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In this paper, the calibration of a cohesive zone model in front of a crack is presented. It
is based on the behavior of a cell containing a void. The sizes of the cell and the void are
assumed to be representative for a chosen material. The cell is located at the crack tip. The
loading conditions of the cell take into account the constraint level ahead of the crack tip.
The influence of the constraint on the cohesive model parameters is investigated.
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1. Introduction

The cohesive model is based on Barenblatt’s model of the cohesive zone in front of a crack
(Barenblatt, 1959). He assumed an autonomic, specific for any material, zone in front of a
crack tip where the material is not allowed to fracture due to cohesive forces. In Barenblatt’s
model, distribution of the cohesive forces was unknown. The length of the cohesive zone was
also unknown. It was assumed to be very short. Panasyuk (1968) and Dugdale (1960) solved the
problem of the unknown length of the cohesive zone assuming the stress distribution within it.
In fact, they assumed a constant value of the cohesive stress which was equal to the yield stress
of a material. However, Dugdale called this zone the plastic zone.

The cohesive model is a simple and effective tool to analyze fractures. However, the simplicity
follows from the fact that all processes taking place in front of the crack tip are hidden in a
function describing the distribution of the cohesive forces. The behavior of the cohesive zone
has been investigated by many authors (e.g. Xia and Shih, 1995a,b; Brocks et al., 2003). In
those papers, Gurson’s model (Gurson, 1977; Tvergaard, 1981; Tvergaard and Needleman, 1984)
was used. Gurson’s model takes into account the evolution of voids during deformation of a
material.

The main drawback of both models is a large number of parameters that must be either
assumed or computed. As a result, the calibration procedure is complicated. In the case of
the cohesive model, a tensile test can be used to evaluate the parameters characterizing the
macroscopic properties of a material (i.e. yield strength σ0, Young’s modulusE, Poisson’s ratio ν,
Ramberg-Osgood parameters α, n). Unfortunately, there is no unique procedure to assess the
parameters of a cohesive zone. Numerous papers show that the shape of the traction-separation
function is unimportant (Tvergaard and Hutchinson, 1992). The main parameters that influence
the result are: work of separation Γn, maximum traction of the cohesive element σmax and, related
to later quantity, the separation between the cohesive surfaces when the traction reaches the
zero value. Usually, the work of separation is considered to be fracture toughness under small
scale yielding conditions (Xia and Shih, 1995a,b). The maximum traction is usually expressed
as a multiple of the yield stress (Xia and Shih, 1995a,b). The problem of the calibration of the
cohesive model parameters has been discussed many times (Li and Ward, 1989; Tvergaard and
Hutchinson, 1992; Scheider and Brocks, 2003; Cornec et al., 2003; Sorensen and Jacobsen, 2003)
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however, these attempts have not connected the cohesive model parameters directly with the
processes taking place in the microstructure of a material in front of the crack tip.

Gurson’s model requires considerable effort during calibration. Apart from the tensile para-
meters, other quantities are hard to evaluate, such as Tvergaard’s coefficients q1, q2, q3 (Tverga-
ard ,1981), void volume fractions in the cell, namely: initial f0, of void nucleating particles fN ,
critical fc, final ff , and statistical parameters describing strains at the moment of initiation of
the fast nucleation of voids (the mean void nucleation burst strain εN and the corresponding
standard deviation SN (Tvergaard and Needleman, 1984)).

Faleskog et al. (1998) and Gao et al. (1998) developed a new method of calibration for Tver-
gaard’s coefficients q1 and q2. The method directly connects Gurson’s model with the material
microstructure and its evolution under loading conditions. They use the representative volume
cell containing one void. The results achieved with this model are compared with the results
achieved using the same representative volume cell but made of Gurson’s material. In this me-
thod, the assumed size of the material cell is based on the spacing of large inclusions. The size
of the void is related to the initial void fraction f0. The cell loading (Fig. 1) reflects the high
constraint ahead of the crack tip in the plane strain conditions (O’Dowd et al., 1995). In the
second model, the cell is filled with Gurson’s material, in which the coefficients q1 and q2 are
adjusted to obtain the same response of both models.

Fig. 1. Loading of a cell

2. Modeling of the void

In this paper, Faleskog, Gao and Shih’s idea (Faleskog et al., 1998) has been adopted to cali-
brate the cohesive model. One cell is filled with a continuum characterized by classical tensile
properties. It is adjusted to the cohesive element which is located in a plane in front of the
crack. Deformation of this sandwich-like model (Fig. 2b) is compared with deformation of the
cell containing the void (Fig. 2a). Both models are loaded by displacement applied to the cell
faces according to Fig. 1. The values of displacements depend on the constraint level ahead of
the crack tip. The parameters of the cohesive element are modified to obtain similar stress-strain
curves for the x2 direction for both models.

The cell size and the tensile parameters correspond to the material used by Faleskog et
al. (1998) and Gao et al. (1998). It is a low strength, high hardening pressure vessel steel
(2.25 Cr 1Mo) used for chemical reactors. The yield strength is 210MPa and the strain hardening
exponent n is 5.

The cell size (D = 300µm) is estimated according to the average spacing between the large
inclusions. The initial void fraction is set to 0.004. This value follows from the average initial
size of the inclusions.
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Fig. 2. Geometry of equivalent models: (a) model with the void; (b) model with the cohesive element

3. Boundary conditions

The elementary cell is loaded by displacement applied to its faces, as in Fig. 1. Because the cell is
located ahead of the crack tip in the plane strain dominated area, it is reasonable to assume that
the cell thickness during loading does not change. Displacements applied at each face depend on
the stress triaxiality induced by the geometry of the structural member which contains the crack
(O’Dowd et al., 1995). The modified boundary layer approach has been used to calculate the
constraints, represented by the T -stress. The T -stress enters the boundary conditions applied at
the outer ring (Al-Ani and Hancock, 1991)
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whereK is the stress intensity factor, r and θ are coordinates in the polar coordinate system with
the origin located at the crack tip, T is the second term in Williams’ solution (Williams,1957),
κ = 3− 4ν.
The level of the constraint influences the ratio R = u1/u2 of displacements applied at the

cell faces when u3 = 0 due to the plane strain condition ahead of the crack tip (Fig. 1). A regular
rectangular grid has been used (Fig. 3). The size of the finite element net in the crack plane is
equivalent to the material cell with a symmetry axis in the crack plane.

Fig. 3. Finite element grid in the neighborhood of the crack tip

The relation between T and the average value of the R-ratio for the first four cells ahead of
the crack tip has been computed and selected results are listed in Table 1.
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Table 1. Relation between R and T

T/σ0 R

+0.5 −0.15

0.0 −0.30

−0.5 −0.55

−1.0 −0.78

Graphical representation of the data in Table 1 is shown in Fig. 4.

Fig. 4. Changes in the R-ratio

As shown in Fig. 4, the R-ratio increases almost linearly with the T -stress.

4. Dependence of the cell behavior on the R-ratio

The numerical simulations have been performed using different levels of constraints, represented
by the R-ratio, listed in Table 1. In each case, the cell loading is interrupted when the ratio
u2/D = 0.15, where D is the cell size. At this loading, the relative volume of the void in the cell
assumed the final value ff for the high level of constraint, T = 0. It was assumed by Gao et al.
(1998) that ff = 0.1. The results of computations are shown in Fig. 5.

Fig. 5. Element deformation at different levels of constraints

A high level of the constraint results in a high value of the stress maximum. In Fig. 6, the
sizes of the voids for different levels of constraints are presented at the critical moment.
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Fig. 6. Voids in the elementary cell: (a) initial size, (b) void size at T = 0.5, (c) void size at T = 0.0,
(d) void size at T = −0.5, (e) void size at T = −1.0

The void volume fraction at the final loading for different constraint levels is summarized in
Table 2.

Table 2. The void volume fraction at u2/D = 0.15 and different constraint levels

T/σ0 ff

+0.5 0.1120

0.0 0.0905

−0.5 0.0523

−1.0 0.0170

It is worth noting that at the low stress triaxiality level, the void volume fraction does not
reach the critical value at which the cell loses carrying capacity. In such a case, the void volume
fraction achieves its maximum value during loading. For T = −0.5, the maximum void volume
fraction is 0.087 at u2/D = 0.42 (the applied load is greater than in this paper) and for T = −1.0
the maximum void volume fraction is 0.0178 at u2/D = 0.19.

5. Calibration of the cohesive model

The most important parameters of the cohesive model are the maximum cohesive stress and work
of separation. The results shown in Sections 2-4 are used to determine these two parameters,
assuming the cohesive law proposed by Park, Paulino and Roesler (PPR) (Park et al., 2009).
The cell shown in Fig. 2b can be considered to be two nonlinear springs in series. The tensile
properties of one element are known. They are the tensile properties of steel. The properties of
the cohesive element must be selected in such a way that the total response of these two elements
is similar to the behavior of the cell containing the void, and finally, the force-displacement curves
for the whole specimen and for the numerical model of the specimen are close to each other.
First, the maximum stress in the PPR model has been assumed to be equal to that shown

in Fig. 5, taking into account the stress triaxiality, see Fig. 7 and Table 3; the lower the stress
triaxiality, the lower the maximum stress level.

Table 3. Maximum traction of the cohesive element

T/σ0 σmax/σ0

+0.5 7.03

0.0 7.00

−0.5 6.75

−1.0 5.87

To compute the cohesion energy, the modified bisection method has been used. As the input
parameter, the work of separation has been used. The influence of this parameter on the square
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Fig. 7. Influence of constraint on σmax

sum of the differences between the obtained curve and the curve selected from Fig. 5 is analyzed.
The obtained cohesive energies for different levels of stress triaxiality are presented in Table 4
and Fig. 8.

Table 4. Work of separation Γn for selected T -stress levels

T/σ0 Γn [kN/m]

+0.5 88

0.0 74

−0.5 42

−1.0 5.42

Fig. 8. Influence of constraints on cohesive energy

For negative T -stresses, the change in cohesive energy with T -stress values is almost linear.
For positive values of the T -stresses, the increase in Γn is slower. It is worth noting the very
low value of the work of separation for low constraints. The cohesive energy for T = −1.0 is ten
times lower than this value for T = 0. It should be pointed out that the work of separation is
only a part of the energy dissipated in the fracture process.

6. Application

Using the data provided by Gao et al. (1998), a simulation of the loading process of a three-
point-bend specimen containing a crack has been performed. The ADINA 8.9.2 system has been
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applied. The material of the specimen is pressure vessel steel (2.25 Cr 1Mo). The width of the
specimen is 50mm and the initial crack length is 30mm. The ADINA code uses the cohesive
model with bilinear relation between the tractions and the displacement developed by Turon
et al. (2006). The bilinear law is the most commonly used due to its simplicity. In this case,
to define the cohesive model, one must define the maximum traction and cohesive energy only,
i.e. two main parameters describing the behavior of cohesive elements. This model has also an
advantage over the PPR model that the slope of the traction-separation curve depends only on
the external material properties.
Since a/W = 0.6, it has been assumed that the constraint level is high. The cohesive para-

meters are assumed for T = 0.0 (Γn = 74 kN/m and σmax = 1470MPa (7σ0)). The results of
the simulation are presented in Fig. 9.

Fig. 9. Results of the three-point bend test and numerical simulation; (a) force-load-point-displacement,
(b) JR-curve

Usually, the parameters of the cohesive model are approximated in two stages. In the first,
according to the applied procedure, the initial values of the parameters are introduced and
then, in the second stage, they are validated or optimized (Cornec et al., 2003; Scheider et al.,
2006) to approach the experimental data in the simulations. Figure 9 presents the results of the
simulation for similar materials defined by the yield strength equal to 220MPa, Γn = 73 kN/m
and σmax = 1554MPa (7.4σ0).

7. Conclusions

It is shown that the parameters of the cohesive model can be calibrated in the same manner as
in Gurson’s model. The results obtained indicate that the stress triaxiality strongly influences
the cohesive model parameters and the energy dissipation process. A low constraint promotes
dissipation of energy by plastic deformation (Fig. 10), while the work of separation decreases.
Similar conclusions were also presented by Neimitz (2008)).
The side effect of the analysis is to demonstrate the influence of the constraint on the void

growth process. It is confirmed that, for low stress triaxiality, which prevents cleavage fracture,
the void volume fraction saturates and is not able to increase further. As a result, the fracture
mechanism changes. The mechanism of nucleation, growth and coalescence of voids is replaced by
plastic slip along the crystallographic planes. Such conditions can be found in the neighborhood
of the specimen surface. In the middle of the specimen, the constraint changes and promotes
void growth (Gałkiewicz, 2014). During the loading of the member crack, the stress triaxiality
decreases and the area, where the void growth saturates and is unable to increase further,
extends.
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Fig. 10. Plastic energy consumed by the cell
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