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The interval lattice Boltzmann method (ILBM) with an uncertainly defined internal heat
source function is used to simulate heat transfer in a thin silicone film. The solution to the
interval Boltzmann transport equations has been obtained taking into account the rules of
directed interval arithmetics. A similar analysis has been done using the sensitivity model
where the Boltzmann transport equations and boundary-initial conditions have been diffe-
rentiated with respect to the no-interval heat source value. The knowledge of the sensitivity
function distribution and the application of the Taylor formula allow one to find the border
solutions of the problem analyzed, which (to some extent) correspond to the solution obta-
ined under the assumption of the uncertainly defined source function. In the final part of
the paper, numerical computations obtained for both methods are presented.
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1. Introduction

The problem of heat transfer in nano-layers is frequently encountered in many fields of science
and engineering such as mechanical engineering, thermal management of electronic cooling and
improvement of performance of heat transfer systems (Escobar et al., 2006; Huanga et al., 2005;
Joshi and Majumdar, 1993; Mansoor and Yilbas, 2011, 2014). Heat transfer problems are usually
solved using equations with deterministic thermophysical parameters (Eshraghi and Felicelli,
2012; Narumanchi et al., 2003). However, in most cases of the engineering practice, values of
these parameters cannot be defined with a high precision and, in such cases, it is much more
convenient to define these parameters as interval numbers (Piasecka-Belkhayat and Korczak,
2014, 2016).

In this paper, an interval version of the lattice Boltzmann method with the uncertainly
defined heat source function has been presented with the application of the directed interval
arithmetics. The solution obtained corresponds to±5% perturbations of the heat source function.
The results of numerical computations (energy and temperature heating curves at the selected
points) have an interval form, of course. Additionally, the sensitivity analysis with respect to the
constant heat source function has been done (Chonga et al., 2016; Dems and Rousselet, 1999;
Goethals et al., 2011; Hwang et al., 2016). The heat source value has been assumed as the middle
value of the heat source interval. The application of the sensitivity function distribution and the
Taylor formula with an increment of the source function equal to the half of the width of the
heat source interval allows one to find the solution to the boundary-initial problem similar to
the solution with some “uncertainties” appearing in the mathematical model. The aim of the
paper is comparison of the results obtained using both methods.
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2. Directed interval arithmetics

Let us consider a directed interval a which can be defined as a set D of all directed pairs of real
numbers defined as follows (Neumaier, 1990; Piasecka-Belkhayat, 2011a,b)

a = [a−, a+] for a−, a+ ∈ R (2.1)

where a− and a+ denote the beginning and the end of the interval, respectively.
The left or the right endpoint of the interval a can be denoted as as, s ∈ {+,−}, where s

is a binary variable. This variable can be expressed as a product of two binary variables and is
defined as

+ + = −− = +

+− = −+ = −
(2.2)

An interval is called proper if a− < a+, improper if a− > a+ and degenerate if a− = a+.
The set of all directed interval numbers can be written as D = P ∪ I, where P denotes a set of
all directed proper intervals and I denotes a set of all improper intervals.
Additionally, a subset Z = ZP ∪ ZI ⊂ D should be defined, where

ZP = {a ∈ P| a− ¬ 0 ¬ a+}

ZI = {a ∈ I| a+ ¬ 0 ¬ a−}
(2.3)

For directed interval numbers, two binary variables are defined. The first of them is the
direction variable

τ(a) =

{

+ if a− ¬ a+

− if a− > a+
(2.4)

and the other is the sign variable

σ(a) =

{

+ if a− > 0, a+ > 0

− if a− < 0, a+ < 0
a ∈ D\Z (2.5)

For the zero argument σ([0, 0]) = σ(0) = +, for all intervals including the zero element a ∈ Z,
σ(a) is not defined.
The sum of two directed intervals a = [a−, a+] and b = [b−, b+] can be written as

a+ b = [a− + b−, a+ + b+] a, b ∈ D (2.6)

The difference is of the form

a− b = [a− − b+, a+ − b−] a, b ∈ D (2.7)

The product of the directed intervals is described by the formula

ab =



















































[a−σ(b)b−σ(a), aσ(b)bσ(a)] a, b ∈ D\Z

[aσ(a)τ(b)b−σ(a), aσ(a)τ(b)bσ(a)] a ∈ D\Z, b ∈ Z

[a−σ(b)bσ(b)τ(a), aσ(b)bσ(b)τ(a)] a ∈ Z, b ∈ D\Z

[min(a−b+, a+b−),max(a−b−, a+b+)] a, b ∈ ZP

[max(a−b−, a+b+),min(a−b+, a+b−)] a, b ∈ ZI

0 (a ∈ ZP, b ∈ ZI) ∨ (a ∈ ZI, b ∈ ZP)

(2.8)
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The quotient of two directed intervals can be written as

a/b =







[a−σ(b)/bσ(a), aσ(b)/b−σ(a)] a, b ∈ D\Z

[a−σ(b)/b−σ(b)τ(a), aσ(b)/b−σ(b)τ(a)] a ∈ Z, b ∈ D\Z
(2.9)

In the directed interval arithmetics, two extra operators are defined, the inversion of summation

−Da = [−a
−,−a+] a ∈ D (2.10)

and the inversion of multiplication

1/Da = [1/a
−, 1/a+] a ∈ D\Z (2.11)

So, two additional mathematical operations can be defined as follows

a−D b = [a
− − b−, a+ − b+] a, b ∈ D (2.12)

and

a/Db =







[a−σ(b)/b−σ(a), aσ(b)/bσ(a)] a, b ∈ D\Z

[a−σ(b)/bσ(b), aσ(b)/bσ(b)] a ∈ Z, b ∈ D\Z
(2.13)

Now, it is possible to obtain the number zero by subtraction of two identical intervals a−D a = 0
and the number one as the result of division a/Da = 1, which is impossible when applying
classical interval arithmetics (Markov, 1995).

3. Boltzmann transport equation

The Boltzmann transport equation (BTE) is one of the fundamental equations of solid state
physics and takes the following form (Escobar et al., 2006)

∂f

∂t
+ v∇f =

f0 − f

τr
+ gef (3.1)

where f is the phonon distribution function, f0 is the equilibrium distribution function given by
the Bose-Einstein statistics, v is the phonon group velocity, τr is the relaxation time and gef is
the phonon generation rate due to electron-phonon scattering.
In order to take advantage of the simplifying assumption of the Debye model, the BTE can

be transformed into an equation of the carrier energy density, and for a one-dimensional problem
has the following form (Escobar et al., 2006)

∂e

∂t
+ v∇e = −

e− e0

τr
+ qv (3.2)

where e is the phonon energy density, e0 is the equilibrium phonon energy density and qv is the
internal heat source related to a unit of volume. Equation (3.2) must be supplemented by the
adequate boundary-initial conditions.
Using the Debye model, the relation between the phonon energy density and lattice tempe-

rature is given by the following formula (Escobar et al., 2006)

e(T ) =

(

9ηkb
Θ3

D

ΘD/T
∫

0

z3

exp(z)− 1
dz

)

T 4 (3.3)
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where ΘD is the Debye temperature of the solid, kb is the Boltzmann constant, T is the lattice
temperature while η is the number density of phonons, and can be calculated using the formula
(Escobar et al., 2006)

η =
1

6π2

(kbΘD

~ω

)3
(3.4)

where ~ is the Planck constant divided by 2π and ω is the speed of sound in the analysed
material.

4. Interval lattice Boltzmann method

The lattice Boltzmann method (LBM) is a numerical technique for simulation of fluid flows and
heat transfer. Here LBM has been successfully applied to simulate heat transfer in nano layers.
Unlike the conventional numerical methods based on discretizations of macroscopic continuum
equations, the LBM is based on nanoscale models and heat transfer equations.
In this paper, it is shown how the LBM solves a discretized set of the Boltzmann transport

equation (BTE) in the case of interval values appearing in the mathematical model. Then the
interval Boltzmann transport equation for a one-dimensional problem has the following form
(Piasecka-Belkhayat and Korczak, 2014)

∂e(x, t)

∂t
+ v
∂e(x, t)

∂x
= −
e(x, t)− e0(x, t)

τr
+ qv(x, t) (4.1)

where e(x, t) is the interval phonon energy density, e0(x, t) is the interval equilibrium phonon
energy density, τr is the relaxation time, v1 = v and v2 = −v (see Fig. 1) and qv(x, t) is the
interval heat source, x is the spatial coordinate and t is the time.

Fig. 1. Directions of the lattice vibrations

The interval total phonon energy density is defined as the sum of phonon energy densities in
all directions. In the paper, a one-dimensional model with two directions of the phonon velocities
is assumed (Piasecka-Belkhayat and Korczak, 2014, 2016)

e(x, t) = e1(x, t) + e2(x, t) =
2
∑

d=1

ed(x, t) (4.2)

where e1(x, t) is the phonon energy density in the positive x direction while e2(x, t) is the phonon
energy density in the negative x direction, d means the lattice direction (see Fig. 1).
In the interval lattice Boltzmann method it is needed to solve system of two partial differential

equations allowing one to compute phonon energy in different lattice nodes according to the
following equations (Piasecka-Belkhayat and Korczak, 2014)

∂ed(x, t)

∂t
+ (−1)d−1v

∂ed(x, t)

∂x
= −
ed(x, t)− e

0
d(x, t)

τr
+ qv(x, t) d = 1, 2 (4.3)

where v = ∆x/∆t is the component of velocity along the x-axis, ∆x is the lattice distance from
site to site, ∆t = tf+1 − tf is the time step needed for a phonon to travel from one lattice site
to the neighboring lattice site and

e0d(x, t) = e(x, t)/d (4.4)
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The set of equations (4.3) must be supplemented by the boundary-initial conditions (Goethals
et al., 2011)

x = 0 : e1(0, t) = e(Tb1)

x = L : e2(L, t) = e(Tb2)

t = 0 : e(x, 0) = e(T0)

(4.5)

where Tb1 and Tb2 are the boundary temperatures, T0 is the initial temperature.
The approximate form of equations (4.3) is of the following form

(e1)
f+1
i+1 =

(

1−
∆t

τr

)

(e1)
f
i +
∆t

τr
(e01)

f
i +∆tqv

(e2)
f+1
i−1 =

(

1−
∆t

τr

)

(e2)
f
i +
∆t

τr
(e02)

f
i +∆tqv

(4.6)

After subsequent computations, the interval lattice temperature is determined according to
the rules of directed interval arithmetics using the formula (see Eq. (3.3))

T
f
=

4

√

√

√

√

√

√efΘ3
D

(

9ηkb

ΘD/T
f−1

∫

0

z3

exp(z)− 1
dz

)

−1

(4.7)

5. Sensitivity analysis

In order to analyze the sensitivity of the phonon energy density field, the governing equations
should be differentiated with respect to the chosen parameter (Kleiber, 1997). In the paper, the
sensitivity analysis is presented with respect to the value of the internal heat source.
The Boltzmann transport equation for the one-dimensional problem and the constant value

of the heat source qv has the following form (Kałuża et al., 2016; Majchrzak and Mochnacki,
2014; Mochnacki and Majchrzak, 2007; Mohebbi and Sellier, 2016)

∂ed(x, t)

∂t
+ (−1)d−1v

∂ed(x, t)

∂x
= −
ed(x, t)− e

0
d(x, t)

τr
+ qv d = 1, 2 (5.1)

with the boundary-initial conditions

x = 0 : e1(0, t) = e(Tb1)

x = L : e2(L, t) = e(Tb2)

t = 0 : e(x, 0) = e(T0)

(5.2)

Using the direct approach of sensitivity analysis, equation (5.1) is differentiated with respect
to qv (Jasiński, 2014; Mochnacki and Majchrzak, 2007; Mohebbi and Sellier, 2016)

∂

∂qv

(∂ed(x, t)

∂t

)

+ (−1)d−1v
∂

∂qv

(∂ed(x, t)

∂x

)

= −
1

2τr

∂ed(x, t)

∂qv
+
∂qv
∂qv

d = 1, 2 (5.3)

Next, differentiation of boundary-initial conditions (5.2) leads to the following formulas

x = 0 :
∂e1(0, t)

∂qv
=
∂e(Tb1)

∂qv
= 0

x = L :
∂e2(L, t)

∂qv
=
∂e(Tb2)

∂qv
= 0

t = 0 :
∂e(x, 0)

∂qv
=
∂e(T0)

∂qv
= 0

(5.4)
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To equation (5.3) and boundary-initial conditions (5.4), the sensitivity functions Ud(x, t, qv) =
∂ed(x, t)/∂qv are introduced

∂Ud(x, t, qv)

∂t
+ (−1)d−1v

∂Ud(x, t, qv)

∂x
= −

1

2τr
Ud(x, t, qv) + 1 d = 1, 2

x = 0 : U1(0, t, qv) = 0

x = L : U2(L, t, qv) = 0

t = 0 : U(x, 0, qv) = 0

(5.5)

Then equations (5.3) are the following

∂Ud(x, t, qv)

∂t
+(−1)d−1v

∂Ud(x, t, qv)

∂x
= −
Ud(x, t, qv)− U

0
d (x, t, qv)

τr
+1 d = 1, 2 (5.6)

where

U0d (x, t, qv) =
∂e0d(x, t)

∂qv
=
∂

∂qv

(e(x, t)

2

)

=
U(x, t, qv)

2
(5.7)

while

U(x, t, qv) =
2
∑

d=1

Ud(x, t, qv) (5.8)

The phonon energy density function e(x, t, qv ±∆qv) is expanded into the Taylor series taking
into account the first two components according to the formulas

e(x, t, qv +∆qv) ≈ eb(x, t) +
∂e(x, t)

∂qv
∆qv

e(x, t, qv −∆qv) ≈ eb(x, t)−
∂e(x, t)

∂qv
∆qv

(5.9)

where∆qvis a certain increment of the source function, and the starting point eb(x, t) corresponds
to the basic solution.
Taking into account the sensitivity function U(x, t, qv) = ∂e(x, t)/∂qv , one obtains

e(x, t, qv +∆qv) ≈ eb(x, t) + U(x, t, qv)∆qv

e(x, t, qv −∆qv) ≈ eb(x, t)− U(x, t, qv)∆qv
(5.10)

and a certain increment of the energy function ∆e can be calculated using the formula

∆e(x, t) ≈ 2U(x, t, qv)∆qv (5.11)

6. Numerical example

In the paper, heat transfer in a one-dimensional silicon film of dimension L = 200 nm has been
analyzed. The following input data have been introduced: relaxation time τr = 6.53 ps, Debye
temperature ΘD = 640K, initial temperature T0 = 300K, boundary conditions Tb1 = Tb2 =
300K, lattice distance ∆x = 20 nm and the time step ∆t = 5ps.
In the first example, the interval value of the heat source function has been considered

qv = [10
18− 0.05 · 1018 , 1018+0.05 · 1018 ]W/m3. Figure 2a illustrates the interval heating curves

of the phonon energy at the internal nodes 1 (20 nm), 2 (80 nm) and 3 (140 nm).
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Fig. 2. Energy heating curves: (a) – first method, (b) – second method

In the second example, the no-interval value of the heat source function has been introduced
qv = 10

18W/m3 and the sensitivity analysis with respect to the heat source parameter has
been applied. In this model, an increment of the heat source parameter has been introduced as
∆qv = 0.05 · 10

18W/m3. In Fig. 2b, the courses of heating curves of the phonon energy at the
same internal nodes are presented. One can see that the both results are similar.

Figures 3a and 3b present the courses of heating curves taking into account the same internal
nodes for the first and second example, respectively.

Fig. 3. Temperature heating curves: (a) – first method, (b) – second method

7. Conclusions

In the paper, heat transfer in one-dimensional crystalline solids is considered. The main subject
of the paper is the comparison of the results obtained using two methods. In the first method,
the interval lattice Boltzmann method with an uncertainly defined internal heat source function
is used. The solution to the interval Boltzmann transport equations has been obtained taking
into account the rules of directed interval arithmetics. In the second method, the sensitivity
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analysis with respect to the internal heat source parameter has been done. The application of
the sensitivity functions and the Taylor formula enables one to find a solution similar to the
solution received using the interval lattice Boltzmann method.
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