the amplitude a versus the parametric excitation F1
under the influence of magnetic induction intensity B0. The zero solution region becomes wide
when the magnetic induction intensity B0 goes up, that is, the non-resonance region broadens.
From Fig. 3, we note that the system has stable nontrivial solutions when the detuning parameter
εσ = 0, and the unstable nontrivial solutions when the detuning parameter εσ 6= 0. All curves
in Fig. 3 are symmetrically distributed with F0 = 0N/m line when the amplitude of the time-
-variant axial speed C1 = 0m/s. When C1 = 1m/s, the symmetry axis shifts towards right.
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Fig. 3. The curve of the amplitude-parametric excitation, F0 = 30kN, Jc = 0.02A/mm
2, Pc = 0N/m:

(a) εσ = 0, C0 = 60m/s, C1 = 0m/s; (b) εσ = 0, C0 = 60m/s, C1 = 1m/s;
(c) εσ = −0.01, C0 = 60m/s, C1 = 0m/s; (d) εσ = −0.01, C0 = 60m/s, C1 = 1m/s

According to the frequency-response equation, the square item in the right-side contains F1.
Due to F1 varying from a positive to a negative value, the curves present symmetrical distribu-
tion. And the existence of the time-variant axial speed can cause the curves shift towards right.
Similar phenomena are also observed in Figs. 4-6.

Figure 4 represents the response curve of the amplitude a versus the parametric excitation F1
under the influence of the amplitude of the time-variant axial speed C1. In Fig. 4, for the stable
solutions on the left side, the greater C1 is, the larger the vibration amplitude a becomes.
However, it has the opposite result on the right side.

Figure 5 represents the response curve of the amplitude a versus the parametric excitation F1
under the influence of the detuning parameter εσ. In Figs. 5a, 5b and 5c, as the absolute value of
the detuning parameter εσ gets greater, the vibration amplitude a becomes larger. In Figs. 5d,
5e and 5f, with a gradual increase of the magnetic induction intensity B0, the zero solution
region appears and gets broader.

Figure 6 represents the response curve of the amplitude a versus the parametric excitation F1
under the influence of the static load Q. Figure 6a shows that the increasing static load Q makes
the vibration amplitude a decrease. However, the tendency in Fig. 6b is opposite.

6.3. The curve of amplitude – static load

Figure 7 shows that the system has only stable nontrivial solutions, and the increasing static
load Q decreases the vibration amplitude a. We can also see that the vibration amplitude a is
increasing when the axial constant velocity C0, the amplitude of time-variant axial speed C1, the
amplitude of the time-variant axial tension F1 increase and the magnetic induction intensity B0
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Fig. 4. The curve of the amplitude-parametric excitation, F0 = 30kN, Jc = 0.02A/mm
2, Pc = 0N/m:

(a) εσ = 0, C0 = 60m/s; (b) εσ = −0.01, C0 = 60m/s

Fig. 5. The curve of the amplitude-parametric excitation, F0 = 30kN, Jc = 0.02A/mm
2, Pc = 0N/m:

(a) C0 = 60m/s, C1 = 3m/s when εσ = 0, −0.02 and −0.04; (b) C0 = 60m/s, C1 = 3m/s when
εσ = 0.04 and −0.04

decreases. In Figs. 7a, 7b and 7c, the curves become leveling off when the static load Q increases
to a certain value. The changes of the amplitude of the time-variant axial speed C1 and the
amplitude of the time-variant axial tension F1 have a more significant effect on the vibration
amplitude than that of the magnetic induction intensity B0.
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Fig. 6. The curve of amplitude-parametric excitation, F0 = 15kN, Jc = 0.02A/mm
2:

(a) C0 = 50m/s, C1 = 3m/s, B0 = 0.03T; (b) C0 = 50m/s, C1 = 3m/s, B0 = 0.03T

Fig. 7. The curve of amplitude – static load, F0 = 15kN, Jc = 0.02A/mm
2, εσ = 0.01:

(a) C1 = 3m/s, F1 = −1000N, B0 = 0.04T; (b) C0 = 50m/s, F1 = −1000N, B0 = 0.04T;
(c) C0 = 50m/s, C1 = 3m/s, B0 = 0.04T; (d) C0 = 50m/s, C1 = 3m/s, F1 = −1000N

6.4. The bifurcation diagram of the amplitude

In Fig. 8, the critical point of excitation is the intersection point of the trivial solution and re-
sonance solutions (including both the stable and unstable solutions) of the system. As the figures
show, in the upper region of each curve, the system has both a stable and an unstable solution,
and in the lower part, the system has no solution. In the given range of the amplitude of the time-
-variant axial speed C1, the time-variant axial tension F1 of critical bifurcation increases with
the growth of the magnetic induction intensity B0. Given a certain range for B0, the time-variant
axial tension F1 shows the same result as C1 increases.
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Fig. 8. The bifurcation diagrams of the amplitude, C0 = 60m/s, F0 = 30kN, Jc = 0.02A/mm
2,

Pc = 0N/m and εσ = −0.01: (a) F1 −B0 bifurcation diagram of the amplitude; (b) F1 − C1 bifurcation
diagram of the amplitude

In Fig. 8a, the curves which correspond to Figs. 3c and 3d, show a rising trend with the
increase of the amplitude of the time-variant axial speed C1. The bifurcation diagrams of the
time-variant axial tension F1 versus the axial constant velocity C0, which correspond to Figs. 4d,
4e and 4f, are distributed in a parallel line pattern with a change of the magnetic induction
intensity B0 in Fig. 8b.

7. Conclusions

In this article, the primary parametric resonance and stability of an axially accelerating current-
-carrying beam under magnetic field are investigated. The effects of the detuning parameter, axial
velocity, axial tension, magnetic induction intensity and static load on nonlinear characteristics
of the system are discussed. The following conclusions can be drawn:

• The vibration amplitude varies with the physical parameters, and the system exhibits
typical primary parametric resonance characteristics.

• The external magnetic field has a significant effect on the vibration of the system, and the
vibration amplitude control can be achieved by controlling the value of magnetic induction
intensity.

• When the axial time-variant speed is not zero, the symmetry axis of the resonant charac-
teristic curve shifts towards right.

• The vibration amplitude under parametric resonance decreases with an increase of the
static loads.
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