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The subject of analytical investigations is a metal seven-layer beam, a plate band with a
lengthwise trapezoidal corrugated main core and two crosswise trapezoidal corrugated cores
of faces. The hypothesis of deformation of normal to the middle surface of the beam after
bending is formulated. Equations of equilibrium are derived based on the theorem of mini-
mum total potential energy. The equations are analytically solved. Three point bending and
buckling for axially compression of the simply supported beam are theoretically studied. The
deflection and the critical axial force are determined for different values of the trapezoidal
corrugation pitch of the main core. Moreover, an adequate model of the sandwich beam with
steel foam core is formulated. The deflection and the critical axial force are determined for
this sandwich beam. The results studied of the seven layer beam and the adequate sandwich
beam are compared and presented in tables and figures.
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1. Introduction

The primary scientific description referring to the analysis and design of sandwich structures is
the monograph by Allen (1969). A review of problems related to modelling and calculations of
sandwich structures was presented by Noor et al. (1996), Vinson (2001) and Carrera and Bri-
schetto (2009). A developed and analytical model of corrugated composite cores was described
by Kazemahvazi and Zenkert (2009). The quasi-isotropic bending response of sandwich plates
with bi-directionally corrugated cores was presented by Seong et al. (2010). The mathematical
modelling of a rectangular sandwich plate under in plane compression is described by Magnucka-
Blandzi (2011). The theoretical study of transverse shear modulus of elasticity for thin-walled
corrugated cores of sandwich beams was presented by Magnucka-Blandzi and Magnucki (2014)
and Lewinski et al. (2015). The problem of an equivalent plate model for corrugated-core san-
dwich panels was presented by Cheon and Kim (2015).

The subject of the paper is the metal seven-layer beam – a plate band. The beam is composed
of a lengthwise trapezoidal corrugated main core, two inner flat sheets, two crosswise trapezoidal
corrugated cores of the faces and two outer flat sheets.
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2. Theoretical model of the seven-layer beam with the lengthwise corrugated

main core

The seven-layer simply supported beam of length L, width b, thicknesses of the main core tc1,
facing cores tc2 and flat sheets ts is shown in Fig. 1.

Fig. 1. Scheme of the seven-layer beam with the lengthwise corrugated main core

The directions of corrugations of the main core and the face cores are orthogonal. Trapezoidal
corrugations of the main core and facing cores are shown in Fig. 2. The index i = 1 refers to
the main core, while the index i = 2 refers to the face cores. Total depth of the cores is tci and
length of one pitch of the corrugation is b0i.

Fig. 2. Scheme of trapezoidal corrugations of the main core (i = 1) or face cores (i = 2)

Taking into account the layered structures of the beam, the hypothesis of the broken line
(Fig. 3) is assumed. The plane cross-section before bending does not remain plane and normal
after bending. The hypothesis for multi-layer structures was described in details by Carrera
(2003), Magnucka-Blandzi (2012) and Magnucki et al. (2016).
The displacements with consideration of this hypothesis are as follows:

— the upper sandwich facing for −(0.5 + 2x1 + x2) ¬ ζ ¬ −0.5

u(x, y, z) = −tc1
[
ζ
dw

dx
+ ψ(x)

]
(2.1)

— the main corrugated core for −0.5 ¬ ζ ¬ 0.5

u(x, z) = −tc1ζ
[dw
dx
− 2ψ(x)

]
(2.2)
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Fig. 3. Scheme of the hypothesis of the seven-layer beam

— the lower sandwich facing for 0.5 ¬ ζ ¬ 0.5 + 2x1 + x2

u(x, y, z) = −tc1
[
ζ
dw

dx
− ψ(x)

]
(2.3)

where x1 = ts/tc1, x2 = tc2/tc1 are dimensionless parameters, ζ = z/tc1 – dimensionless coordi-
nate, ψ(x) = u1(x)/tc1 – dimensionless functions of displacements, u1(x) – displacement in the
x direction and w(x) – deflection (Fig. 3).
Thus, linear relations for the strains are as follows:

— the main corrugated core

εx = −tc1ζ
(d2w
dx2
− 2

dψ

dx

)
γxz = 2ψ(x) (2.4)

— the upper/lower sandwich facings

εx = −tc1
(
ζ
d2w

dx2
±
dψ

dx

)
γxz = 0 (2.5)

The sign “+” refers to the upper facing (u), and the sign “−” refers to the lower facing (l).
Strains (2.4) and (2.5) and Hook’s law make a basis for the formulation of elastic strain

energy of the seven-layer beam.

3. The equations of equilibrium of the seven-layer beam

The elastic strain energy of the beam is a sum of the energy of particular layers

U (beam)ε = U (c−1)ε + U (s−i)ε + U (c−2)ε + U (s−o)ε (3.1)
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The addends are as follows:

➢ energy of the main corrugated core

U (c−1)ε =
1

2
Esbtc1

L∫

0

1
2∫

−

1
2

[Ẽ(c−1)x ε2x + G̃
(c−1)
xz γ2xz] dζ dx (3.2)

where Es is Young’s modulus, dimensionless longitudinal elastic modulus of the main corrugated
core is calculated based on the monograph of Ventsel and Krauthammer (2001)

Ẽ(c−1)x =
xb1

2(xf1xb1 + s̃a1)
x301 (3.3)

dimensionless shear elastic modulus of the main trapezoidal corrugated core based on the paper
of Lewinski et al. (2015)

G̃(c−1)xz =
1− x01

4(1− ν2)xb1fu

(x01
s̃a1

)3
(3.4)

and dimensionless parameters

x01 =
t01
tc1

xf1 =
bf1
b01

xb1 =
b01
tc1

s̃a1 =

√

(1− x01)2 + x2b1

(1
2
− xf1

)2 (3.5)

Substituting expressions (2.4) for strains into expression (3.2) and after integration, the elastic
energy of the main corrugated core is obtained in the following form

U (c−1)ε = Esbt
3
c1

L∫

0

{ 1
24
Ẽ(c−1)x

[(d2w
dx2

)2
− 4

d2w

dx2
dψ

dx
+ 4

(dψ
dx

)2]
+ 2G̃(c−1)xz

(ψ(x)
tc1

)2}
dx (3.6)

➢ energy of the inner sheets

U (s−i)ε =
1

2
Esbtc1

L∫

0





−

1
2∫

−

(
1
2
+x1

)
ε2x,up dζ +

1
2
+x1∫

1
2

ε2x,low dζ





dx (3.7)

Substitution of expressions (2.5) for the strains with regard to the upper/lower facings and after
integration provides

U (s−i)ε = Esbt
3
c1

L∫

0

[ 1
12
x1(3 + 6x1 + 4x

2
1)
(d2w
dx2

)2
− x1(1 + x1)

d2w

dx2
dψ

dx
+ x1

(dψ
dx

)2]
dx (3.8)

➢ energy of the corrugated cores of the facings

U (c−2)ε =
1

2
Es

b

b02

L∫

0

[ ∫

A
(c−2)
TR

ε2x,up dA
(c−2)
TR +

∫

A
(c−2)
TR

ε2x,low dA
(c−2)
TR

]
(3.9)
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where the area of the trapezoid

A
(c−2)
TR = 2t2c2x02(xf2xb2 + s̃a2) (3.10)

and dimensionless parameters

x02 =
t02
tc2

xf2 =
bf2
b02

xb2 =
b02
tc2

s̃a2 =

√

(1− x02)2 + x2b2

(1
2
− xf2

)2 (3.11)

Substituting expressions (2.5) for strains into expression (3.9) and after integration, the elastic
energy of the corrugated cores of facings is obtained in the following form

U (c−2)ε = Esbt
3
c1

x2x02
xb2

L∫

0

[
C(c−2)ww

(d2w
dx2

)2
− C

(c−2)
wψ

d2w

dx2
dψ

dx
+ C

(c−2)
ψψ

(dψ
dx

)2]
dx (3.12)

where dimensionless parameters are as follows

C(c−2)ww =
1

2

[1
3
x22(1− x02)

2(3xf2xb2 + s̃a2) + (1 + 2x1 + x2)
2(xf2xb2 + s̃a2)

]

C
(c−2)
wψ = 2(1 + 2x1 + x2)(xf2xb2 + s̃a2) C

(c−2)
ψψ = 2(xf2xb2 + s̃a2)

➢ energy of the outer sheets

U (s−o)ε =
1

2
Esbtc1

L∫

0





−

(
1
2
+x1+x2

)

∫

−

(
1
2
+2x1+x2

)
ε2x,up dζ +

1
2
+2x1+x2∫

1
2
+x1+x2

ε2x,low dζ





dx (3.13)

Substitution of expressions (2.5) for the strains with regard to the upper/lower facings and after
integration gives

U (s−o)ε = Esbt
3
c1

L∫

0

[
C(s−o)ww

(d2w
dx2

)2
− x1(1 + 3x1 + 2x2)

d2w

dx2
dψ

dx
+ x1

(dψ
dx

)2]
dx (3.14)

where the dimensionless parameter C
(s−o)
ww = (1/12)x1[28x

2
1 + 3(1 + 2x2)(1 + 6x1 + 2x2)].

Therefore, the elastic strain energy of the inner and outer sheets is as follows

U (s)ε = U
(s−i)
ε + U (s−o)ε = Esbt

3
c1

L∫

0

[
C(s)ww

(d2w
dx2

)2
− C

(s)
wψ

d2w

dx2
dψ

dx
+ 2x1

(dψ
dx

)2]
dx (3.15)

where dimensionless parameters

C(s)ww =
1

6
x1[16x

2
1 + 6x1(2 + 3x2) + 3(1 + 2x2 + 2x

2
2)] C

(s)
wψ = 2x1(1 + 2x1 + x2)

Thus, the elastic strain energy of the seven-layer beam (6) is in the following form

U (beam)ε = Esbt
3
c1

L∫

0

[1
2
Cww

(d2w
dx2

)2
− Cwψ

d2w

dx2
dψ

dx
+
1

2
Cψψ

(dψ
dx

)2

+ 2G̃(c−1)xz

(ψ(x)
tc1

)2]
dx

(3.16)
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where dimensionless parameters

Cww =
1

12
Ẽ(c−1)x + 2

x2x02
xb2

C(c−2)ww + 2C(s)ww Cwψ =
1

6
Ẽ(c−1)x +

x2x02
xb2

C
(c−2)
wψ + C

(s)
wψ

Cwψ =
1

3
Ẽ(c−1)x + 2

x2x02
xb2

C
(c−2)
wψ + 2C

(s)
wψ

The work of the load

W =

L∫

0

[
qw(x) +

1

2
F0
(dw
dx

)2]
dx (3.17)

where q is the intensity of the transverse load, F0 – axial compressive force of the beam.
The system of the equations of equilibrium – two ordinary differential equations derived

based on the theorem of minimum potential energy δ(U
(beam)
ε −W ) = 0, is in the following form

Cww
d4w

dx4
− Cwψ

d3ψ

dx3
=
1

Ebt3c1

(
q − F0

d2w

dx2

)

Cwψ
d3w

dx3
− Cψψ

d2ψ

dx2
+ 4G̃(c−1)xz

ψ(x)

t2c1
= 0

(3.18)

The bending moment of the seven-layer beam

Mb(x) =

∫

A

zσx dA = −Esbt
3
c1

(
Cww

d2w

dx2
− Cwψ

dψ

dx

)
(3.19)

Integration is analogical as in the case of the elastic strain energy, from which the following
equation is obtained

Cww
d2w

dx2
− Cwψ

dψ

dx
= −

Mb(x)

Esbt
3
c1

(3.20)

Equations (3.18)1 and (3.20) are equivalent, therefore, bending and buckling analysis of the
seven-layer beam is based on the system of two differential equations (3.18)2 and (3.20).

4. Deflection of the seven-layer beam under three-point bending

Three-point bending of the seven-layer beam of length L is shown in Fig. 4.

Fig. 4. Scheme of the three-point bending of the beam

The system of two differential equations (3.18)2 and (3.20) is reduced to one differential
equation in the following form

d2ψ

dx2
−
( k
tc1

)2
ψ(x) = −Cq

Q(x)

Esbt3c1
(4.1)
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where Q(x) = dMb/dx is the shear force, k, Cq – dimensionless parameters

k = 2

√√√√ CwwG̃
(c−1)
xz

CwwCψψ − C
2
wψ

Cq =
Cwψ

CwwCψψ − C
2
wψ

The general solution to equation (4.1) is in the form

ψ(x) = C1 sinh
(
k
x

tc1

)
+ C2 cosh

(
k
x

tc1

)
+ ψp(x) (4.2)

where C1, C2 are integration constants, ψp(x) – particular solution.
The shear force in the half beam (Fig. 4) is Q(x) = F1/2, for 0 ¬ x ¬ L/2, then the particular

solution

ψp =
Cwψ

8CwwG̃
(c−1)
xz

F1
Esbtc1

(4.3)

Taking into account the boundary conditions for the half beam (dψ/dx)|x=0 = 0 and ψ(L/2) = 0,
the integration constants C1 = 0 and C2 = − cosh

−1[kL/(2tc1)]ψ0 are determined, hence, the
function of displacement (4.3) is in the following form

ψ(x) =

(
1−
cosh kxtc1
cosh kL

2tc1

)
ψp (4.4)

Substituting this function, and the bending moment Mb(x) = F1x/2, for 0 ¬ x ¬ L/2 to
equation (3.20), one obtains

w(x) = C4 + C3x+
Cwψ
Cww

(
x−

tc1
k

sinh kxtc1
cosh kL

2tc1

)
ψp −

F1
12CwwEsbt3c1

x3 (4.5)

Taking into account the boundary conditions for the half beam w(0) = 0 and (dw/dx)|x=L/2 = 0,
the integration constants C3 = F1L

2/(16CwwEsbt
3
c1) and C4 = 0 are determined. The maximum

deflection – the deflection for the middle of the beam is

w(7−lay)max = w
(L
2

)
=
[
1 + 3

(
1−
2tc1
kL
tanh

kL

2tc1

) C2wψ

CwwG̃
(c−1)
xz

( tc1
L

)2] F1
48CwwEsb

( L
tc1

)3
(4.6)

5. Critical load of the seven-layer beam subjected to axial compression

The axial compression of the simply supported seven-layer beam is shown in Fig. 5.

Fig. 5. Scheme of the simply supported seven-layer beam with the axial force F0

The system of two differential equations (3.18)2 and (3.20) is reduced to one differential
equation in the following form

(CwwCψψ − C
2
wψ)

d4w

dx4
−
4

t2c1
G̃(c−1)xz Cww

d2w

dx2
=

[
4

t2c1
G̃(c−1)xz Mb(x)− Cψψ

d2Mb

dx2

]
1

Esbt3c1
(5.1)

where the bending moment Mb(x) = F0w(x) (Fig. 5).
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Differential equation (5.1) with one unknown function w(x) is approximately solved assuming
this function in the form

w(x) = wa sin
πx

L
(5.2)

where wa is the parameter of the function, L – length of the beam.
Substituting this function into the equation (5.1) the critical force is obtained

F
(7−lay)
0,CR =

(
Cww −

C2wψ
α1

)π2Esbt3c1
L2

(5.3)

where

α1 = Cψψ +
( 2L
πtc1

)2
G̃(c−1)xz

6. Equivalent sandwich beam

Comparative analysis is carried out for the classical sandwich beam (Fig. 6) equivalent to the
seven-layer beam (Fig. 1). This classical sandwich beam consists of two steel faces of thickness
tf = ts and the steel foam core of thickness tc = tc1+2(ts+ tc2). Its sizes and mass are identical
to the seven-layer beam.

Fig. 6. Scheme of the sandwich (three-layer) beam equivalent to the seven-layer beam

The mass of the metal foam core of this sandwich beam (three-layer beam)

m(3−lay)c = [1 + 2(x1 + x2)]tc1bLρc (6.1)

where ρc is the mass density of the metal foam core.
However, mass of the material (steel with mass density ρs) located between the two outer

sheets of the seven-layer beam (Fig. 1) is a sum of the mass of particular layers

m(7−lay)c = m(c−1)c + 2m(s−i)c + 2m(c−2)c (6.2)

where the mass of the main corrugated core

m(c−1)c =
A
(c−1)
TR

b01
bLρs (6.3)

Substituting the expression for the area of the trapezoid A
(c−1)
TR = 2t2c1x01(xf1xb1 + s̃a1) to the

above expression with consideration of the dimensionless parameters (3.5) one obtains

m(c−1)c = 2x01
(
xf1 +

s̃a1
xb1

)
tc1bLρs (6.4)
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and

m(s−i)c = tsbLρs = x1tc1bLρs m(c−2)c =
A
(c−2)
TR

b02
bLρs (6.5)

wherem
(s−i)
c is the mass of the inner sheets,m

(c−2)
c – mass of the corrugated cores of the facings.

Substituting the expression for the area of trapezoid (3.10) with dimensionless parameters
(3.11), one obtains

m(c−2)c = 2x2x02
(
xf2 +

s̃a2
xb2

)
tc1bLρs (6.6)

Thus, mass (6.2) is in the following form

m(7−lay)c = 2
[
x01
(
xf1 +

s̃a1
xb1

)
+ x1 + x2x02

(
xf2 +

s̃a2
xb2

)]
tc1bLρs (6.7)

Then, from the equivalence condition m
(3−lay)
c = m

(7−lay)
c (Eqs. (6.1) and (6.7)) of these two

beams, the proportion of mass densities of the metal foam core to steel is obtained

ρ̃c =
ρc
ρs
=
[
x01
(
xf1 +

s̃a1
xb1

)
+ x1 + x2x02

(
xf2 +

s̃a2
xb2

)] 2

1 + 2(x1 + x2)
(6.8)

Taking into account the experimental results related to the mechanical properties of metal foams
presented in details by Ashby et al. (2000), Smith et al. (2012) and Szyniszewski et al. (2014),
the relationship for Young’s moduli and mass densities of the metal foams and the reference
material (steel) is as follows

Ẽc =
Ec
Es
=
3

4

(ρc
ρs

)2
(6.9)

where Ec and Es are Young’s moduli of the metal foam and the steel.

7. Bending and buckling of the equivalent sandwich beam

The hypothesis of deformation of the plane cross-section after bending of the sandwich (three-
-layer) beam is assumed as the broken line (Fig. 7). The detailed description of this hypo-
thesis and derivation of the equations of equilibrium for the sandwich beam was presented by
Magnucka-Blandzi (2012).

The displacements with consideration of this hypothesis are as follows:

— the upper/lower facing for −(0.5 + x0) ¬ ζ ¬ −0.5 and 0.5 ¬ ζ ¬ 0.5 + x0

u(x, z) = −tc
[
ζ
dw

dx
± ψ0(x)

]
(7.1)

— the metal foam core for −0.5 ¬ ζ ¬ 0.5

u(x, z) = −tcζ
[dw
dx
− 2ψ0(x)

]
(7.2)

where x0 = tf/tc is the dimensionless parameter, ζ = z/tc – dimensionless coordinate,
ψ0(x) = uf (x)/tc – dimensionless functions of displacements, uf (x) – displacement in the x di-
rection and w(x) – deflection (Fig. 7).
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Fig. 7. Scheme of the hypothesis of the sandwich (three-layer) beam

Continuation of the procedure similar to the one applied to the seven-layer beam gives a
system of two differential equations of equilibrium for the classical sandwich beam presented by
Magnucka (2012) in the following form

Bww
d2w

dx2
−Bwψ

dψ0
dx
= −

Mb(x)

Esbt3c
Bwψ

d3w

dx3
−Bψψ

d2ψ0
dx2
+ 4G̃c

ψ0(x)

t2c
= 0 (7.3)

where dimensionless parameters

Bww = 2C2f +
1

12
Ẽc Bwψ = C1f +

1

6
Ẽc Bψψ = 2x0 +

1

3
Ẽc

C1f = (1 + x0)x0 C2f =
1

12
(3 + 6x0 + 4x

2
0)x0

and moduli

Ẽc =
Ec
Es

G̃c =
Ẽc

2(1 + νc)

This system of equations is analogical to the one of the seven-layer beam, (3.20) and (3.18)2.
Then, the maximum deflection and the critical force of the sandwich equivalent beam are as

follows

w(3−lay)max = w
(L
2

)
=
[
1 + 3

(
1−
2tc
k0L
tanh

k0L

2tc

) B2wψ

BwwG̃c

(tc
L

)2] F1
48BwwEsb

(L
tc

)3
(7.4)

and

F
(3−lay)
0,CR =

(
Bww −

B2wψ
α0

)π2Esbt3c
L2

(7.5)
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where

α0 = Bψψ +
( 2L
πtc

)2
G̃c

8. Illustrative detailed analysis for selected beams

A detailed analysis for an examplary steel seven-layer beam and the equivalent sandwich beam is
carried out for the following test data: L = 1620mm, b = 240mm, ts = 0.8mm, tc1 = 32.0mm,
t01 = 0.8mm, bf1 = 10.0mm, b01 = [32.4, 36.0, 40.5, 45.0] mm, tc2 = 16.0mm, t02 = 0.8mm,
bf2 = 8.0mm, b02 = 40.0mm and material-steel constants Es = 2 · 10

5MPa, ν = 0.3,
ρs = 7850 kgm

−3. Moreover, tf = ts = 0.8mm and tc = tc1 + 2(ts + tc2) = 65.6mm.

The values of maximum deflections (4.6) and critical forces (5.3) of the seven-layer beam
are specified in Table 1. The values of maximum deflections (7.4) and critical forces (7.5) of the
sandwich (three-layer) beam are specified in Table 2.

Table 1. Maximum deflections and critical forces of the seven-layer beam

b01 [mm]
32.4 36.0 40.5 45.0

w
(7−lay)
max [mm] 3.49 3.18 2.98 2.88

F
(7−lay)
0,CR [kN] 490.1 535.8 568.5 587.3

Table 2. Maximum deflections and critical forces of the sandwich beam

b01 [mm]
32.4 36.0 40.5 45.0

ρ̃c Eq. (6.8) 0.0892374 0.0863605 0.0835631 0.0814007

Ẽc Eq. (6.9) 0.005972 0.005594 0.005237 0.004970

w
(3−lay)
max [mm] 5.13 5.16 5.21 5.24

F
(3−lay)
0,CR [kN] 328.1 325.6 323.2 321.3

Moreover, the values of maximum deflections and critical forces of the seven-layer beam and
the equivalent sandwich beam are presented in Figs. 8 and 9.

Fig. 8. Maximum deflections of the two beams
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Fig. 9. Critical forces of the two beams

9. Conclusions

The analytical modelling of the seven-layer beam with a lengthwise trapezoidal corrugated main
core and two crosswise trapezoidal corrugated cores of faces leads to the conclusions:

• hypotheses of the flat cross-sections deformations of these two beams as the broken line
are analogous,

• equations of equilibrium of these two beams are similar,

• proportion of the maximum deflections of these two beams for the studied family of the

beams is w
(3−lay)
max /w

(7−lay)
max = 1.47-1.82,

• proportion of the critical force of these two beams for the studied family of the beams is

F
(7−lay)
0,CR /F

(3−lay)
0,CR = 1.49-1.83,

• stiffness of the seven-layer beam is decidedly greater than that of the equivalent classical
sandwich (three-layer) beam.
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