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The present work is aimed at presenting the disturbance generated by a solar array drive
assembly (SADA) driving a flexible system. Firstly, the vibration equation of SADA is
obtained by simplifying and linearizing the electromagnetic torque. Secondly, the disturbance
model of SADA driving a discrete flexible system is achieved based on the vibration equation
established. Taking a two-dof flexible system as the study object, this disturbance model is
simulated and analyzed. Lastly, a continuous flexible system, which is designed to simulate
the solar array, is used to illustrate the simulation method of the disturbance emitted by
SADA driving a continuous flexible system. All the achievements obtained from this project
will provide a theoretical basis for the prediction of the disturbance emitted by the SADA
driving solar array on the orbit.
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1. Introduction

Micro-vibrations of a satellite, which are characterized by a low amplitude and a wide frequen-
cy band, can significantly degrade its pointing accuracy and imaging quality. There are many
possible disturbance sources, such as reaction/momentum wheel assembly, control moment gy-
roscope and SADA (Luo et al., 2013). Due to a longer exposure time than in a low orbit remote
sensing satellite, the performance of a high orbit remote sensing satellite is more sensitive to
micro-vibrations in the low frequency band. Three reasons make the disturbance emitted by
the SADA driving solar array on the orbit extremely complex and mainly in the low frequency
band, which are: (1) distribution of the natural frequency of the solar array in the low frequency
band is dense (Cui, 2006); (2) exciting energy of SADA in the low frequency band is large, which
makes the natural vibration of the solar array easily excited out; (3) vibration attenuation of the
solar array in the low frequency band is slow without air damping in space. Therefore, to study
the disturbance produced by the SADA driving solar array is imperative. Because of the gravity,
the solar array, which has characteristics of low stiffness, large mass and large size (Chen, 2010),
is difficult to unfold on the Earth. Testing of the disturbance generated by the SADA driving
solar array in the atmospheric environment is hard to carry out. A disturbance model used to
predict the disturbance emitted by the SADA driving solar array on the orbit is necessary.

From researches carried out thus far, lots of studies have focused on the disturbance proper-
ties of SADA. The mechanism of electromagnetic vibration of SADA was studied by Xia (1994),
and the methods to lower the amplitude of the electromagnetic vibration were also proposed,
such as using damping (including mechanical damping and electrical damping) and choosing a
more appropriate drive circuit. The expression for electromagnetic vibration frequency of SADA
was presented in Bodson et al. (2006). In Yang et al. (2010) and Zhu et al. (2015), argued
that the electromagnetic field between the stator and rotor of SADA could be equivalent to an
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electromagnetic spring-viscous damping system. Stiffness of the electromagnetic spring, named
as electromagnetic stiffness, was obtained by experimental testing by Yang et al. (2010). Zhu
et al. (2015) validated feasibility of the equivalent electromagnetic field to an electromagnetic
spring-viscous damping system, and also investigated the coupling effect between the solar array
and the electromagnetic spring-viscous damping system. Meanwhile, Si et al. (2010), Elsodany
et al. (2011) and Szolc et al. (2012) proposed dynamic models of SADA. Among them, the dy-
namic model proposed by Si et al. (2010) was more complete, in which the friction torque and
fluctuation torque of SADA were taken into account. The disturbance emitted by SADA driving
a rigid system could be obtained by the dynamic models easily. Chen et al. (2014) modeled and
simulated the disturbance produced by SADA driving a rigid system through a flexible trans-
mission shaft based on the dynamic model of SADA. In this paper, the coupling effect between
the electromagnetic stiffness and the flexible transmission shaft was studied by changing the
stiffness of the transmission shaft.

However, the electromagnetic stiffness of the electromagnetic spring has not appeared in
the dynamic models as an explicit expression up to now, and just has been hidden in the
electromagnetic torque, which prevented the establishment of the coupling effect between the
electromagnetic stiffness and the flexible system. As the solar array is an extremely complex ty-
pical continuous flexible system, the dynamic models existing do not have the ability to describe
the disturbance caused by the SADA driving solar array on the orbit precisely and easily.

As a consequence, in this paper, the first part is to establish the vibration equation of SADA;
the second part is to model, simulate and analyze the disturbance produced by SADA driving a
discrete flexible system; the third part is to introduce the simulation method of the disturbance
generated by SADA driving a continuous flexible system; the last part summarizes the paper
and states conclusions drawn from this work.

2. Modeling of the vibration equation of SADA

The SADA discussed in this paper is a two-phase hybrid stepper motor. Stepper motors are mo-
tors which translate digital pulse sequences to precise movements of the rotor shaft, rather than
rotating continuously as conventional motors do (Anish et al., 2012). Because of the advantages
of high resolution, high torque and low noise, the stepper motor is widely used in the field of
spacecraft (Letchmanan et al., 2005). Both solar array and digital antenna use stepper motors
as the driver. The most frequently used dynamic model of SADA at present is given by

J0θ̈ = Te − C0θ̇ − Tl (2.1)

where J0 is the moment of inertia of the rotor, θ is the angular displacement of the rotor, Te is
the electromagnetic torque, C0 is the viscous damping coefficient and Tl is the load torque.

As to a two-phase hybrid stepper motor, when the linear flux model without saturation
effects is assumed, the driving model presented by Kapun et al. (2007) can be used in the form

ϕ = LI Te =
1
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where ϕ is the flux linkage vector, L is the symmetric inductance matrix and I is the current
vector. The expressions of I and L are given by
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where IA and IB signifies the current of phase A and phase B respectively, If is the fictitious
constant rotor current, Lii (i = A,B) is the self-inductance of the stator winding, LAB = LBA
is the mutual inductance between the stator windings, Lff is the self-inductance of the fictitious
rotor winding, Lif = Lfi (i = A,B) is the mutual inductance between the i-th stator winding
and the fictitious rotor winding, see Yang et al. (2010) and Kapun et al. (2007).
Assuming that the mutual inductance between the stator windings is negligible and igno-

ring the second and more harmonics of the cyclical permeance function, the elements of the
inductance matrix L can be defined as

LAA = LBB = L0 LAB = LBA = 0 LAf = LfA = Lm0 + Lm1 cos(zθ)

LBf = LfB = Lm0 + Lm1 sin(zθ) Lff = Lf0 + Lf1 cos(4zθ)
(2.4)

where z is the rotor teeth number. Substituting equations (2.3) and (2.4) into equation (2.2),
the electromagnetic torque can be obtained as

Te = Tm − Td = Km[IB cos(zθ)− IA sin(zθ)]−Kd sin(4zθ) (2.5)

where Tm is the motor torque, Td is the detent torque, Km = zIfLm1 and Kd = 2zI
2
fLf1 is the

motor torque constant and detent torque constant, respectively (Letchmanan et al., 2005).
In general, the detent torque constant Kd is so small that the detent torque Td is far less

than the motor torque Tm, and can be ignored (Yang et al., 2010). Thus, equation (2.5) can be
simplified as

Te = Km[IB cos(zθ)− IA sin(zθ)] (2.6)

In order to improve the resolution and running smoothness of the stepper motor, a subdivi-
sion driver is frequently used. Yang et al. (2007) pointed out that the ladder sine curve current is
frequently used as the subdivision driving current in the subdivision driver. Thus, the expression
for the two-phase current IA and IB after subdivision can be shown as

IA = I cos(γi) IB = I sin(γi) (2.7)

where I is the amplitude of the two-phase current, γ is the electrical step angle after subdivi-
sion and i = 1, 2, . . . is the step number. Substituting equation (2.7) into equation (2.6), the
electromagnetic torque can be rewritten as

Te = KmI sin(γi− zθ) = KmI sin
[

z
(γi

z
− θ
)]

= KmI sin(z∆θ) (2.8)

In equation (2.8), the physical meaning of ∆θ is that: ∆θ is the included angle between the
actual position and theoretical equilibrium position of the rotor during the time period that
after the input of the i-th digital pulse signal completed and before the input of (i+1)-th digital
pulse signal, where γi/z and θ is the theoretical equilibrium position and actual position of the
rotor in this time period, respectively. To ensure SADA running without losing step, the range
of ∆θ is given by

−α ¬ ∆θ ¬ α (2.9)

where α is the micro-step angle after subdivision. The expression for α is given by

α =
2π

zpn
(2.10)

where p is the beat number and n is the subdivision number. The value of p and n of the SADA
studied in this paper is 4 and 256, respectively, thus, we can obtain that

−
π
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π
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A significant result can be obtained from equation (2.11) that: z∆θ is so small that equation
(2.8) can be linearized as

Te = KmI sin(z∆θ) = KmIz∆θ = KmIγi−KmIzθ (2.12)

Substituting equation (2.12) into equation (2.1), the dynamic model of SADA can be rew-
ritten as

J0θ̈ + C0θ̇ +K0θ = KmIγi− Tl (2.13)

where K0 = KmIz and KmIγi is called the electromagnetic stiffness and exciting torque, re-
spectively.
From equation (2.13) we can get that: 1) the electromagnetic field between the stator and

rotor of SADA can be equivalent to an electromagnetic spring-viscous damping system; 2) the
rotor of SADA coupled with the load vibrates with viscous damping under the action of the
exciting torque KmIγi. Thus, the equivalent system diagram of SADA can be shown as Fig. 1.

Fig. 1. Equivalent system of SADA

Assuming that the stator of SADA is a rigid body, the disturbance torque generated by
SADA acting on the satellite can be defined as

Tdis = KmIγi− C0θ̇ −K0θ (2.14)

Thus, the disturbance model of SADA can be defined as

J0θ̈ + C0θ̇ +K0θ = KmIγi− Tl Tdis = KmIγi− C0θ̇ −K0θ (2.15)

From equation (2.15) we can obtain that the dynamic model of SADA can be redefined
as a vibration equation, and the electromagnetic stiffness appears in this vibration equation
as an explicit expression which leads to the coupling relationship between the electromagnetic
spring-viscous damping system and the solar array easily achieved by establishing the vibration
equation of the coupling system. Thus, the disturbance torque aroused by the SADA driving
solar array acting on the satellite can be facilely obtained.

3. Disturbance model of SADA driving a discrete flexible system

3.1. Modeling

Assuming that the discrete flexible system is a torsion spring-damping-moment of inertia
system with n-dofs, the equivalent system of SADA driving this discrete flexible system is shown
in Fig. 2.
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Fig. 2. Equivalent system diagram of SADA driving a discrete flexible system with n-dofs

Thus, the disturbance model of SADA driving this flexible system can be defined as

Jβ̈ +Cβ̇ +Kβ = F Tdis = KmIγi− C0θ̇ −K0θ (3.1)

where J, C, K, F and β is the mass matrix, damping matrix, stiffness matrix, excitation vector
and angular displacement vector, respectively. All the expressions are shown in equation (3.2)
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(3.2)

3.2. Simulation and analysis

Taking a two-dof torsion spring-damping-moment of inertia system as the simulation object,
Matlab/Simulink toolbox is used to simulate the disturbance model of SADA driving this discrete
flexible system. Table 1 shows the simulation parameters of SADA and the two-dof flexible
system. The simulation time and time step size is 100 s and 1/2048 s, respectively.
Figures 3 to 5 illustrate the simulation results of the disturbance model of SADA driving

this two-dof flexible system.
It can be seen from Figs. 3a and 3b that the two-phase currents IA and IB are ladder

cosine/sine curves, and the amplitude I is 0.3 A.
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Table 1. Simulation parameters of SADA and the two-dof flexible system

Parameter Symbol Value Unit

Rotor teeth number z 300 –
Beat number p 4 −

Subdivision number n 256 –
Given angular velocity of rotor ω0 0.012 ◦/s
Amplitude of two-phase current I 0.3 A
Moment of inertia of rotor J0 0.0005 kg·m2

Viscous damping coefficient C0 0.01 N·m·s/rad
Motor torque constant Km 10 N·m/(A·rad)
Electromagnetic stiffness K0 900 N·m/rad
Moment of inertia of flexible system J1/J2 1/4 kg·m2

Viscous damping coefficient C1/C2 0.02/0.01 N·m·s/rad
Stiffness of torsion spring K1/K2 1000/2000 N·m/rad

Fig. 3. Simulation results of the two-phase current (a) full view (b) partially enlarged view

As shown in Fig. 4, the simulation result of the rotor angular displacement indicates that
after 100 seconds of running, the angular displacement of the rotor is 1.2◦, which is equal to the
given angular velocity ω0 (0.012

◦/s) times the running time (100 s).

Fig. 4. Simulation result of the angular displacement of the rotor

The simulation result of the disturbance torque shown in Fig. 5 indicates that the disturbance
frequencies in the frequency band of 0∼40Hz are 1.438Hz, 8.563Hz, 10.25Hz, 20.5 Hz and
30.75Hz. Substituting the parameters shown in Table 1 into equation (3.2), the natural frequency
of the equivalent system of SADA driving the two-dof flexible system can be calculated easily,
which is demonstrated as

f1 = 1.440Hz f2 = 8.558Hz f3 = 310.272 Hz (3.3)

Therefore, the disturbance frequencies 1.438Hz and 8.563Hz are the natural frequencies of
the equivalent coupling system of SADA driving the flexible system.
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Fig. 5. Simulation result of the disturbance torque

As mentioned above, SADA is to translate digital pulse sequences to precise movements of
the rotor shaft. The input frequency of the digital pulse signal is given by

fd =
πω0
180

α
=
πω0
180
2π
zpn

= 10.24 Hz (3.4)

Thus, the disturbance frequencies 10.25 Hz, 20.5 Hz and 30.75Hz are the input frequency of
the digital pulse signal and its harmonics.

As a consequence, we can obtain that the disturbance frequencies of SADA driving a discrete
flexible system are mainly consists of two parts: 1) natural frequencies of the equivalent system of
SADA driving the flexible system; 2) input frequency of the digital pulse signal and its harmonics.
These disturbance frequencies are consistent with those obtained by Yang et al. (2010) and Chen
et al. (2014), which confirmedly validates the effectiveness of the disturbance model proposed in
this paper.

4. Simulation method of SADA driving a continuous flexible system

Since the solar array is a typical continuous flexible system, equation (3.1) used to describe
vibration of the equivalent system of the SADA driving solar array is difficult to establish.
Taking a continuous flexible system, which is designed to simulate the solar array, as the studied
object, the simulation method of the disturbance generated by SADA driving a continuous
flexible system is demonstrated in this part.

4.1. Continuous flexible system

The continuous flexible system is made of a thin aluminum plate, steel counterweight beam
and connecting bracket. The size of the thin aluminum plate is 5m×1.6m×0.001m. The steel
counterweight beam is arranged along the four sides of the thin aluminum plate continuously,
whose section size is 0.03m×0.03m. The connection bracket is composed of two identical steel
beams. The length of each steel beam is 1m, and its section size is 0.03m×0.03m as well. A
schematic diagram of this continuous flexible system is shown in Fig. 6.

ANSYS 12.1 is used to create the finite element model of this continuous flexible system.
In the finite element model, element SHELL 181 is used to mesh the thin aluminum plate and
element BEAM 4 is used to mesh the steel counterweight beam and the connecting bracket.
What is more, a node should be laid in the installation point which is named as node a. The
modal shape of this finite element model is determined for the boundary condition of constraining
all-dofs of node a. The calculation results of the modal analysis are listed in Table 2.
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Fig. 6. Schematic diagram of the continuous flexible system

Table 2. Calculation results of the modal

Modal order Frequency [Hz] Modal shape

1 0.503 first-order out-of-plane bending
2 1.364 first-order in-plane rocking
3 2.110 first-order torsional
4 2.222 second-order out-of-plane bending

As the former four order modal shapes of the continuous flexible system designed are the
same as the actual solar array mentioned in Zhu et al. (2014), this continuous flexible system
has the ability to simulate the actual solar array.

4.2. Continuous flexible system coupling with SADA

As discussed above, the electromagnetic field between the stator and rotor of SADA can be
equivalent to an electromagnetic spring-viscous damping system, thus, the equivalent system of
the continuous flexible system coupling with SADA can be shown as in Fig. 7.

Fig. 7. Equivalent system of the continuous flexible system coupling with SADA
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ANSYS 12.1 is used to create the finite element model of this equivalent system. In this finite
element model, the moment of inertia of the rotor J0 is meshed by using element MASS 21; the
electromagnetic torsion spring-viscous damping system is meshed by using element COMBIN 14;
the finite element model of the continuous flexible system in the equivalent system is the same
as the finite element model created above. Element MASS 21, element COMBIN 14 and the
finite element model of the continuous flexible system should share one node, which is node a.
As the rotor of SADA has only one rotation dof, node a has only this dof (Y -rotation) as well.
Constraining all the other dofs of node a and all-dofs of the other node of element COMBIN 14,
then the creation process of the finite element model is accomplished.
ANSYS 12.1 is used to find the modal shapes of this coupling finite element model. The

calculation results of the modal analysis are presented in Table 3.

Table 3. Calculation results of the modal analysis

Modal order Frequency [Hz] Modal shape

1 0.503 first-order out-of-plane bending
2 0.606 first-order torsional
3 1.364 first-order in-plane bending
4 2.222 second-order out-of-plane bending

Comparing with the calculation results shown in Table 2, the natural frequency of the first-
order torsional modes moves forward and the other natural frequency remains the same, which
is caused by the coupling effect between the continuous flexible system and the electromagnetic
spring of SADA.

4.3. Simulation and analysis

ANSYS 12.1/Transient is used to simulate the disturbance emitted by SADA driving the
continuous flexible system designed. The simulation process is done on the basis of the coupling
finite element model created in Section 4.2. In the simulation processing, firstly, the exciting
torque KmIγi acts on node a; secondly, the simulation time and time step size is 20 s and
1/2048 s respectively; thirdly, each substep of the angular displacement and angular velocity
of node a are written down; lastly, substituting the angular displacement and angular velocity
of node a into equation (3.1), the disturbance torque of SADA driving this continuous flexible
system is obtained. The simulation results are shown in Figs. 8 and 9.

Fig. 8. Simulation result of the angular displacement of the rotor (node a)

It can be seen from Fig. 8 that due to huge torsional vibration of the continuous flexible
system coupling with SADA in the low frequency band (0.606Hz), the angular displacement
of the rotor is no longer a straight line. However, after 20 seconds of running, the angular
displacement of rotor is very close to 0.24◦, which equals to the given angular velocity of the
rotor ω0 (0.012

◦/s) times the running time (20 s).
What can be obtained from Fig. 9 are the disturbance frequencies in the frequency band of

0 ∼ 40Hz are 0.625Hz, 10.25Hz, 20.5 Hz and 30.75Hz. Among them, 0.625Hz is the natural
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Fig. 9. Simulation result of the disturbance torque

frequency of the first-order torsional mode of the continuous flexible system coupled with SADA
shown in Table 3; 10.25Hz, 20.5 Hz and 30.75Hz is the input frequency of the digital pulse
signal and its harmonics. Due to low exciting energy of the exciting torque KmIγi beyond
the low frequency band and the existence of the viscous damping inner SADA, the natural
frequencies of high-order torsional modes of the continuous flexible system coupled with SADA
do not appear in the disturbance frequencies.

Therefore, the disturbance frequencies of SADA driving the continuous flexible system mainly
consist of two parts: 1) natural frequencies of the torsional mode of the continuous flexible system
coupled with SADA in the low frequency band; 2) input frequency of the digital pulse signal
and its harmonics. These conclusions are the same as those obtained for SADA driving athe
discrete flexible system in Section 3.2. This proves that the simulation method of SADA driving
the continuous flexible system demonstrated in this part is right.

4.4. Summarizing

The simulation method of the disturbance aroused by SADA driving the continuous flexible
system can be summarized as follows:

• Before the start of simulation, the finite element model of the continuous flexible system
coupled with SADA, which can be equivalent to an electromagnetic spring-viscous dam-
ping system, should be created firstly, and the coupling node named node a. Appropriate
boundary conditions should be formulated as well.

• In the process of simulation, the exciting torque KmIγi should act on node a, and each
substep of the angular displacement and angular velocity of node a should be written down.
What is more, an appropriate simulation time and time step size should be chosen.

• After the end of simulation, substituting the angular displacement and angular veloci-
ty of node a into equation (3.1), the disturbance torque produced by SADA driving the
continuous flexible system could be obtained.

5. Conclusions

According to the above discussions, the following conclusions can be drawn:

• By simplifying and linearizing the electromagnetic torque of SADA, the electromagnetic
field between the stator and rotor of SADA can be found as equivalent to an electro-
magnetic spring-viscous damping system, and the vibration equation of SADA can be
established.



Research on the disturbance generated by a solar array... 1011

• The disturbance model of SADA driving a discrete flexible system is achieved based on
the vibration equation of SADA. A two-dof flexible system is used to simulate and analyze
the disturbance model. The simulation results show that the disturbance frequencies of
SADA mainly consist of two parts:

1) natural frequencies of the equivalent system of SADA driving the flexible system;

2) input frequency of the digital pulse signal and its harmonics.

• The method to simulate the disturbance emitted by SADA driving the continuous flexible
system, which is designed to simulate the solar array, is proposed. And the disturbance
frequencies of SADA mainly consist of two parts:

1) natural frequencies of the low-order torsional mode of the continuous flexible system
coupling with SADA in the low frequency band;

2) input frequency of the digital pulse signal and its harmonics.

In conclusion, all the achievements of this project will provide a theoretical basis for the
prediction of disturbances emitted by the SADA driving solar array on the orbit.
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