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Analysis-suitable T-splines are used for the modeling and analyzing of cracks in bimaterial
interfaces within the framework of an extended isogeometric analysis (XIGA). The crack tip
enrichment functions of bimaterial interface cracks are implemented to reproduce singular
fields, and the signed distance functions are used to treat the crack face and the interface
in the models. A compatible local refinement algorithm is applied to refine location of the
crack and the interface, which helps one to avoid produce excessive propagation of control
points. The mixed mode stress intensity factors (SIFs) which are evaluated by the interaction
integral (M-integral) are used as analysis parameters. Numerical simulations are performed
to analyze the problem and to examine the efficiency of the proposed method. The obtained
results are compared with other available results.
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1. Introduction

As its name indicates, a composite material is made up of two or more different constituents; it
has properties that cannot be obtained together by one of the individual constituents, such as
high specific strength and stiffness, good durability and good corrosion resistance. Due to their
properties, composites have been developed and used in various industrial and engineering ap-
plications, like those in aerospace, aircraft, automotive industries, etc. However, these materials
are not immune to manufacture defects especially from those which are created as interfacial
cracks. This problem greatly influences the behavior of structures and can cause brutal fracture.

The mechanical behavior of composite materials needs more understanding, especially in
the presence of strong and weak discontinuities. Many analytical studies were performed based
upon the work of Williams (1959) for understanding the problem of bimaterial interface cracks,
such as (Erdogan 1963; Rice and Sih, 1965; Sun and Jih, 1987; Hutchinson et al., 1987; Ri-
ce, 1988; Evans et al., 1990). However, the complexity of analytical solutions even for simple
cases requires the modelling of mechanical behavior of this problem using effective numerical
methods. Several investigations have been developed in this domain, via the boundary element
method (BEM) (Lee and Choi, 1988; Yuuki and Xu, 1994; Miyazaki et al., 1993), finite element
method (FEM) (Ikeda et al., 2006), element free Galerkin method (EFGM) (Pant et al., 2011),
extended finite element method (XFEM) (Nagashima et al., 2003; Liu et al., 2004; Belytschko
and Gracie, 2007) and other methods (Zhou et al.,, 2013, 2014; An et al., 2013). Recently, a
large field was opened by Hughes et al. (2005) offering the possibility of introducing computer
aided design (CAD) tools in the analysis methods using the isoparametric concept. The ba-
sic idea of this novel alternative method, called isogeometric analysis (IGA), is to exploit the
technologies of computational geometry as shape bases to describe the geometry exactly, also
for the approximation of unknown fields. Following this discovery, several researches in various
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fields have been conducted by this method, including: fluid-structure interaction (Bazilevs et al.,
2006), composite materials (Pekovi¢ et al., 2015), elastic-plastic analysis (Kalali et al., 2016),
electromagnetic problems (Buffa et al., 2010), turbulent flow (Bazilevs and Akkerman, 2010),
contact problems (Temizer et al., 2011), aero-dynamics (Hsu et al., 2011), heat transfer (Anders
et al., 2012) and fluid mechanics (Evan and Hudhes, 2013). For more details about IGA, a recent
review has been published, see Nguyen et al. (2015). In fracture mechanics problems, IGA has
been also applied in different studies (Verhoosel et al., 2011; Borden et al., 2012; Nguyen and
Nguen-Xuan, 2013; Nguyen et al., 2014; Peng et al., 2014), however Benson et al. (2010) and
De Luycker et al. (2011) proposed extended isogeometric analysis (XIGA) for modelling cracks.
In this method the general principle of the XFEM is used in IGA by including the asymptotic
and signed distance enrichment functions. Therefore, this method has the advantages of both
XFEM and IGA, which are summarized by the ability to represent complex geometries inde-
pendently of any discontinuities and without explicit meshing to obtain solutions with higher
orders. Some applications in fracture mechanics have been checked by the XIGA, such as in the
cases of homogeneous materials (Ghorashi et al., 2012; Bhardwaj and Singh, 2015), functionally
graded material (Bhardwaj et al., 2015a,c) and bimaterial interfaces (Bhardwaj et al., 2015b;
Jia et al., 2015), where the non-uniform rational B-splines (NURBS) are used. Also, orthotropic
media have been studied using T-spline based XIGA (Ghorashi et al., 2015).

There are many CAD basis functions that can be used in IGA, where the Non Uniform
Rational B-splines (NURBS) are widely used due to their properties, like continuity, smoothness,
variation diminishing, convex hull and possibility of using knot insertion and degree elevation
refinements. They have the ability to describe exactly all conic sections but they have difficulties
in certain complex geometries which cannot be avoided even by using multiple patches, where
NURBS generate a complicated mesh which leads to produce superfluous control points. In order
to handle these disadvantages, Sederberg et al. (2003) proposed a T-spline as a generalized tool
of NURBS, in which the index space (T-mesh) locally refined using T-junctions (Sederberg et
al., 2004). Therefore, the major advantages of this technique are the local refinement and the
ability to represent complex geometries with a minimal number of control points compared with
those used in NURBS.

According to their ability in engineering design, T-splines have been used by analysis to
serve as basis functions for IGA in many advanced searches. However T-spline bases are not
always valid to be used in analysis for different geometric configurations, because the linear
independence and partition unity properties are not always ensured. Li et al. (2012) introduced
analysis-suitable T-splines, where for any choice of knot vectors the blending functions are
linearly independent. Like NURBS bases, analysis-suitable T-spline bases have the properties of
the analysis basis functions. Moreover, they provide an efficient algorithm which allows making
highly localized refinement (Scott et al., 2012).

In this paper, the interface crack in the case of 2D composites is analyzed using T-spline based
XIGA; the accuracy of this approach is first tested in isotropic materials. The analysis-suitable
T-spline and its refinement algorithm are highlighted.

2. Analysis-suitable T-splines

An analysis-suitable T-spline is founded when the T-mesh (T-mesh is a mesh of rectangular
elements that is defined by the lines corresponding to knot values of the parametric vectors)
provides a restricted topology that has no intersecting T-junction extensions. The T-junction
extension is defined in each T-junction vertex by an interval which includes two distances. The
first distance is between the T-junction and the two next adjoining edges or vertices in the
direction of missing edge, while the second distance is between the T-junction and one edge
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or vertex in the other direction, as shown in Fig. 1b. The T-mesh that shows all T-junction
extensions can be called extended T-mesh. An empty extended T-mesh means there are no
intersections between T-junction extensions (see Fig. 1c), which means the T-mesh is analysis-
-suitable.

(a) (b) (c)

Fig. 1. An example depicts: (a) T-mesh, (b) extended T-mesh and (¢) empty extended T-mesh

In order to make local refinement of analysis-suitable T-spline spaces, Scott et al. (2012)
introduced an algorithm consisting of the following steps:

e create the refined T-mesh T5 from the original analysis-suitable T-mesh T,
e form the extended T-mesh of T5.

e if the extended T-mesh of T, has intersecting T-junction extensions, one edge must be
inserted into 75 in such a way that reduces the number of the intersections,

e repeat step 3 until the extended T-mesh has no intersecting T-junction extensions,

e compute the refinement matrix M.

For more details, see (Scott et al., 2012).

3. Extended isogeometric analysis (XIGA)

XIGA (Benson et al., 2010; De Luycker et al., 2011) uses the same methodology of the extended
finite element method (XFEM) for the modelling of discontinuities but with basis functions
derived from geometry like in isogeometric analysis (Hughes et al., 2005). For crack problems,
XIGA provides the possibility of modelling the crack independently of the mesh and within
exactly presented geometry. Uncommonly, in this study, T-splines are adopted in XIGA using
analysis-suitable T-splines to approximate the displacement in any point ¢ = (£,7) as follows

u(() = i Ri(Qu; + Zc: R;(Q)H(¢)a; + % R (¢) (Z FZ(C)b;;) + i R (¢Q)x(Q)er  (3.1)
=1 7j=1 k=1 /=1 t=1

where R is the T-spline basis function extracted from an empty extended T-mesh, H is the
Heaviside function used for the modelling of the crack face, it takes value 1 above the crack
and —1 below the crack, F' are the crack-tip enrichment functions, u;, a;, by and c; are the
displacement vectors corresponding to ng, n.s, ne and ny control points, respectively. The fourth
term is used when there is no coincidence between the interface and the finite element mesh for
the modelling of weak discontinuity. The enrichment function of Moés et al. (2003) x can be
used

X(Q) = S Ri(Q)lor = | RO (3:2)

where ¢ is the signed distance value of the interface control points.
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The enrichment functions of bimaterial interface cracks were derived by Sukumar et al. (2004)
as

9 0 0
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4. Numerical simulations

Here, the analysis-suitable T-spline is used in XIGA to simulate the crack in homogeneous
isotropic and bimaterial interfaces. Two numerical examples are considered for each material
type in plane static problems, where mode I and mode II SIFs are evaluated and compared with
other numerical and analytical results. First, the isotropic material is considered in a rectangular
plate with an edge crack in order to study the convergence and the domain independence in the
computations of SIF, also an isotropic square plate with a center crack is analyzed for different
crack angles to verify the accuracy of the proposed approach. Then, numerical applications
in the form of parametric studies are considered for edge and center interface cracks in finite
rectangular plates.

In all geometric models (NURBS and T-splines) the cubic order is used in both parametric
directions, where the weights are taken as unity. In the edge crack problems, the geometry is
refined locally once, while for the center crack problems the geometry is refined locally twice.
Four types of finite elements are distinguished in these examples according to their positions with
respect to the crack, the standard element contains 3x3 Gauss points. The element having tip
enriched control points contains 7x7 Gauss points and the sub-triangle technique (Ghorashi et
al., 2011) is used for the tip-element by 13 Gauss points in each triangle, however the split element
contains 6x6 Gauss points for the horizontal crack problems and the sub-triangle technique is
used by 13 Gauss points in each triangle for the inclined crack problems. The SIFs are evaluated
using interaction integral (Yau and Wang, 1984), wherein the crack tip element is not considered
in the calculation.

4.1. Homogeneous isotropic material

In this case, we simulate a finite rectangular plate containing an edge crack (Fig. 2a) and a
square plate containing an inclined central crack (Fig. 2b), subjected to unit uniaxial tension in
plane stress state. The convergence of the proposed approach is studied for the edge crack pro-
blem with normalized M-integral radius equal to 1 using five different control net configurations
(200, 296, 362, 754 and 1800 control points), all shown in Fig. 3. The errors of the normalized
SIF values obtained from the proposed approach which are shown in Table. 1 are computed
using the following equation

K= JK;m = TI(%) (4.1)

where T7(a/L) is the analytical formula which corresponds to mode I, it can be computed as
(Tada et al., 2000)

Ty =1.122 — 0.231% n 10.55(%)2 - 21.71(%)3 ¥ 30.382(%)4
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Fig. 2. Geometries and loading of the homogeneous isotropic examples (a) rectangular plate with an
edge crack and (b) square plate with a center inclined crack
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Fig. 3. Different mesh configurations used in the convergence study: (a) 200 points, (b) 296 points,

(c) 362 points, (d) 788 points and (e) 1800 points

Table 1. Convergence of the SIF for various control nets

| Control points | K; [ Error [%] |

200 2.1275 1.0257
296 2.1189 0.6173
362 2.1121 0.2944
754 2.1098 0.1852
1800 2.1131 0.3419

The first and the last meshes in Fig. 3 represent a special case of T-splines which is NURBS.
According to Table 1, analysis suitable T-splines give us precise results for a different number
of control points (meshes 2, 3 and 4), even for the minimal number of control points compared
to NURBS (mesh 4 compared to mesh 5) and that attributed to the local refinement property.
Table 2 compares the results of the normalized SIF for different radius to study the domain
independence in T-spline meshes. We observe that the SIF values are almost not sensitive to the
radius of the M-integral. The contour plots of the normal stress component oy, and the vertical
displacement u, are illustrated in Fig. 4.

For the square plate, we used a mesh consisting of 788 control points and 689 elements
(Figs. 5a and 5b) to evaluate the normalized mixed mode SIF for a = 0.5 in different inclined
angles. The exact SIFs of this problem can be obtained by the following equations

K; = og/macos® 3 K1 = ogv/masin B cos 3 (4.2)
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Table 2. Domain independence study

Mesh 2 Mesh 3 Mesh 4
Kr | Error [%] K | Error [%)] Ky | Error [%]
0.6 2.1131 0.3419 2.1280 1.0494 2.1245 0.8832
0.7 2.1256 0.9355 2.1202 0.6790 2.1142 0.3941
0.8 2.1256 0.9355 2.1209 0.7123 2.1122 0.2992
0.9 2.1218 0.7550 2.1177 0.5603 2.1122 0.2992
1.0 2.1189 0.6173 2.1121 0.2944 2.1098 0.1852
1.1 2.1146 0.4131 2.1118 0.2802 2.1109 0.2374

Radius

(b) x104
8 5
6 4
4 3
2 2
0 1
2

Fig. 4. Graphical visualization: (a) normal stress and (b) vertical displacement

(b) ()

Fig. 5. The meshes used for the isotropic square plate: (a) T-spline control net (788 points), (b) elements
corresponding to the T-spline control net (689 elements) and (c) NURBS control net (4625 points)
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Fig. 6. The crack tip (red squares) and the crack face (blue circles) enriched points of: (a) T-spline
control net and (b) NURBS control net, in the case § =0

Figure 6a depicts the enriched control points that correspond to the crack face and crack tip
elements. Figure 7 shows a comparison between the normalized SIFs calculated by the propo-
sed approach and those derived from the exact solution and NURBS-based XIGA. A uniform
NURBS mesh is used Fig. 6c, its enriched control points are presented in Fig. 6b. As seen in
both modes, there is a very close agreement between the T-spline results and the other results.
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Fig. 7. Variations of normalized mode I and II SIFs with respect to different crack angles using the
analysis-suitable T-splines, NURBS and exact solution for the square plate problem
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Fig. 8. Geometries and loading of the bimaterial interface examples: (a) interface center crack and
(b) interface edge crack

4.2. Bimaterial interface crack

We consider two finite rectangular plates subjected to uniaxial tensions in plane stress con-
ditions, each one constituted of two dissimilar materials and cracked in the interface as shown
in Fig. 8. Different ratios of Young’s modulus (E;/FEy = 2, 3, 4, 10 and 100) with fixed Pois-
son ratios (v; = vp = 0.3) are taken in the simulation. Similar problems were solved before by
Miyazaki et al. (1993) utilizing the boundary element method (BEM), Nagashima et al. (2003)
utilizing an extended finite element method (XFEM), Matsumto et al. (2000) making use of
the interaction energy release rates and BEM sensitivity and Liu et al. 2004) using XFEM for
direct evaluation of the mixed mode SIF. For the center crack problem (Fig. 8a), we use a mesh
consisting of 3132 control points and 2925 elements as shown in Figs. 9a and 9b. For the edge
crack problem (Fig. 8b), we use a mesh consisting of 1446 control points and 1235 elements as
shown in Figs. 9¢ and 9d. The enriched control points are defined in Fig. 10. In order to verify
the accuracy of the obtained results, the normalized SIF's are compared with those obtained by
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other methods in Fig. 11 for the center crack problem (2a/L = 0.4) and in Fig. 12 for the edge
crack problem (a/L = 0.3). Figures 13 and 14 illustrate variations of the normalized SIFs in

terms of crack lengths for the center and edge crack problems, respectively. For more details,
check Table 3 and Table 4.

(b) (¢) mmemmsmmmemne  (d)
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Fig. 9. T-spline meshes used for the bimaterial interface examples: (a) control net for the interface
center crack (793 points), (b) mesh for the interface center crack (688 elements), (c¢) control net for the
interface edge crack (566 points) and (d) mesh for the interface edge crack (431 elements)
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Fig. 10. Crack tip, crack face and interface enriched control points: (a) interface center crack and
(b) interface edge crack
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Fig. 11. Variations of normalized mode I and II SIFs with respect to different Young’s modulus ratios
using T-spline based XIGA, BEM and XFEM for the center interface crack (2a/L = 0.4)
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Fig. 12. Variations of normalized mode I and II SIFs with respect to different Young’s modulus ratios
using T-spline based XIGA, BEM and XFEM for the edge interface crack (a/L = 0.3)
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Table 3. Results of normalized stress intensity factors for the center interface crack

Present study | Matsumto et al. (2000) | Miyazaki et al. (1993)
e K | Ku Ki | K Kr | Ky
0.1 1.006 | —0.0731 0.995 —0.072 1.001 —0.072
0.2 1.0245 | —0.0713 1.019 —0.07 1.02 —0.071
2 0.3 | 1.0572 | —0.071 1.053 —0.072 1.053 —0.071
0.4 | 1.1056 | —0.0725 1.104 —0.073 1.104 —0.073
0.5 1.1814 | —0.0764 1.18 —0.077 1.181 —0.077
0.1 | 0.9993 | —0.1097 0.987 —0.106 0.993 —0.107
0.2 1.0179 | —0.1072 1.013 —0.105 1.012 —0.106
3 0.3 | 1.0504 | —0.1068 1.044 —0.105 1.045 —0.106
0.4 | 1.0981 | —0.1089 1.095 —0.108 1.096 —0.109
0.5 1.1726 | —0.1145 1.172 —0.115 1.171 —0.115
0.1 | 0.9934 | —0.1314 0.981 —0.128 0.987 —-0.129
0.2 1.0121 | —0.1284 1.006 —0.126 1.006 —0.127
4 0.3 1.0443 | —0.1279 1.037 —0.126 1.031 —0.127
0.4 | 1.0916 | —0.1303 1.088 —0.131 1.089 —0.13
0.5 | 1.1649 | —0.1368 1.163 —0.136 1.163 —0.137
0.1 0.972 | —0.1764 0.962 —0.172 0.968 —-0.174
0.2 | 0.9906 | —0.1729 0.987 —0.168 0.986 —0.171
10 0.3 1.0224 | —0.1708 1.017 —0.171 1.018 —0.17
0.4 | 1.0712 | —0.1745 1.065 —0.172 1.066 —0.173
0.5 1.1418 | —0.1838 1.135 —0.181 1.136 —0.182
0.1 | 0.9488 | —0.2086 0.943 —0.207 0.946 —0.206
0.2 0.967 | —0.2043 0.964 —0.201 0.964 —0.201
100 0.3 |0.9979 | —-0.201 0.994 —0.198 0.994 —0.2
0.4 | 1.0435 | —0.204 1.039 —-0.2 1.039 —0.203
0.5 1.1088 | —0.2129 1.104 —0.208 1.104 —0.21

The results of the proposed method are closer to the BEM results than the XFEM results,
as shown in Figs. 11 and 12. Young’s modulus ratio has a slight effect on the SIFs, as shown
in Tables 3 and 4. As it is obvious in the precedent examples, the local refinement property of
analysis-suitable T-splines allows increasing the accuracy of the results and using less DOFs.
Finally, we note that the evaluation of shape functions in XIGA is slower than some methods
such as XFEM.

5. Conclusion

In this study, the analysis-suitable T-spline has been used in XIGA to approximate the solution
in cracked bimaterial interfaces in order to construct geometry and to make local refinement
around the discontinuities. Furthermore, it helps avoiding the emergence of superfluous control
points during the local refinement process. The asymptotic crack-tip enrichment functions and
the interaction integral method corresponding to bimaterial interface cracks have been used
to evaluate the stress intensity factors. The results obtained by the proposed method have
been compared with the results form literature, where a good agreement has been regarded
demonstrating the accuracy of the approach.
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Table 4. Results of normalized stress intensity factors for the edge interface crack

Eq|2a | Present study |[Matsumto et al. (2000) |Miyazaki et al. (1993)|Liu et al. (2004)

Ey|L | K1 | KKy Ki | K Ki | K Kr | Kir
0.1]1.1899|—-0.1299 1.19 —0.127 1.195 —0.129 - -
0.2 1.3682|—0.1352 1.367 —0.137 1.368 —0.137 1.374 | —0.137

2 10.3]1.6619|—0.1576 1.657 —0.156 1.659 —0.158 1.669 | —0.159
0.412.1198|—-0.1975 2.109 —0.195 2.11 —0.198 2.125 | —0.198
0.5 (2.8423|—0.2678 2.819 —0.268 2.882 —0.267 2.844 | —0.267
0.1(1.1974|—0.1988 1.198 —0.195 1.203 —0.197 - -
0.2 | 1.369 |—0.2049 1.368 —0.208 1.368 —0.207 1.375 | —0.208

3 10.3]1.6603|—0.2379 1.655 —0.235 1.656 —0.239 1.668 | —0.240
0.4 2.116 |—0.2977 2.102 —0.298 2.105 —0.298 2.121 | —0.299
0.5 (2.8351| —0.403 2.812 —0.402 2.814 —0.402 2.839 | —0.402
0.1 (1.2216] —0.343 1.222 —0.336 1.229 —0.34 - -
0.2 1.3719|—0.3461 1.366 —0.348 1.369 —0.349 1.379 | —0.354

101 0.3 |1.6547|—0.3976 1.648 —0.394 1.648 —0.399 1.661 | —0.403
0.412.1023|—0.4945 2.09 —0.491 2.09 —0.494 2.109 —0.5
0.5 (2.8103|—0.6649 2.789 —0.661 2.789 —0.663 2.819 | —0.668
0.1 (1.2422|—0.4286 1.251 —0.424 1.251 —0.424 - -
0.2 1.3744|—0.4252 1.376 —0.429 1.370 —0.428 1.381 | —0.434

100| 0.3 {1.6491|—0.4842 1.647 —0.47 1.642 —0.485 1.657 | —0.494
0.4 12.0895|—0.5975 2.083 —0.569 2.078 —0.597 2.101 | —0.608
0.5 2.7888|—0.7972 2.772 —0.793 2.77 —0.797 2.804 | —0.813
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