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The paper presents evaluation of the jet damping effect on spatial motion of a homing guided
missile with variable mass. The mathematical model of motion including effects generated
by the burning fuel are presented – changes of mass characteristics as well as the jet damping
effect are taken into account. Both the influences of inertia forces/moments and changes of
the position of mass center are calculated. The damping effect generating additional forces
and moments acting on the missile is also determined. The obtained set of equations of
motion allows one to analyze a wide spectrum of various problems, e.g. the influence of jet
damping on the homing guided missile trajectory or the dynamic response of the missile to
atmospheric disturbances. Exemplary results of simulations are shown.
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1. Introduction

During the phase of engine working, a missile should be treated as a variable mass system (Davis
et al., 1958; Dimitrevskii, 1972; Quarelli et al., 2014; Thomson, 1965a,b, 1986). The combustion
process causes a change in the mass center – all mass characteristics of the missile change.
Simultaneously produced gases reach high speed inside the engine. In the case of pitching or
yawing motion of the missile, these moving gases are a source of the “jet damping” effect.
This effect influences rotational motion of the missile. Usually, this effect is ignored because the
burning phase is short and the blast-off parameters are stable. In particular, it concerns the
angular velocities which are equal to zero. But in the case of a homing guided missile with a
long burning process, it may be possible to observe its maneuvers when the engine still works
and angular velocities are different from zero. It means that the jet damping effect occurs. It
should be assessed whether it is important for the dynamics of missile flight and for precision of
target hitting.
To calculate the jet damping effect one has to know the velocity distribution of combustion

gases inside the engine. Because the engine consists of two parts – a combustion chamber and an
exhaust nozzle, we have to determine these distributions inside both engine components. In the
case of the combustion chamber, the combustion law and the geometry of the fuel rod have to
be taken into account, and usually an analytical formula describing velocity can be determined.
For the exhaust nozzle, thermodynamic laws for supersonic de Laval nozzle are included into
consideration. In this case, the velocity profile can be determined numerically – an analytical
formula is not possible because of various descriptions of nozzle geometry.

2. Geometry and kinematics of missile motion

2.1. Geometry of the missile

The following right-handed rectangular coordinate systems are applied in order to determine
the set of equations of motion:
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1. OIxIyIzI inertial coordinate system with the origin at any point in space;

2. OZxIyIzI – coordinate system with the origin at the center of the Earth parallel to
OIxIyIzI ;

3. Ogxgygzg – moving coordinate system with the origin Og at the Earth surface;

4. Oxgygzg – moving coordinate system parallel to Ogxgygzg with the origin O at any fixed
point of the missile;

5. Oxyz – moving coordinate system with the origin at any fixed point of the missile.

2.2. Transformations of coordinate systems

If one has components of any vector in any coordinate system, its components in another
system can be calculated using a transformation matrix. This matrix is determined using ele-
mentary angles of rotation. These angles define the relative position of two coordinate systems.

Fig. 1. Coordinate systems OIxIyIzI , Oxyz and basic vectors

Fig. 2. Transformations of the coordinate systems

For the transformation from OZxIyIzI to Ogxgygzg, the following angles (see Fig. 2) are
used: λ – azymuth, ϕ – declination. For the systems Ogxgygzg and Oxyz, the following angles
are used: Ψ – yaw, Θ – pitch, Φ – roll. The transformation matrices have the form, respectively
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2.3. Velocities

2.3.1. Angular velocities

We define the following angular velocities: ωz – angular velocity of Ogxgygzg relative to
OgxIyIzI . This velocity in OgxIyIzI has the following components: ωz = [ωz, 0, 0]

T; ω – angular
velocity of Oxyz relative to Ogxgygzg. This velocity in Oxyz has the following components:
ω = [P,Q,R]T; Ω – angular velocity of Oxyz relative to the inertial coordinate system. It is
equal to the sum of two velocities Ω = ω + ωz.

2.3.2. Linear velocities

In further analysis, one assumes that the inertial system with the origin at the center of the
Earth is the reference coordinate system (i.e. RZ = 0). The translational and rotational motion
of the missile is represented by a change of the vector RO. The absolute velocity of any point
of the missile Pi is defined by the expression

Vi = VO/g +Vrel i + ω × ri + ωz ×Ri (2.2)

where VO/g = [U, V,W ]
T is the velocity of the pole O, Vrel i = d

′ri/dt is the relative velocity
in the case if the point Pi represents a gas particle, which after fuel burning moves inside the
missile body in the direction to the nozzle – in this case, this motion causes a change of the
vector ri. If the angular velocity of the Earth is omitted, the last component is equal to zero.

2.4. Accelerations

Newton’s laws hold true in the inertial system. The absolute acceleration of the point Pi in
this system is equal to

ai = aO/g + ω ×VO/g + ε× ri + arel i + ω × (ω × ri) + 2(ω + ωz)×Vrel i
+ 2ωz ×VO/g + 2(ωz × ω)× ri + 2ω × (ωz × ri) + ωz × (ωz ×Ri)

(2.3)

where aO/g = d
′VO/g/dt is the acceleration of the pole O in Ogxgygzg; ε = d

′
ω/dt is the angular

acceleration of the missile; arel i = dVrel i/dt is the relative acceleration of a particle moving
inside the missile. For missiles of short and medium-range, the issues related to the angular
velocity of the Earth can be omitted. In this case, the absolute acceleration is equal to

ai = aO + ω ×VO + ε× ri + arel i + ω × (ω × ri) + 2ω ×Vrel i (2.4)

In this case, Ogxgygzg is the inertial frame. Accordingly, in the above formula, the subscript O/g
is replaced by O.
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3. Mass and mass center of the missile

The missile is a system of variable mass. Its mass is the sum of all elementary masses contained
in a given time within its body. During the active phase of flight, this mass includes: fuselage,
fuel, gases contained in the combustion chamber and in the nozzle:m = mfus+mfuel+mchamber+
mnozzle . The position of the center of mass in the inertial system is determined by the vector

RC =
(

∑

iRimi
)

/m. However, in the moving system Oxyz, the position of the center of mass

is determined by the formula rC = S/m, where S is the vector of static moments

S =
∑

i

rimi =

[

∑

i

ximi,
∑

i

yimi,
∑

i

zimi

]T

4. The equations of translatory motion of the missile with variable mass

The momentum of the missile with variable mass and with one outlet nozzle is

p(t) = mVC + ṁ(RC −RE) (4.1)

where ṁ = dm/dt is the mass flow rate; VC = dRC/dt is the absolute velocity of the center
of mass; RE = RO + rE is the vector determining the position of the nozzle. On the basis of
equation (4.1), one can calculate the total differential of momentum for the mass inside the body

dp1(t) =
[

ṁVC +m
dVC
dt
+ m̈(RC −RE) + ṁ(VC −VE)

]

dt (4.2)

For the mass ṁdt, which lefts the missile body with the absolute velocityV∗e , the total differential
of momentum is equal to dp2(t) = −ṁdtV∗e 1. Finally, the change of momentum of both the
missile as well as the mass ṁdt is equal to

dp = dp1 + dp2 =
[

m
dVC
dt
+ m̈(RC −RE) + ṁ(2VC −VE −V∗e )

]

dt (4.3)

According to the second Newton law, the change of momentum of the missile is equal to the
impulse of the external force F

dp(t) = Fdt (4.4)

On the basis of expressions (4.3) and (4.4) one can obtain

m
dVC
dt
+ m̈(RC −RE) + ṁ(2VC −VE −V∗e ) = F (4.5)

Without taking into account the angular velocity of the Earth rotation, the absolute velocities
of points C and E are defined by expressions

VC = VO +
d′rC
dt
+ ω × rC VE = VO + ω × rE (4.6)

The second component of VC is a relative velocity of the center of mass due to its motion as
a result of the burning process Vrel C = d

′rC/dt. It does not occur in VE because the position
of the exit nozzle relative to the pole O is fixed. The absolute velocity of the gases leaving the

1The sign “−” shows that the mass of the missile decreases and the value of the mass flow rate is
negative.
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outlet nozzle V∗e is equal to the sum of the nozzle exit velocity VE and the relative velocity Urel ,
which is a result of the thermodynamic processes inside the nozzle

V∗e = VE +Urel = VO + ω × rE +Urel (4.7)

Taking into account the above terms in equation (4.5), we obtain

m
dVC
dt
+ m̈(rC − rE) + 2ṁ[Vrel C + ω × (rC − rE)] = F+T (4.8)

where the thrust of the engine is T = ṁUrel . The thrust T is positive because in the system
Oxyz both the value of the mass flow rate ṁ as well as the relative velocity Urel are negative.

Taking into account formula (2.4) related to the center of mass, on the basis of (4.8), one
can determine the equation of translatory motion of the missile with variable mass

m
(d′VO
dt
+ω ×VO

)

+ ε× S+ ω × (ω × S) +marel C + 2mω ×Vrel C
+ m̈(rC − rE) + 2ṁ[Vrel C + ω × (rC − rE)] = F+T

(4.9)

If the thrust has only one component Tx = T , the missile is axisymmetric and the center of mass
and the center of the missile nozzle exit are all the time on the axis of the missile, then we have
three scalar equations

m(U̇ +QW −RV )− Sx(Q2 +R2) +max rel C + m̈(xC − xE) + 2ṁUrel C = Fx + T
m(V̇ +RU − PW ) + Sx(PQ+ Ṙ) + 2mRUrel C + 2ṁR(xC − xE) = Fy
m(Ẇ + PV −QU) + Sx(PR− Q̇)− 2mQUrel C − 2ṁQ(xC − xE) = Fz

(4.10)

5. The equations of rotational motion of the missile with variable mass

For rotational motion the second law of dynamics relates to the derivative (with respect to time)
of the angular momentum of the system of material points. Consideration should be taken for
the same mass particles at two successive moments of time.

• At the time t, the system consists of mass m = ∑imi. Locations of elementary masses
mi are determined by vectors Ri (in the inertial system) or by vectors ri (in the moving
system). The absolute velocity is Vi. The angular momentum KO determined in relation
to the pole O (Fig. 1) is equal to

KO(t) =
∑

i

KOi =
∑

i

ri × pi =
∑

i

ri ×miVi (5.1)

• At the time t+∆t, the system consists of two parts:
– mass m =

∑

i(mi −∆mi) that does not leave the body of the missile. The change of
mass is equal to ∆mi = −ṁi∆t. Locations of the elementary masses are determined
by vectors Ri +∆Ri (in the inertial system) or by vectors ri +∆ri (in the moving
system). The absolute velocity is Vi + ∆Vi. The angular momentum is equal to
KO 1(t+∆t) =

∑

i(ri +∆ri)× (mi −∆mi)(Vi +∆Vi).
– mass m =

∑

i∆mi that leaves the missile body with absolute velocity Vi + Urel i.
If the missile is driven by the engine with one nozzle outlet, this velocity is defined
by formula (4.7). The angular momentum of this mass is equal to KO 2(t + ∆t) =
∑

i(ri +∆ri)×∆mi(Vi +Urel i).
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The change of the angular momentum of the system is equal to

∆KO = KO 1(t+∆t) +KO 2(t+∆t)−KO(t) =
∑

i

ri ×mi∆Vi

+
∑

i

∆ri ×miVi +
∑

i

ri ×∆miUrel i
(5.2)

On the basis of (5.2), it is possible to calculate the derivative of the angular momentum KO
with respect to time

dKO
dt
=
∑

i

ri ×mi
dVi
dt
+
∑

i

VPi/O ×miVi −
∑

i

ri × ṁiUrel i (5.3)

The same derivative can be calculated directly by differentiating expression (5.1)

dKO
dt
=
∑

i

VPi/O ×miVi +
∑

i

ri ×
d(miVi)

dt
(5.4)

The second component in (5.4) is the moment of external forces acting on the missile relative to
the pole O. This moment has the following components in the system Oxyz MO = [L,M,N ].
By comparing expressions (5.3) and (5.4), we obtain

MO =
∑

i

ri ×mi
dVi
dt
−
∑

i

ri × ṁiUrel i (5.5)

If one takes into account expression (2.4) defining the absolute acceleration of any point of the
missile, and assumes that the missile has one nozzle, equation (5.5) takes the final form

S×
(d′V0
dt
+ ω ×VO

)

+ Iε+ ω × (Iω) +
∑

i

miri × arel i

+ 2
∑

i

miri × (ω ×Vrel i) =MO +MT
(5.6)

where MT is the moment of thrust MT =
∑

i ri × ṁiUrel i = rE × ṁUrel . This moment has
the following components in the system Oxyz: MT = [LT ,MT , NT ]. I is the matrix of inertia
moments.
Equations (5.6) can be simplified by taking into account the assumption of axial symmetry

of the missile. If the thrust lies on the axis of the missile, the final scalar form of this equation
is as follows

IxṖ = L

IyQ̇+ PR(Ix − I)− Sx(Ẇ + PV −QU) + 2Q
∑

i

mixiUrel i =M

IzṘ+ PQ(I − Ix) + Sx(V̇ +RU − PW ) + 2R
∑

i

mixiUrel i = N

(5.7)

6. The final form of the equations of motion

Motion of the axisymmetric missile is described by equations (4.10) and (5.7) complemented
with kinematic relations - we have the system of twelve differential equations

Aẋ = f (6.1)

where x is the vector of flight parameters x = [U, V,W,P,Q,R,Φ,Θ, Ψ, xO , yO, zO]
T.
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Non-zero elements of the matrix A are equal to

A11 = m A22 = m A26 = Sx A33 = m

A35 = −Sx A44 = Ix A53 = −Sx A55 = Iy

A62 = Sx A66 = Iy

(6.2)

whereas, the vector f is defined as follows

f1 = Fx + T +m(RV −QW ) + Sx(Q2 +R2)−max rel C − m̈(xC − xE)− 2ṁUrel C
f2 = Fy +m(PW −RU)− SxPQ− 2mRUrel C − 2ṁR(xC − xE)
f3 = Fz +m(QU − PV )− SxPR+ 2mQUrel C + 2ṁQ(xC − xE)
f4 = L

f5 =M + PR(Iy − Ix) + Sx(PV −QU)− 2Q
∑

i

mixiUrel i

f6 = N + PQ(Iy − Ix) + Sx(PW −RU)− 2R
∑

i

mixiUrel i

f7 = P + (Q sinΦ+R cosΦ) tanΘ

f8 = Q cosΦ−R sinΦ

f9 =
Q sinΦ+R cosΦ

cosΘ
f10 = U cosΨ cosΘ + V (cosΨ sinΘ sinΦ− sinΨ cosΦ) +W (cosΨ sinΘ cosΦ+ sinΨ sinΦ)
f11 = U sinΨ cosΘ + V (sinΨ sinΘ sinΦ+ cosΨ cosΦ) +W (sinΨ sinΘ cosΦ− cosΨ sinΦ)
f12 = −U sinΘ + V cosΘ sinΦ+W cosΘ cosΦ

(6.3)

In equations (4.10), there are elements associated with relative motion of the mass center, while
in equations (5.7) there are elements associated with motion of gas particles inside the body of
the missile. They require determination of the relative velocity of mass center of the gas inside
the missile. This will be described below.

7. Determination of gas parameters inside the missile engine

Due to the combustion process, mass m, static moments Si and inertia moments Ix, Iy of the
missile change. The quantity of fuel decreases in the combustion chamber and burning products
leave the interior of the missile through the convergent-divergent nozzle (Fig. 3).

Fig. 3. Scheme of the solid fuel engine
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To determine the rule of change of fuel and these products, assumptions on the shape of the
fuel and the space filled by gas should be made. Knowledge about physical parameters such as
gas pressure p, temperature T , density ρ and velocity U is also necessary.

The following analysis will be carried out in which uniform velocity distribution of flow in
each section of the missile engine is assumed (Mattingly, 2006; Torecki, 1984, Turner, 2009).
This velocity remains parallel to the axis of the missile (the engine)2. In the calculations, the
local coordinate systems associated with the combustion chamber (ξ) and the nozzle (ζ) are
introduced. This analysis also assumes that the mass flow rate is the same in each section of the
nozzle. This means that the initial and final phases of the engine operation are omitted.

7.1. The exhaust nozzle

Energy of gases produced in the combustion chamber is converted into kinetic energy in the
exhaust nozzle (Torecki, 1984). This nozzle is a supersonic de Laval nozzle, which means that the
gas velocity increases in both the convergent as well as in the divergent parts. At the narrowest
cross-section the gas velocity reaches the speed of sound. It is assumed that the flow in the
nozzle is adiabatic and isentropic. As the gas velocity increases, and inside the nozzle is several
times higher than the velocity at the inlet of the nozzle, it is assumed that the parameters at the
inlet cross-section are stagnation parameters density ρ0, temperature T0, pressure p0. Knowing
the adiabatic index k, on the basis of the above assumptions, one can calculate velocity, density
and temperature in any section of the nozzle inlet

U =

√

2k

k − 1
p0
ρ0

[

1−
( p

p0

)

k−1
k
]

ρ = ρ0
( p

p0

)

1

k
T = T0

( p

p0

)

k−1
k

(7.1)

If the geometry F (ζ) of the nozzle is known, the pressure ratio p/p0 can be found from the
relation

F

Fcr
=
( 2k

k + 1

)

1

k−1

√

k − 1
k + 1

1
√

(

p
p0

)

2

k −
(

p
p0

)

k+1
k

(7.2)

The mass flow rate in the nozzle can be described by the relation

ṁnozzle = Fcr
( 2

k + 1

)

1

k−1

√

2k

k + 1

√
p0ρ0 = Fcr

(

2
k+1

)

1

k−1
√

2k
k+1√

RT0
p0 = CFcrp0 (7.3)

where C is the discharge coefficient depending on the fuel type and geometry of the nozzle,
R – gas constant of combustion products.

7.2. The combustion chamber

The analysis assumes that the fuel has shape of a hollow cylinder with length of L, see
Fig. 3. The initial inner and outer radii are respectively equal to rw0 and rz0. It is assumed
that the combustion takes place on the inner and outer surface of the cylinder with the burning
speed vburn . At the time dt, its inner radius increases and the outer radius decreases by a value

2This is relative velocity occurring in equations (5.7)2,3 taken with the sign (−). For clarity, the
indexing is abandoned, i.e. instead of −Urel i we apply U .
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dr = vburndt. After the time t, radii rw and rz, cross-sectional area F of the space occupied by
the products of combustion and the burning surface S are equal to

rw(t) = rw0 +

t
∫

0

vburn dτ rz(t) = rz0 −
t
∫

0

vburn dτ

F (t) = π[r2w + (r
2
z0 − r2z)] S = 2π(rw0 + rz0)L

(7.4)

The latter formula shows that the combustion surface is constant. Whereas, the cross-sectional
area F (t) changes because of the change of rw and rz.

It is assumed that the pressure p0 and temperature T0 is the same in the entire combustion
chamber, and the burning speed is determined by a power series combustion law vburn = Ap

n
0+B

(Kurov and Dolzhaskii, 1961), where A, B and n depend inter alia on the chemical composition of
the fuel and temperature of the initial charge. The mass flow rate of the gas into the combustion
chamber is equal to ṁchamber = ρfuelvburnS, where ρfuel is the fuel density. In the initial and
final stages of the fuel combustion process ṁchamber 6= ṁnozzle , which means that the flow is non-
stationary and the pressure in the combustion chamber is changed. However, the fundamental
phase of missile engine working is done with ṁchamber = ṁnozzle . This is a result of the so-called
self-adjustment of the engine, which keeps a constant pressure in the combustion chamber.

Using the continuity equation for sections 0-0 and cr-cr and, further, applying the equation
of the state of gas, the gas velocity at the end of the combustion chamber can be calculated as

U0(L, t) =
CFcrp0
ρ0F (t)

=
CFcr
F (t)
RT0 (7.5)

It is noted here that the velocity U0 changes during the combustion process since the cross-
sectional area F (t) increases due to changes in both the inner radius rw and outer radius rz
according to formula (7.4).

In order to calculate the change of velocity along the combustion chamber, it is conside-
red that the gas velocity increases with proximity to the outlet. In the section dξ over time dt
the burned fuel mass is equal to dm = dSvburndtρfuel (dS is an elementary surface of combu-
stion for the dξ section). An increase in the mass flow rate inside the combustion chamber is
dṁ = vburnρfueldS. Simultaneously, taking into account the constant velocity distribution in
the cross section of the chamber ξ-ξ, the increase is equal to dṁ = ρ0FdU . Comparing these
expressions, one can determine the change of velocity dU = [vburnρfuel/(ρ0F )]dS. In order to
calculate the velocity U , it is necessary to know the relationship for the sectional area F and
for the combustion surface S as a function of the coordinate ξ. We have

U(ξ, t) =
vburnρfuel
ρ0

1

F (t)

ξ
∫

0

∂S(x, t)

∂x
dx

If the fuel has shape of a hollow cylinder, then on the basis of (7.4), one has ∂S/∂x =
2π(rw0 + rz0). Taking into account the expression for the cross-sectional area F (t) and per-
forming integration, one can calculate the gas velocity at ξ

U(ξ, t) = 2vburn
ρfuel
ρ0

(rw0 + rz0)L

r2w + (r
2
z0 − r2z)

ξ

L
= U0

ξ

L
(7.6)

This formula takes into account boundary conditions: U = 0 for ξ = 0 and U = U0 for ξ = L.
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8. Changes of the missile mass parameters

8.1. The change of the speed of mass

In the time interval dt, along the entire length of the load, the mass occupying the volume
Svburndt is combusted. Knowing density ρfuel , one can calculate this mass dm = 2π(rw0 +
rz0)Lvburndtρfuel . So, the rate of change of fuel mass as well as of missile mass is equal to
ṁ = ṁfuel = 2π(rw0+rz0)Lvburnρfuel . As can be seen, this rate is constant, which means that the
component of equation (4.10)1 comprising the second derivative is equal to zero m̈ = m̈fuel = 0.

8.2. Mass of the fuel and missile

Knowing the rate ṁ, we can calculate the fuel and missile masses at any point of time. If at
the beginning they are mfuel 0 and m0, respectively, we have

mfuel (t) = mfuel 0 − 2π(rw0 + rz0)Lρfuelvburn t
m(t) = m0 − 2π(rw0 + rz0)Lρfuelvburn t

(8.1)

8.3. Motion of the center of mass of the missile

Equations (4.10) require determination of changes in the position of the center of mass and
the relative velocity Urel C and its relative acceleration ax rel C . During operation of the engine,
the fuel mass decreases, while the remaining mass is unchanged. At the same time, the center
of the decreasing fuel mass is constant. It means that

xC(t) =
xfusmfusel + xfuelmfuel(t) + xchambermchamber + xnozzlemnozzle

m
(8.2)

The first and second derivatives of the above expression give the relative velocity and acceleration

Urel C = ṁfuel
xfuel − xC
m

ax rel C = −2
ṁfuel
m
Urel C (8.3)

8.4. Static and inertia moments

On the adopted assumptions concerning the shape and way of the burning process, the static
moment and inertia moments can be calculated. For all parts of the missile – fuselage, fuel and
gases filling the combustion chamber and the nozzle it is necessary to know the distribution
of mass. Table 1 shows necessary formulas which allow one to calculate all static and inertia
moments.

9. Members of the equations of motion depending on the relative velocity and

relative acceleration

There are elements comprising the relative velocity Urel of the gases moving inside the body of
the missile in equations (6.3)2,3. They are determined below assuming an uniform distribution
of the relative speed in all sections of the engine. Calculations are performed for the combustion
chamber and nozzle.
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Table 1

Static and Elementary mass
Formula

inertia moments for calculation

Total static
Sx = Sx fusel +Sx fuel +Sx chamber +Sx nozzle

moment Sx

Sx fusel dm Sx fusel =
∫∫∫

fuselage

x dm

Sx fuel dm = ρfuelπ(r
2
z − r2w)dx Sx fuel =

1
2ρfuelπ(r

2
z − r2w)(l2k − l2p)

Sxchamber dm = ρ0Fdx Sx chamber =
1
2ρ0π[r

2
w + (r

2
z0 − r2z)](l2k − l2p)

Sxnozzle dm = ρ(x)F (x)dx Sx nozzle = ρ0
lp
∫

lex

F (x)
(

p
p0

)

1

k
x dx

Total inertia
Ix = Ix fusel + Ix fuel

moment Ix

Ix fusel dm Ix fusel =
∫∫∫

fuselage

r2 dm

Ix fuel dm = ρfuel2πrLdr Ix fuel =
1
2πρfuelL(r

4
z − r4w)

Total inertia
Iy = Iy fusel + Iy fuel + Iy chamber + Iy nozzle

moment Iy

Iy fusel dm Iy fusel =
∫∫∫

fuselage

x2 dm

Iy fuel dm = ρpπ(r
2
z − r2w)dx Iy fuel =

1
3ρfuelπ(r

2
z − r2w)(l3k − l3p)

Iy chamber dm = ρ0π[r
2
w + (r

2
z0 − r2z)]dx Iy chamber = 13ρ0π[r2w + (r2z0 − r2z)](l3k − l3p)

Iy nozzle dm = ρ(x)F (x)dx Iy nozzle = ρ0
lp
∫

lex

F (x)
(

p
p0

)

1

k
x2 dx

The combusion chamber

Elementary mass of the gas in the section dx of the combustion chamber is equal to
dm = ρ0π[r

2
w+(r

2
z0− r2z)]dx. Its velocity is given by (7.6). Taking into account this relationship,

one can obtain

∑

i

mixiUrel i = πvsρp(rw0 + rz0)
(

lkl
2
p −
1

3
l3k −
2

3
l3p

)

The exhaust nozzle

The sought expressions for the nozzle can be found based on the knowledge of density
distribution ρ(x) and velocity distribution Urel (x) along the nozzle. We have

∑

i

mixiUrel i =

0
∫

−lex+lp

(ζ − lp)ρFUrel dζ

This integral can be efficiently calculated applying numerical methods and solving the issue of
gas flow through the nozzle, as described in Section 7.1.
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10. Determination of external forces acting on the missile

The right-hand side of equations (6.1) includes components of the resultant external force F
acting on the missile and the resultant moment of external forces MO relative to the pole O.
The external force F is the sum of the weight Q and the aerodynamic force R. Whereas,
the moment MO relative to the pole O is the sum of the moments generated by the weight
MQ = rC ×Q and the aerodynamic moment Maer

F = Q+R MO =MQ +Maer (10.1)

Fig. 4. Coordinate systems, aerodynamic forces, velocities and angles

The aerodynamic forces and moments can be divided into static and dynamic. The static
forces and moments are determined on the basis of the value of the nutation angle αt (Fig. 4). At
the same time, the dynamic forces and moments are created when the missile is rotating. They
have a damping character. The resultant aerodynamic force R is equal to the sum of forces:
axial force FX and normal force FN , R = FX +FN (Davis et al., 1958; McCoy, 2012; Rosser et
al., 1947). The final expressions defining the components of the external force and moments are
as follows

Fx = −mg sinΘ − Cx
ρV 2air
2
S

Fy = mg cosΘ sinΦ+
ρV 2air
2
S
[

CNδ
(−V
Vair

)

+
( Pd

Vair

)

CNpδ
( W

Vair

)

+
( Rd

Vair

)(

CNq + CNα̇
)]

Fz = mg cosΘ cosΦ−
ρV 2air
2
S
[

CNδ
(−W
Vair

)

+
( Pd

Vair

)

CNpδ
(−V
Vair

)

+
(−Qd
Vair

)(

CNq +CNα̇
)]

L =
ρV 2aer
2
SdClp

( Pd

Vaer

)

(10.2)

M = −xCmg cosΘ cosΦ+
ρV 2air
2
Sd
[

CMδ
( W

Vair

)

+
(

CMq + CMα̇
)( Qd

Vair

)

+
( Pd

Vair

)

CMpδ

( V

Vair

)]
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N = xCmg cosΘ sinΦ+
ρV 2air
2
Sd
[

CMδ
(−V
Vair

)

+
(

CMq +CMα̇
)( Rd

Vair

)

+
(Pd

V

)

CMpδ

( W

Vair

)]

Vair is the velocity at which the missile moves relative to the air Vair = VO − Vwind . All
coefficients in brackets [. . .] determine the aerodynamic forces and moments. They depend on
the nutation angle and the Mach number.

11. Numerical example and conclusions

Formulas (6.2)1-(6.2)5 show that during the combustion process there are additional forces and
moments which depend on the mass flow rate, relative speed of the combustion products and
their mass. In particular, there are additional moments depending on the angular velocities:
−2Q∑imixiUrel i and −2R

∑

imixiUrel i. They have a damping character as well as the ae-
rodynamic damping moments (members containing (CMq + CMα̇) in expressions (10.2)5 and
(10.2)6). To compare both damping moments, the following derivatives are analyzed

MQaer = (CMq + CMα̇)
ρVair
2
Sd2 MQjet = −2

∑

i

mixiUrel i (11.1)

To do it, numerical simulation of flight for a homing guided missile has been performed. For
this reason, additionally control laws are also determined on the basis of methods described in
(Krasovskii, 1969, 1973; Locke, 1955; Neupokoev, 1991; Shneyder, 1998; Siouris, 2004). A lot of
various variants of the initial conditions both for the missile and for the maneuvering target are
used. Below, exemplary results for one variant of target flight are presented – a turn maneuver
with increasing altitude. It is assumed that the target is detected by the missile at the distance
of 30 km and initial altitude of 5 km. Its velocity is 100m/s. The initial conditions for the missile
(class Patriot MIM-104) are as follows: pitch angle 45◦, yaw angle 0◦. The working time of the
engine is 12 s. The initial mass of the missile is 910 kg, mass of the fuel is 508 kg. The control
system starts to work two seconds after blast-off.

Fig. 5. Gas pressure (a) and gas velocity (b) along exhaust nozzle

It is assumed that the combustion temperature for nitrocellulose solid propellant grain is
T0 = 2500K. The calculations show that for this temperature the pressure in the combustion
chamber is p0 = 12.9MPa, the burning speed vburn = 8mm/s and the relative velocity at the
nozzle exit is Urrel = 2336m/s. These parameters give a thrust equal to T = 107.08 kN. Exem-
plary changes of gas parameters in the exhaust nozzle are shown in Figs. 5a and 5b. The defined
by (11.1) derivatives are presented in Fig. 6a. We can see that the derivative MQjet is constant

during the combustion process. The absolute value of the derivative MQaer depends nonlinearly
on Vair because the coefficients (CMq +CMα̇) depend on the Mach number (Fig. 6b). Figure 6a

proves that the aerodynamic derivative MQaer is many times greater than M
Q
jet. Therefore, any
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Fig. 6. (a) Damping derivatives; (b) coefficient CMq

Fig. 7. Missile and target trajectories

Fig. 8. (a) Missile-target distance; (b) missile velocity

Fig. 9. (a) Pitch angle; (b) yaw angle
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important influence of the jet damping effect on the missile atmospheric flight has not been
found. The trajectories of the missile and the target are shown in Fig. 7. We can see that the
maneuvering target is hit – a distance between the missile and the target decreases to zero, see
Fig. 8a. Figure 8b presents velocity of the missile which grows during engine operation and next
decreases. The pitch and yaw angles are presented in Figs. 9a and 9b.
Other obtained results also show that the jet damping effect can be neglected for maneuvering

missiles when angular velocities are not equal to zero. The aerodynamic forces and moments are
still of minor importance.
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