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The paper presents an analysis of the specific dynamic capacity of a planetary roller screw
including random deviations of the thread pitch. Results are based on a statistical analysis
of loads between the screw and the roller obtained for the accepted bar model to determine
the load distribution. Furthermore, the finite element analysis has been applied to deter-
mine stiffness coefficients of the screw-roller and the roller-nut cooperation. The purpose of
the following considerations is to assess a decrease in the specific dynamic capacity of the
planetary roller screw depending on random deviations of the thread pitch.
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1. Introduction

The planetary roller screw (PRS) is a highly efficient mechanical actuator for demanding appli-
cations (Fig. 1). The mechanism is used to convert rotational motion into linear motion or in
the other way round. The main advantage of PRS is very high load capacity while maintaining
high speed of operation and high positioning accuracy.

Fig. 1. Structure of the planetary roller screw (exploded view); 1 – screw, 2 – roller, 3 – nut, 4 – satellite
gear, 5 – ring gear, 6 – retainer ring, 7 – annular hoop

One of the major problems concerning planetary roller screws is the carrying capacity related
to the load distribution between cooperating elements. Theoretical load characteristics provide
information about the most loaded regions of threads and enable determination of the equivalent
load. Several authors of previous publications related to the planetary roller screw considered
models for determination of the load distribution. Ma et al. (2012) adopted a model developed
for ball screws given by Xuesong et al. (2003) to determine the static load distribution. The
rollers were assumed as rigid bodies and only contact deformations of threads were involved
in calculations based on the Hertzian theory. Ryś and Lisowski (2014) presented an analytical
model for determination of the load distribution between cooperating elements for an arbitrary
number of rollers. The idea of the model was to consider deformations of engaged elements as
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deformations of rectangular volumes subjected to shear stresses. Contact deformations of threads
and deformations of the screw and nut cores were taken into account by a properly chosen shear
modulus. However, the model was intended only for the preliminary design. Lisowski (2014)
proposed a model to determine the load distribution between the roller and the screw as well
as between the roller and the nut, which allowed one to take into account contact deformations
of threads and deformations of the screw and nut cores. Also, the various thread profiles were
considered.

Lastly, Jones and Velinsky (2014) used the direct stiffness method to construct a model which
considered the roller screw mechanism as a large spring system composed of individual springs
referred to various elements. The authors used their method to calculate the axial stiffness of
PRS and the load distribution between particular elements. In an earlier article, Velinsky et al.
(2009) analysed kinematics, efficiency and the load carrying capacity. The load carrying capacity
was derived based on geometric conditions and equilibrium of forces.

Recently, Abevi et al. (2015) presented a method to compute the static load distribution
in any type of planetary roller screw based on a hybrid model including one-dimensional finite
elements and non-linear springs.

However, apart from theoretical load distributions determined for nominal dimensions of
cooperating threads, it is also essential to take into account the impact of manufacturing devia-
tions. Deviations of the thread pitch affect theoretical load distributions between cooperating
elements and, therefore, they impact the specific dynamic capacity of the planetary roller screw.

Although some authors have mentioned the importance of the impact of random deviations
on the load distribution, the problem related to PRS has not been analysed in publications yet.
In turn, a similar problem but related to helical gears was analysed by Ryś (1990). The author
studied the impact of random deviations of the gears pitch on static and dynamic loads. Owing
to dynamic overload, mostly the problem of start-up was analysed.

This paper presents an analysis of the impact of random deviations of the thread pitch on
the specific dynamic capacity of the planetary roller screw mechanism. The results are based on
a statistical analysis of the loads on threads, obtained based on the bar model.

2. The load distribution between cooperating elements – bar model

In order to determine the load distribution between cooperating elements of the planetary roller
screw, a bar model proposed by Lisowski (2014), has been accepted. This model is preferable
as it enables taking into account random deviations of the thread pitch for particular pairs of
threads. However, determining the stiffness of a single pair of cooperating threads of the screw
and the roller as well as the roller and the nut requires doing an additional finite element analysis.

The model refers to the section of PRS including one roller cooperating with the screw and
the nut as shown in Fig. 2. The number of cooperating threads is arbitrary. Also, various thread
profiles can be accepted by assuming proper stiffness parameters obtained from FEA.

For further considerations, the following assumptions have been made: the core of the roller
is non-deformable; cores of the screw and the nut are deformable; threads of the roller, screw
and the nut are deformable; stiffness of the screw core is close to stiffness of the nut core; forces
in the screw and nut cores change in steps. Due to the small helix angle, the forces qsj and qnj
belong to the same plane; the external force Q is distributed proportionally into the rollers.

The axial forces in the screw and nut cores can be consistent or opposite. The system of forces
shown in Fig. 2 which refers to the case when both the screw and the nut are compressed (a) or
the screw is compressed while the nut is tensioned (b). However, depending on locations where
the forces are applied, it is also possible to obtain two other cases in which both the screw
and the nut are tensioned or the screw is tensioned while the nut is compressed. In further
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Fig. 2. Dimensions and the system of forces of the bar model: (a) screw and nut compressed, (b) screw
compressed, nut tensioned, (c) cross-sections of cooperating elements

considerations, the cases of consistent and opposite loads in the screw and in the nut (Fig. 2a,b)
will be considered as an example.

Under the load Q, the cores of the screw and the nut undergo axial displacements ∆si
and ∆ni. At the same time, the thread displacements occur: δsj at the screw-roller thread inter-
face and δnj at the nut-roller threads interface. These displacements include contact deformations
as well as shear strains. The displacements of cooperating elements and dimensional chains are
shown in Fig. 3.

Fig. 3. Deformations of planetary roller screw elements: (a) unloaded model, (b) loaded model,
(c) dimensional chains

According to Hooke’s law, assuming that stress in cross-sections of the screw and nut cores
is distributed uniformly, the axial displacements of the screw core for any value of ξ < |AC| and,
respectively, the axial displacement of the nut core for any value of η < |DF | are obtained from
the following equation

∆s =

ξa
∫

0

σs(ξ)

Es
dξ =

ξa
∫

0

Qs(ξ)

EsFs
dξ ∆n =

ηa
∫

0

σn(η)

En
dη =

ηa
∫

0

Qn(η)

EnFn
dη (2.1)

where σs(ξ), σn(η) are normal stresses in cross-sections of the screw and nut cores; Qs(ξ), Qn(η)
– axial forces in the screw and in the nut; Es, En – Young’s modules of the screw and the nut;
Fs, Fn – cross-sectional areas of the screw and nut cores.

Assuming a step change of forces in cross-sections of the screw and nut cores (wherein the
step is equal to the thread pitch) and accepting n intervals of force variation, Eq. (2.1) takes
the form
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∆s =
n
∑

i=1

∆si =
n
∑

i=1

Qsip

EsFs
∆n =

n
∑

i=1

∆ni =
n
∑

i=1

Qnip

EnFn
(2.2)

where ∆si, ∆ni are axial displacements of cross-sections of the screw and nut cores; Qsi , Qni –
axial forces in the screw and in the nut for the i-th interval (i = 1, . . . , n, n – number of intervals
of force variation); p – thread pitch.
Axial displacements at the interfaces of the screw-roller and roller-nut threads, which include

contact deformations as well as shear strains, can be determined as

δsj =
qsj
Csr

δnj =
qnj
Cnr

(2.3)

where Csr, Cnr are stiffness coefficients of the screw-roller and the roller-nut cooperation; qsi , qni
– axial forces at the interfaces of the screw-roller and the roller-nut threads (j = 1, . . . ,m, m –
number of threads). Considering the system of forces shown in Fig. 2a, the axial forces in
the screw and in the nut in the case of consistent loads can be determined using Eqs. (2.4).
Consequently, for the opposite loads in the screw and in the nut (Fig. 2b), Eqs. (2.5) can be
used. The axial load is a sum of forces on threads as given by Eqs. (2.6)

{

Qs1 = Q− qs1
Qs2 = Q− qs1 − qs2

{

Qn1 = Q− qn3 − qn2
Qn2 = Q− qn3

(2.4)

{

Qs1 = Q− qs1
Qs2 = Q− qs1 − qs2

{

Qn1 = Q− qn1
Qn2 = Q− qn1 − qn2

(2.5)

Q = qs1 + qs2 + qs3 Q = qn1 + qn2 + qn3 (2.6)

Considering the dimensional chains obtained for the loaded model (Fig. 3b,c), the displacement
equilibrium equations take the following form

∆S1 = δS1 − δS2 ∆N1 = δN2 − δN1
∆S2 = δS2 − δS3 ∆N2 = δN3 − δN2

(2.7)

Taking into account Eqs. (2.2)-(2.7), the system of equations for determination of the load
distribution are obtained. Equations (2.8) refer to the case of the consistent load in the screw
and the nut while Eqs. (2.9) refer to the case of the opposite load in the screw and the nut. In
both cases, the sum of loads on threads is equal to the axial load as given by Eq. (2.10)

p

EsFs

(

Q−
i
∑

j=1

qsj

)

= (Csr)
−1(qsi − qsi+1) (n equations)

p

EnFn
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m
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)

= (Cnr)
−1(qni − qni+1) (n equations)

(2.8)

p

EsFs

(

Q−
i
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j=1

qsj

)

= (Csr)
−1(qsi − qsi+1) (n equations)

p

EnFn

(

Q−
i
∑

j=1

qnj

)

= (Cnr)
−1(qni+1 + qni) (n equations)

(2.9)

Q =
m
∑

j=1

qsj Q =
m
∑

j=1

qnj (2.10)

j = 1, . . . ,m, m – number of threads; i = 1, . . . , n, n – number of intervals of force variation.
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2.1. Determination of the stiffness coefficients

Stiffness coefficients of the screw-roller thread pair (Csr) as well as the nut-roller thread
pair (Cnr) can be determined using FE analysis. The finite element models including sections
of cooperating pairs of threads and the accepted boundary conditions are shown in Fig. 4. A
triangular thread profile with the pressure angle α0 = 45

◦ has been accepted. The helix angle
has been omitted.

Fig. 4. Finite element models of the screw-roller, nut-roller sections with boundary conditions

The load is applied to the roller core as a normal pressure. The axial displacement uy is
measured in the point H. The stiffness coefficients are determined using the following equations

Csr =
PH
uy

Cnr =
PH
uy

PH =
Pnxc

rr − hz/2
(2.11)

where Pn is the normal load on the roller core surface (axial load per single pair of cooperating
threads), PH – normal load on the roller core surface reduced to the point H, xc – distance
between the gravity centre of the roller core cross-section and the roller axis, hz – height of the
thread profile, rr – pitch diameter of the roller.

Stiffness coefficients for various load levels and for a series of pitch diameter combinations
referred to the triangular thread profile, can also be assumed using the graphs presented by
Lisowski (2015).

2.2. Load distribution based on the bar model

Examples of theoretical load distributions obtained for the bar model are shown in Figs. 5a
and 5b. The accepted parameters of the planetary roller screw and load conditions are presented
in Table 1. The stiffness coefficients of the screw-roller thread pair and the nut-roller thread pair
have been determined as has been stated in the previous Section.

3. Specific dynamic capacity of the planetary roller screw

Taking into account a formula for the rolling contact life, the specific dynamic capacity of the
planetary roller screw depends on the equivalent load transferred by the mechanism, as given
by

N =
(C

P

)3
N0 (3.1)
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Fig. 5. Load distribution on the screw (qsi) and nut (qni) threads – (a) consistent and (b) opposite loads
in the screw and the nut; rs = 15mm, rr = 5mm, rn = 25mm, p = 2mm, m = 5, Pn = 25N

Table 1. Planetary roller screw parameters

Pitch radius of screw rs = 15mm

Pitch radius of roller rr = 5mm

Pitch radius of nut rn = 25mm

Lead p = 2mm

Pressure angle α0 = 45
◦

Number of intervals of force variation n = 19

Number of threads m = 20

Axial load per one roller Q = 500N

Axial load per single pair of cooperating threads Pn = 25N

Stiffness coefficient of screw-roller thread pair Csr = 2505N/mm

Stiffness coefficient of nut-roller thread pair Cnr = 7482N/mm

where N is life in million cycles, N0 – life equal to 1 million cycles, C – specific dynamic
capacity, P – equivalent load. According to Lisowski (2015), limitation of the planetary roller
screw capacity is related to the permissible contact pressure between threads of the screw and
the roller. Therefore, the analysis of PRS capacity is referred to cooperation of the screw and
the roller. Considering the screw-roller cooperation, the equivalent load can be accepted as the
average load on all threads.
However, the actual dimensions of threads would be subjected to random deviations. Di-

stributions of the deviations are very diverse and usually have an irregular form. They can be
determined based on the results of measurements of a large batch of machined parts under sta-
ted conditions, for example by building a histogram of deviations. However, in many cases, a
theoretical distribution determined empirically can be accepted. Referring to (Białas, 1986), if
many independent factors affect manufacturing deviations, the normal distribution, defined by
the density function of deviations, is obtained.
Taking into account the random deviations of the thread pitch, the load density distribution

related to the average load of threads (x = Pi/Pave) is a normal distribution given by

ψ(x) =
1

σ
√
2π
exp
(−(x− µ)
2σ2

)

(3.2)

where σ is the standard deviation, µ – expected value.
Assuming that the PRS life N = N0 = 1 million cycles, the specific dynamic capacity

is proportional to the equivalent load. Consequently, the same relation is obtained when the
random deviations of the thread pitch are taken into account
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C = P Cdev = Pdev (3.3)

Since in Eq. (3.1) the relation between the specific dynamic capacity and the equivalent force
is to the third power, the function given by Eq. (3.4)1 is accepted. The integral of this function,
which can be expressed as a sum, is given by Eq. (3.4)2

η(x) = [ψ(x)]3 η1 =

x
∫

0

[ψ(x)]3 dx =
1

ni

∑

( Pi
Pave

)3
ni = nt + nd (3.4)

where Pi are axial forces on particular threads in the case with random deviations of the thread
pitch, Pave – average load of all threads, ni – number of forces including the number of coope-
rating threads and the number of intervals of deviation variation, nt – number of cooperating
threads, nd – number of intervals of deviation variation.
The equivalent force as well as the specific dynamic capacity, including random deviations

of the thread pitch, can be determined using Eqs. (3.5)1,2. The decrease of the specific dynamic
capacity caused by the occurrence of random deviations can be estimated as

Pdev = Pave
3

√

1

ni

∑

( Pi
Pave

)3
Cdev = C

3

√

1

ni

∑

( Pi
Pave

)3

∆dev =

∣

∣

∣

∣

Cdev
C
− 1
∣

∣

∣

∣

(3.5)

where Pdev is the equivalent load including random deviations of the thread pitch C – specific
dynamic capacity of PRS excluding random deviations of the thread pitch, Cdev – specific dy-
namic capacity including random deviations of the thread pitch, ∆dev – decrease of the specific
dynamic capacity caused by the random deviations of the thread pitch.

3.1. The impact of random deviations of the thread pitch on the decrease of the specific

dynamic capacity of PRS

A series of calculations using the bar model to determine the load distribution has been
conducted in order to obtain load distributions including random deviations of the thread pitch.
Those load distributions are analysed to assess how the magnitude of random deviations of the
thread pitch affects the specific dynamic capacity of the planetary roller screw. The load case,
in which the screw is compressed, is considered. In that case, the load distribution between
the screw and the roller, including random deviations of the thread pitch, can be obtained by
introducing an additional displacement δsri into Eq. (2.8)1. This displacement represents the
value of the random deviation of the thread pitch. As a result, a system of equations Eq. (3.6)1
is obtained, wherein the sum of loads on particular threads is equal to the axial load as given
by Eq. (3.6)2

p

EsF1

(

Q−
i
∑

j=1

qSj

)

+ δsri = (CS−R)
−1(qSi − qSi+1) (n equations)

Q =
m
∑

j=1

qSj

(3.6)

j = 1, . . . ,m, m – number of threads; i = 1, . . . , n, n – number of intervals of force variation.
One thousand load distributions including random deviations of the thread pitch has been

assumed for the particular case of analysis. The random deviations have been generated using
a random number generator implemented in MATLAB. For each pair of cooperating threads of
the screw and the roller, one thousand random deviations has been generated. Due to the lack
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of information about results of measurements of a large batch of machined PRS parts under
the stated conditions, the probability density function of normal (Gaussian) distribution with a
mean of µ = 0 and standard deviation σ = 2 has been assumed (Fig. 6). The random deviations
in µm generated for the desired parameters of normal distribution are presented in Table 2 and
as a surface graph in Fig. 7.

Fig. 6. Gaussian density distribution of random deviations (µ = 0, σ = 2)

Table 2. Random deviations in µm (µ = 0, σ = 2)

Thread number
1 2 3 4 5 6 7 8 9 10 · · · 20

S
a
m
p
li
n
g
n
u
m
b
er

1 2.611 −0.855 −0.983 −2.884 −1.291 −2.100 −3.837 −0.277 2.282 0.328 2.221 2.221
2 1.968 −1.159 1.315 −1.920 −0.578 0.937 −0.262 0.864 1.866 −1.414 · · · 1.427
3 −2.503 1.852 2.872 0.695 2.001 0.566 −1.537 4.506 −1.041 4.593 · · · −1.292
4 −0.360 0.011 −3.070 −0.206 −1.176 2.682 4.780 −0.919 −1.179 0.855 · · · 1.753
5 −1.487 −1.269 3.506 1.321 3.115 0.761 0.154 0.181 2.763 3.224 · · · 0.171
6 0.466 1.717 2.566 2.314 −2.723 2.871 0.751 5.216 −0.609 −1.302 · · · −0.121
7 4.203 −0.962 0.187 −1.839 3.800 1.599 0.791 −2.074 0.391 −1.907 · · · −0.790
8 −1.753 2.979 3.160 −1.941 0.356 3.257 −0.225 0.506 2.318 −2.077 · · · −2.759
9 3.898 −1.259 0.490 0.912 −4.333 0.258 −3.658 −0.533 0.066 1.107 · · · −1.033
10 −0.931 −1.188 −2.041 −0.242 1.414 −4.170 4.183 2.635 −1.910 0.974 · · · −1.021
...

...
...

...
...

...
...

...
...

...
...

. . .
...

1000 2.706 −0.844 0.652 −2.440 −2.416 0.206 −2.889 −2.219 −0.382 0.445 · · · 3.456

In order to assess the impact of magnitude of the random deviations of the thread pitch on
the decrease of the specific dynamic capacity of PRS, the decreasing coefficient f , defined by Eq.
(3.7), has been accepted. This coefficient refers to the average axial displacement of all threads
in the case without random deviations of the thread pitch. Therefore, the impact of the load
level is included as

f =
κdevu0
δmax

(3.7)

where δmax is the maximum value of random deviations, u0 – average axial displacement of all
threads in the case without random deviations of the thread pitch, κdev – factor determining the
relation between the maximum random deviation δmax and the average axial displacement u0,
wherein κdev = {10, 20, 40}%.
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Fig. 7. Surface plot of 20 000 random deviations of the thread pitch

For the considered geometry of PRS, the average axial displacement of all threads in the
case without random deviations of the thread pitch is u0 = 19.973µm. The maximum drawn de-
viation, obtained among 20 000 values, is δmax = 8.184. Accordingly, the decreasing coefficients,
listed in Table 3, have been accepted.

Table 3. Decreasing coefficients and maximum random deviations

κdev f δmax [µm]

10% 0.244 1.997

20% 0.488 3.977

40% 0.976 7.990

Tables of random deviations for three considered values of κdev have been obtained by mul-
tiplying the values of random deviations in Table 2 by the consecutive f coefficients. Table 4,
referring to the case of κdev = 10%, presents examplary results. In the same case, one thousand
load distributions between the screw and the roller including random deviations of thread pitch
are presented in a surface plot in Fig. 8.

Using Eq. (3.5)3, the decrease of the specific dynamic capacity related to particular threads
and to all cooperating threads of the screw and the roller have been determined. The results of
calculations are presented in Figs. 9a and 9b.

4. Conclusions

The decrease of the specific dynamic capacity related to particular threads is the greatest in the
end parts of the roller. The largest decrease occurs on the first engaged threads, which are in
fact the most loaded ones. Concerning the cooperation of all engaged threads, it has been shown
that the decrease of the specific dynamic capacity increases with an increase in the random
deviations of the thread pitch. In the case in which the maximum deviation of the thread pitch
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Table 4. Random deviations in µm (µ = 0, σ = 2); κdev = 10%, f = 0.244

Thread number
1 2 3 4 5 6 7 8 9 10 · · · 20

S
a
m
p
li
n
g
n
u
m
b
er

1 0.637 −0.209 −0.240 −0.704 −0.315 −0.512 −0.936 −0.068 0.557 0.080 0.542 0.542
2 0.480 −0.283 0.321 −0.469 −0.141 0.229 −0.064 0.211 0.455 −0.345 · · · 0.348
3 −0.611 0.452 0.701 0.170 0.488 0.138 −0.375 1.099 −0.254 1.121 · · · −0.315
4 −0.088 0.003 −0.749 −0.050 −0.287 0.655 1.166 −0.224 −0.288 0.209 · · · 0.428
5 −0.363 −0.310 0.855 0.322 0.760 0.186 0.038 0.044 0.674 0.787 · · · 0.042
6 0.114 0.419 0.626 0.565 −0.664 0.700 0.183 1.273 −0.149 −0.318 · · · −0.030
7 1.025 −0.235 0.046 −0.449 0.927 0.390 0.193 −0.506 0.095 −0.465 · · · −0.193
8 −0.428 0.727 0.771 −0.474 0.087 0.795 −0.055 0.124 0.566 −0.507 · · · −0.673
9 0.951 −0.307 0.119 0.223 −1.057 0.063 −0.893 −0.130 0.016 0.270 · · · −0.252
10 −0.227 −0.290 −0.498 −0.059 0.345 −1.017 1.021 0.643 −0.466 0.238 · · · −0.249
...

...
...

...
...

...
...

...
...

...
...

. . .
...

1000 0.660 −0.206 0.159 −0.595 −0.589 0.050 −0.705 −0.541 −0.093 0.109 · · · 0.843

Fig. 8. Surface plot of one thousand load distributions between the screw and the roller including
random deviations of the thread pitch (f = 0.244, κdev = 10%)

Fig. 9. Decrease of the specific dynamic capacity for: (a) particular screw-roller threads pair,
(b) all cooperating threads
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does not exceed 20% of the average axial displacement of all the threads, the maximum decrease
in the specific dynamic capacity of PRS is small and equals 3.3%. On the other hand, in the
case where the maximum deviation of the thread pitch is 40% of the average axial displacement
of all the threads, the decrease of the specific dynamic capacity is up to 11.1%. Based on the
analysis, it can be concluded that the maximum deviation of the thread pitch, which does not
significantly affect the reduction of the specific dynamic capacity of the planetary roller screw
under the nominal load, should not exceed 20% of the average axial displacement of all the
threads.
Similar results can be expected for different dimensions of the planetary roller screw. This is

due to taking into account the relation between the random deviations of the thread pitch and
the average displacement of all the threads for the accepted load level.
While considering the essence of cooperation of the PRS elements, we deal with a multipoint

support. Therefore, the specific dynamic capacity does not depend on the capacity of the most
loaded pair of threads. Even if the carrying capacity of this pair is exhausted, the other threads
take over the load. The specific dynamic capacity of a significant number of thread pairs has to
be exhausted, to exhaust the carrying capacity of the planetary rollers screw.
Accordingly, the decrease of the specific dynamic capacity of all the cooperating threads,

presented in Fig. 9b, is the conclusive parameter.
A similar procedure of assessing the impact of random deviations of the thread pitch on the

specific dynamic capacity can be also carried out in the case of non-Gaussian distributions of
random deviations.
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