This study presents an analytical solution for cross-ply composite laminates integrated with a piezoelectric fiber-reinforced composite (PFRC) actuator subjected to electromechanical loading using the four-variable refined plate theory. This theory predicts parabolic variation of transverse shear stresses and satisfies the zero traction on the plate surfaces without using the shear correction factor. Using the principle of minimum potential energy, the governing equations for simply supported rectangular plates are extracted and the Navier method is adopted for solution of the equations. The comparison of obtained results with other common plate theories and the exact solution indicates that besides the simplicity of the presented formulation, it is very accurate in analysis of laminated composite plates integrated with PFRC. Also the effects of the thickness ratio, aspect ratio, number of layers, stacking sequence and amount of electrostatic loading on the displacements and stresses are investigated and the obtained findings are reported.

Keywords: cross-ply laminates, electromechanical loading, four-variable theory, PFRC actuator

1. Introduction

In the recent decades, piezoelectric materials due to their intrinsic coupled electromechanical properties have been widely used as actuators and sensors in smart structures. Advantages of piezoelectric materials like quick response, large power generation, work at very low temperatures and vacuum compatibility cause these materials are widely utilized in structural engineering, like aerospace, naval, automobile and space structures. A number of attractive piezoelectric materials like PZT, PVDF are available, but these monolithic piezoelectric material have certain limitations like low piezoelectric constants, shape control (due to their weight) and high specific acoustic impedance. To overcome these limitations, usage of piezoelectric fiber-reinforced composite (PFRC) has been an obvious choice (Kumar and Chakraborty, 2009). Malik and Ray (2003) obtained effective piezoelectric coefficients of PFRC using a micromechanical model through the strength of material approach.

Many investigators studied various analyses of composite laminates with embedded or surface bonded piezoelectric layers, acting as sensors and actuators. Wang and Rogers (1991) proposed an analytical solution of simply supported plates with embedded piezoelectric layers using the classical laminated plate theory (CLPT). Mitchell and Reddy (1995) presented a higher order shear deformation theory (HSDT) for composite laminates with a piezoelectric laminate. Ray et al. (1993) presented an exact solution for simply supported square composite laminate with embedded piezoelectric layers. Exact and finite element (FE) solutions for analysis of smart structures containing PFRC actuators were proposed by Malik and Ray (2004) and Ray and Malik (2004), respectively. Shiyekar and Kant (2011) presented a higher order shear and normal deformation theory (HOSNT12) for analysis of laminates with PFRC actuators.
A very recently developed shear deformation plate theory is a two-variable refined plate theory that contains only two unknown parameters and satisfies the condition of free stress without using the shear correction factor. This theory was introduced by Shimpi (2002) for isotropic plates and then extended to orthotropic plates by Shimpi and Patel (2006a) and Thai and Kim (2012). Analysis of laminated composite plates was done by Kim et al. (2009a) and vibration and buckling studies were performed by Shimpi and Patel (2006b) and Kim et al. (2009b), respectively. In the two-variable refined plate theory, the plate middle surface is assumed to be unstrained and, therefore, only the bending effects are considered. In the four-variable refined plate theory, two other parameters regarding in-plane displacements of the plate middle surface are added. This theory was used for free vibrations of FG plates and bending analysis of FG sandwich plates by Benachour et al. (2011) and Hamidi et al. (2014), respectively. Using this theory, thermal buckling analysis of FG plates was performed by Bouiadjra et al. (2012).

In this paper, the four-variable refined plate theory is utilized for analysis of a laminate composite integrated with piezoelectric actuators. Results obtained for various electromechanical loads are compared with already published results. It is observed that the present theory is very simple and accurate for analysis of laminates with PFRC actuators. Also the effect of the thickness ratio, aspect ratio, electrostatic load, and stacking sequence on displacements and stresses are studied.

2. Theory and formulations

Consider a simply supported rectangular cross-ply laminate of length a, width b integrated with a piezoelectric fiber-reinforced composite (PFRC) layer as shown in Fig. 1. The right-handed Cartesian coordinate system is located at the corner of the middle plane of the plate. Thickness of the elastic substrate is h and thickness of the actuator is t_p where t_p is small compared with h.

![Fig. 1. Geometry of the elastic substrate simply supported along all edges attached with a PFRC actuator at the top](image)

The plate is subjected to electromechanical loading due to the piezoelectric actuator located at the top side. The four-variable refined plate theory is employed for modeling of flexure of the plate.

2.1. Displacement and strain

According to assumptions of the refined plate theory, the displacement field (u in x-direction, v in y-direction and w in z-direction) is introduced as below (Shimpi, 2002)
\[u(x, y, z) = u_0(x, y) - z \frac{\partial w_b}{\partial x} + z \left[\frac{1}{4} - \frac{5}{3} \left(\frac{z}{h} \right)^2 \right] \frac{\partial w_s}{\partial x} \]
\[v(x, y, z) = v_0(x, y) - z \frac{\partial w_b}{\partial y} + z \left[\frac{1}{4} - \frac{5}{3} \left(\frac{z}{h} \right)^2 \right] \frac{\partial w_s}{\partial y} \]
\[w(x, y, z) = w_0(x, y) + w_s(x, y) \]
\[(2.1) \]

where \(u_0 \) and \(v_0 \) are the in-plane displacements of the mid-plane in the \(x \) and \(y \) direction, and \(w_b \) and \(w_s \) are the bending and shear component of the transverse displacement, respectively. The strain-displacement relationships are given by

\[\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_{xy} \end{bmatrix} = \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} \lambda_x^b \\ \lambda_y^b \\ \lambda_{xy}^b \end{bmatrix} + f \begin{bmatrix} \lambda_x^s \\ \lambda_y^s \\ \lambda_{xy}^s \end{bmatrix} \]
\[\begin{bmatrix} \gamma_{yz} \\ \gamma_{zz} \end{bmatrix} = \begin{bmatrix} \gamma_{yz}^s \\ \gamma_{zz}^s \end{bmatrix} \quad \varepsilon_z = 0 \quad (2.2) \]

where

\[f = -\frac{1}{4}z + \frac{5}{3} \left(\frac{z}{h} \right)^2 \quad g = \frac{5}{4} - \frac{5}{3} \left(\frac{z}{h} \right)^2 \]

\[(2.3) \]

2.2. Constitutive equations

Elastic and electric fields for a single piezoelectric layer are coupled by the following linear constitutive equations

\[\sigma = Q \varepsilon - eE \quad D = e^{T} \varepsilon + \eta E \quad (2.4) \]

where \(Q \) is the stress-reduced stiffness, \(e \) is the piezoelectric constants matrix, \(\eta \) is the dielectric constant matrix, \(E \) is the electric field intensity vector and \((\sigma, \varepsilon) \) are stress and strain tensors. The electric field owing to the variation in stresses (the direct piezoelectric effect) is assumed to be insignificant compared with the applied electric field. This assumption has been utilized by several researchers in literature, see Shikeyar and Kant (2011), Kapuria et al. (1997), Reddy (1999) and Tauchert (1992). The coefficients \(Q_{ij} \) are known as functions of the engineering constants in the principal material directions

\[Q_{11} = \frac{E_1}{1 - \nu_{12} \nu_{21}} \quad Q_{12} = \frac{\nu_{12} E_2}{1 - \nu_{12} \nu_{21}} \quad Q_{22} = \frac{E_2}{1 - \nu_{12} \nu_{21}} \]
\[Q_{44} = G_{23} \quad Q_{55} = G_{13} \quad Q_{66} = G_{12} \quad (2.5) \]

The effective piezoelectric constant matrix \(e \) and the dielectric matrix \(\eta \) for the PFRC layer are given as
The electric field \mathbf{E} is derivable from an electrostatic potential ψ

$$E_i = -\psi_i, \quad i = 1, 2, 3 \quad (2.7)$$

Since the laminate is made of several orthotropic lamina whose material axes are oriented arbitrarily respect to the laminate coordinates, the constitutive equations of each lamina must be transformed to the laminate coordinates $(x, y$ and z in Fig. 1)

$$\begin{align*}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}
\end{bmatrix} &= \begin{bmatrix}
Q_{11} & Q_{12} & Q_{16} \\
Q_{12} & Q_{22} & Q_{26} \\
Q_{16} & Q_{26} & Q_{66}
\end{bmatrix} \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_{xy}
\end{bmatrix} - \begin{bmatrix}
\tau_{31} \\
\tau_{32} \\
\tau_{36}
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix} \\
\begin{bmatrix}
\sigma_{yz} \\
\sigma_{xz}
\end{bmatrix} &= \begin{bmatrix}
Q_{44} & Q_{45} & Q_{55}
\end{bmatrix} \begin{bmatrix}
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix} - \begin{bmatrix}
\tau_{14} & \tau_{24} & 0 \\
\tau_{15} & \tau_{25} & 0
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
\end{align*} \quad (2.8)$$

where

$$\begin{bmatrix}
Q_{11} & Q_{12} & Q_{16} \\
Q_{12} & Q_{22} & Q_{26} \\
Q_{16} & Q_{26} & Q_{66}
\end{bmatrix} = T_1^{-1} \begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{bmatrix} RT_1 R^{-1}$$

$$\begin{bmatrix}
Q_{44} & Q_{45} & Q_{55}
\end{bmatrix} = T_2 \begin{bmatrix}
Q_{44} & 0 & Q_{55}
\end{bmatrix} T_2^T \quad (2.9)$$

and the transformed piezoelectric moduli τ_{ij} are

$$\begin{align*}
\tau_{31} &= e_{31} \cos^2 \theta + e_{32} \sin^2 \theta \\
\tau_{33} &= e_{33} \\
\tau_{14} &= (e_{15} - e_{24}) \sin \theta \cos \theta \\
\tau_{15} &= e_{15} \cos^2 \theta + e_{24} \sin^2 \theta
\end{align*} \quad (2.10)$$

The first set of Eqs. (2.4) can be divided into the elastic (e) and piezoelectric (p) stress component

$$\sigma = \sigma^e - \sigma^p \quad (2.11)$$

\section*{2.3. Governing equation}

The governing equations will be obtained using the principle of minimum potential energy

$$\delta (U + V) = 0 \quad (2.12)$$
where the potential energy of external loads is given by

\[V = - \frac{1}{2} \int_A q(w_e + w_s) \, dx \, dy \]

(2.13)

and the strain energy of the laminate is determined as

\[U = \frac{1}{2} \int_A \sigma_{ij} \varepsilon_{ij} \, dv = \frac{1}{2} \int_A (\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_{xy} \gamma_{xy} + \sigma_{yz} \gamma_{yz} + \sigma_{xz} \gamma_{xz}) \, dv \]

(2.14)

Equation (2.15) is obtained by substituting Eq. (2.2) into Eq. (2.14)

\[U = \frac{1}{2} \int \left(N_{x,x}^{e,0} - N_{x,x}^{p,0} + N_{y,y}^{e,0} - N_{y,y}^{p,0} + N_{xy}^{e,0} - N_{xy}^{p,0} + M_{x}^{b,h} \chi_x - M_{x}^{b,h} \lambda_x \right) \]

\[+ M_{y}^{b,b} \lambda_y + M_{xy}^{b,b} \lambda_y - M_{x,y}^{b,b} \chi_y + M_{x}^{p,b} \chi_x - M_{x}^{p,b} \chi_y + M_{y}^{p,b} \lambda_y - M_{x,y}^{p,b} \chi_y \]

\[- M_{y,y}^{p,b} \lambda_y + M_{xy}^{p,b} \lambda_y + Q_{yz}^{e} \gamma_{yz} - Q_{yz}^{p} \gamma_{yz} + Q_{xz}^{e} \gamma_{xz} - Q_{xz}^{p} \gamma_{yz} \]

(2.15)

in which the elastic stress resultants and piezoelectric stress resultants are defined in Eqs. (2.16) and Eqs. (2.17), respectively

\[(N_{x,x}^{e}, N_{y,y}^{e}, N_{xy}^{e}) = \sum_{k=1}^{N} \int_{Z_K}^{Z_{K+1}} (\sigma_{x,x}^{e}, \sigma_{y,y}^{e}, \sigma_{xy}^{e}) \, dz \]

\[(Q_{yz}^{e}, Q_{xz}^{e}) = \sum_{k=1}^{N} \int_{Z_K}^{Z_{K+1}} (\sigma_{yz}^{e}, \sigma_{xz}^{e}) \, dz \]

(2.16)

and

\[(N_{x,x}^{p}, N_{y,y}^{p}, N_{xy}^{p}) = \sum_{k=1}^{N} \int_{Z_K}^{Z_{K+1}} (\sigma_{x,x}^{p}, \sigma_{y,y}^{p}, \sigma_{xy}^{p}) \, dz \]

\[(M_{x,x}^{p,b}, M_{y,y}^{p,b}, M_{xy}^{p,b}) = \sum_{k=1}^{N} \int_{Z_K}^{Z_{K+1}} (\sigma_{x,x}^{p,b}, \sigma_{y,y}^{p,b}) \, dz \]

\[(M_{x,x}^{p,s}, M_{y,y}^{p,s}, M_{xy}^{p,s}) = \sum_{k=1}^{N} \int_{Z_K}^{Z_{K+1}} (\sigma_{x,x}^{p,s}, \sigma_{y,y}^{p,s}) \, dz \]

(2.17)

Substituting Eqs. (2.8) into Eqs. (2.16) and integrating through the plate thickness, the elastic stress resultants are given as
The Navier method is adopted for solution of the obtained governing equations using the following infinite Fourier series for independent variables

\[
\begin{align*}
\delta u_0 : & \quad \frac{\partial^2 N_x}{\partial x^2} + \frac{\partial N_x}{\partial y} = \frac{\partial N_y}{\partial x} + \frac{\partial^2 N_y}{\partial y^2} \\
\delta v_0 : & \quad \frac{\partial^2 M_y}{\partial x^2} + \frac{\partial M_y}{\partial y} = \frac{\partial^2 M_x}{\partial y^2} + \frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial x^2} \\
\delta w_0 : & \quad \frac{\partial^2 M_y}{\partial x^2} + \frac{\partial^2 M_x}{\partial y^2} + 2 \frac{\partial^2 M_x}{\partial x \partial y} + q = \frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial y^2} + 2 \frac{\partial^2 M_x}{\partial x \partial y} \\
\delta w_0 : & \quad \frac{\partial^2 M_y}{\partial x^2} + \frac{\partial^2 M_x}{\partial y^2} + \frac{\partial^2 M_x}{\partial x^2} + 2 \frac{\partial^2 M_x}{\partial x \partial y} + q
\end{align*}
\]

The boundary conditions for a simply supported plate are taken as below:

- at the edges \(x = 0 \) and \(x = a \)
 \[
 v_0 = 0 \quad w_0 = 0 \quad w_s = 0 \quad M_x = 0 \quad N_x = 0 \quad \psi = 0
 \]

- at the edges \(y = 0 \) and \(y = b \)
 \[
 u_0 = 0 \quad w_0 = 0 \quad w_s = 0 \quad M_y = 0 \quad N_y = 0 \quad \psi = 0
 \]

The Navier method is adopted for solution of the obtained governing equations using the following infinite Fourier series for independent variables

\[
\begin{align*}
u_0 &= \sum_{m=1}^{\infty} \sum_{n=1,3,5}^\infty u_{0,mn} \cos \frac{\pi x}{a} \sin \frac{\pi y}{b} \\
v_0 &= \sum_{m=1}^{\infty} \sum_{n=1,3,5}^\infty v_{0,mn} \sin \frac{\pi x}{a} \cos \frac{\pi y}{b} \\
w_0 &= \sum_{m=1}^{\infty} \sum_{n=1,3,5}^\infty w_{0,mn} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}
\end{align*}
\]
It can be easily verified that these expressions for displacements automatically satisfy the boundary conditions. Also, the external load and the electrostatic potential can be approximated as the following double Fourier expansions

\[q_z = \sum_{m=1,3,5} \sum_{n=1,3,5} q_{z,mn} \sin \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{b} \right) \]

\[\psi(x, y, z) = \sum_{m=1,3,5} \sum_{n=1,3,5} \psi_{mn}(z) \sin \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{b} \right) \] \hspace{1cm} (2.24)

The electrostatic potential in the actuator layer is assumed to be linear through thickness of the PFRC layer (Shiyekar and Kant, 201)

\[\psi_{mn}(z) = \frac{V_t}{t_p} - \frac{V_t h}{2t_p} \] \hspace{1cm} (2.25)

3. Numerical results and discussions

In this Section, several simply supported hybrid cross-ply plates consisting of an elastic substrate with a piezoelectric layer of PFRC bonded to its top, subjected to mechanical and electric potential loadings are considered. The thickness of the PFRC actuator is 250 µm and thickness of each orthotropic layer is 1 mm. Two different kinds of graphite/epoxy composites are considered for the substrate whose properties are as follows:

— material 1 (Malik and Ray, 2004)

\[[(E_1, E_2, G_{12}, G_{23}, G_{13}), \nu_{12}] = [(172.9, 6.916, 3.458, 1.383, 1.383) \text{ GPa}, 0.25] \] \hspace{1cm} (3.1)

— material 2 (Kapuria and Achary, 2005)

\[[(E_1, E_2, G_{12}, G_{23}, G_{13}), \nu_{12}] = [(181, 10.3, 7.17, 7.17, 2.87) \text{ GPa}, 0.28] \] \hspace{1cm} (3.2)

— and the material properties for the PFRC actuator are chosen as below (Malik and Ray, 2004)

\[\begin{align*}
C_{11} &= 32.6 \text{ GPa} & C_{12} &= C_{21} = 4.3 \text{ GPa} & C_{13} &= C_{31} = 4.76 \text{ GPa} \\
C_{22} &= C_{33} = 7.2 \text{ GPa} & C_{23} &= 3.85 \text{ GPa} & C_{44} &= 1.05 \text{ GPa} \\
C_{55} &= C_{66} = 1.29 \text{ GPa} & e_{31} &= -6.76 \text{ C/m}^2
\end{align*} \] \hspace{1cm} (3.3)

Since PFRC consists of a number of piezoelectric fibers surrounded by a matrix material, the value of the effective piezoelectric constant in the direction of fibers \(e_{31} \) is significantly higher than other effective piezoelectric constants, and they can be neglected in comparison to \(e_{31} \) (Malik and Ray, 2004).

For convenience, the following normalized parameters are used for presenting the numerical results

\[\begin{align*}
\overline{\sigma_x}(a, b, \pm \frac{h}{2}) &= \frac{\sigma_x}{q_0 S^2} \\
\overline{\sigma_y}(0, b, \pm \frac{h}{2}) &= \frac{\sigma_y}{q_0 S^2} \\
\overline{\tau}_{xy}(0, 0, \pm \frac{h}{2}) &= \frac{\tau_{xy}}{q_0 S^2} \\
\overline{\tau}_{xy}(a, b, \pm \frac{h}{2}) &= \frac{\tau_{xy}}{q_0 S^2} \\
\overline{\tau}_{xy}(a, b, 0) &= \frac{100E_2}{q_0 S^4 h} w \\
S &= \frac{a}{h}
\end{align*} \] \hspace{1cm} (3.4)
3.1. Comparison of the results

Results of the presented formulation are compared with those of FEM (Ray and Malik, 2004), HOSNT12 (Shiyekar and Kant, 2011) and the exact solution by Malik and Ray (2004). Three laminate configurations are taken into account: three-layered symmetric \([0°/90°/0°]\), four-layered symmetric \([0°/90°/90°/0°]\) and four-layered anti-symmetric \([0°/90°/0°/90°]\). Material set 1, Eq. (3.1), is used for laminas in this Section. Mechanical and electric potential loadings are considered as the following cases:

- Case 1: doubly sinusoidal mechanical load \((q_0 = q_{z,11} = 40\text{ N/m}^2, \text{downward})\) without applied voltage \((V = 0)\).
- Case 2: doubly sinusoidal mechanical load \((q_0 = q_{z,11} = 40\text{ N/m}^2, \text{downward})\) with doubly sinusoidal applied voltage at the top of PFRC \((V = +100\text{ V})\).
- Case 3: doubly sinusoidal mechanical load \((q_0 = q_{z,11} = 40\text{ N/m}^2, \text{downward})\) with doubly sinusoidal applied voltage at the top of PFRC \((V = -100\text{ V})\).

Considering various thickness ratios \((S = 10, 20\) and 100\) and various mechanical and electric loads, normalized in-plane and transverse displacement \((u, v)\) and the in-plane normal and shear stresses for the hybrid laminate \([0°/90°/0°]\) are listed in Table 1 and Table 2, respectively. It is observed that the obtained displacements and stresses are in good agreement with the exact solution, FEM and HOSNT12 results. In comparison to the exact solution, the presented theory, especially in the case of the thin plate \((S = 100)\), is more accurate than FEM and HOSNT12. It should be noted that the present theory involves only four unknown functions, and compared to HOSNT12 with 12 unknown functions it can be concluded that this theory is very simple and accurate. The results indicate that effect of actuation is more effective for thick laminates than thin laminates. Also, the obtained displacements and stresses are more affected by electrical loads than the mechanical load.

Table 1. Normalized displacements of the square substrate \([0°/90°/0°]\)

<table>
<thead>
<tr>
<th>Theory</th>
<th>(S = 10)</th>
<th>(S = 20)</th>
<th>(S = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V = 0)</td>
<td>(V = 100)</td>
<td>(V = -100)</td>
</tr>
<tr>
<td>Present</td>
<td>0.00671</td>
<td>-2.85894</td>
<td>2.87327</td>
</tr>
<tr>
<td>HOSNT12</td>
<td>0.00632</td>
<td>-3.11842</td>
<td>3.13105</td>
</tr>
<tr>
<td>FEM</td>
<td>0.00580</td>
<td>-2.82040</td>
<td>2.83190</td>
</tr>
<tr>
<td>Exact</td>
<td>0.00660</td>
<td>-3.14100</td>
<td>3.15420</td>
</tr>
<tr>
<td>(u(0), (b/2, h/2))</td>
<td>(-0.57405)</td>
<td>(128.4392)</td>
<td>(-129.587)</td>
</tr>
<tr>
<td>HOSNT12</td>
<td>(-0.66806)</td>
<td>(129.0550)</td>
<td>(-130.3910)</td>
</tr>
<tr>
<td>FEM</td>
<td>(-0.65110)</td>
<td>(122.4600)</td>
<td>(-124.7001)</td>
</tr>
<tr>
<td>Exact</td>
<td>(-0.71000)</td>
<td>(132.9000)</td>
<td>(-134.3000)</td>
</tr>
</tbody>
</table>

In the above and in all subsequent tables, values diven in square brackets denote percentage error calculated as follows: \(\% \text{ error} = \frac{\text{calculated} - \text{exact value}}{\text{exact value}} \times 100\)
The results of the in-plane and transverse displacement as well as the in-plane normal and shear stresses of the four-layered laminated composite \([0^\circ/90^\circ/90^\circ/0^\circ]\) are shown in Table 3. The obtained results using the presented theory are in good agreement with the exact solution and HOSNT12 results. In some cases, the present theory gives more accurate results compared to HOSNT12 for the laminate \([0^\circ/90^\circ/90^\circ/0^\circ]\); for example, for a moderately thick laminate \((S = 10)\) subjected to negative voltage, the maximum percent error in the present formulation and HOSNT12 are 3.88% and 16.30%, respectively. For a thin plate, \(S = 100\), considering various electromechanical loads, the present results are more accurate than HOSNT12. The results of the in-plane and transverse displacement of the four-layered anti-symmetric laminated composite \([0^\circ/90^\circ/0^\circ/90^\circ]\) are listed in Table 4. Again, the results obtained by the presented formulation are in good agreement with the exact solution and FEM and HOSNT12 results.

Table 2. Normalized stresses of the square substrate \([0^\circ/90^\circ/0^\circ]\)

<table>
<thead>
<tr>
<th>Theory</th>
<th>(S = 10)</th>
<th>(S = 20)</th>
<th>(S = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V = 0)</td>
<td>(V = 100)</td>
<td>(V = -100)</td>
</tr>
<tr>
<td>(\sigma(x/h, b/2, \pm h/2))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>–0.53358</td>
<td>226.54470</td>
<td>–227.6118</td>
</tr>
<tr>
<td></td>
<td>[0.01]</td>
<td>[–8.93]</td>
<td>[–8.89]</td>
</tr>
<tr>
<td>HOSNT12</td>
<td>0.55950</td>
<td>–75.6089</td>
<td>76.7279</td>
</tr>
<tr>
<td></td>
<td>[–0.50]</td>
<td>[5.50]</td>
<td>[5.40]</td>
</tr>
<tr>
<td>FEM</td>
<td>–0.50746</td>
<td>247.54300</td>
<td>–248.5580</td>
</tr>
<tr>
<td></td>
<td>[–3.91]</td>
<td>[–0.49]</td>
<td>[–0.51]</td>
</tr>
<tr>
<td>Exact</td>
<td>0.55160</td>
<td>–70.76880</td>
<td>71.87200</td>
</tr>
</tbody>
</table>

\(|\psi|_{\text{xy}}(0,0,\pm h/2)\)
3.2. Parametric study

In this Section, a parametric study is carried out in order to investigate the effects of the thickness ratio, aspect ratio, number of layers, staking sequence and the amount of electrostatic loading on the displacements and stresses. A three-layered symmetric \([0^\circ/90^\circ/0^\circ]\) laminate with a PFRC layer at the top is considered, and material set 2, Eq. (3.2), is used for laminas. Considering various aspect ratios, thickness ratios and applied electric voltages, the normalized in-plane and transverse displacements \((\mathbf{w})\) as well as the in-plane normal and shear stresses \((\mathbf{\tau}_x, \mathbf{\tau}_{xy})\) are collected in Table 5.

Figure 2 shows the effect of the aspect ratio \(a/b\) on the normalized central deflection \(w\). It can be seen that the maximum values of \(w\) are accrued for square laminates, and the deflections...
Table 4. Normalized displacements of the four-layered $[0^\circ/90^\circ/0^\circ/90^\circ]$ square laminate

<table>
<thead>
<tr>
<th>Theory</th>
<th>$S = 10$</th>
<th>$S = 20$</th>
<th>$S = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V = 0$</td>
<td>$V = 100$</td>
<td>$V = -100$</td>
</tr>
<tr>
<td>Present</td>
<td>0.00958</td>
<td>-3.37719</td>
<td>3.4004</td>
</tr>
<tr>
<td></td>
<td>-7.88</td>
<td>-33.90</td>
<td>-33.72</td>
</tr>
<tr>
<td></td>
<td>-0.00638</td>
<td>0.60289</td>
<td>-0.6156</td>
</tr>
<tr>
<td>HOSNT12</td>
<td>0.00971</td>
<td>-4.73418</td>
<td>4.7356</td>
</tr>
<tr>
<td></td>
<td>-6.64</td>
<td>-7.34</td>
<td>-7.34</td>
</tr>
<tr>
<td></td>
<td>-0.00614</td>
<td>0.83670</td>
<td>-0.8489</td>
</tr>
<tr>
<td>FEM</td>
<td>0.00920</td>
<td>-4.53640</td>
<td>4.5643</td>
</tr>
<tr>
<td></td>
<td>-11.54</td>
<td>-11.21</td>
<td>-11.03</td>
</tr>
<tr>
<td></td>
<td>-0.00590</td>
<td>0.93350</td>
<td>-0.9452</td>
</tr>
<tr>
<td>Exact</td>
<td>0.01040</td>
<td>-5.10940</td>
<td>5.1301</td>
</tr>
<tr>
<td></td>
<td>-0.00630</td>
<td>0.77550</td>
<td>-0.7882</td>
</tr>
</tbody>
</table>

$\bar{u}(0, b/2, \pm h/2)$

$\bar{w}(a/2, b/2, 0)$

are decreased by an increase in the aspect ratio. Also the effect of actuation is decreased by the growth of the aspect ratio. The effect of the thickness ratio a/h on the normalized stress $\bar{\sigma}_x$ with applied electric voltage $V = 100$ is presented in Fig. 3. It is observed that the effect of the aspect ratio is decreased by the growing thickness ratio.

![Fig. 2. Effect of the aspect ratio on the normalized deflection \bar{w} of the symmetric substrate $[0^\circ/90^\circ/0^\circ]$ considering various electric voltages ($S = 10$)](image)

Some anti-symmetric square laminates $[0^\circ/90^\circ/\ldots]$ with various numbers of layers are considered and the transverse deflection \bar{w} as well as the in-plane stress $\bar{\sigma}_x$ due to different amounts of electric voltage are obtained and listed in Table 6. It is seen that the values of \bar{w} and $\bar{\sigma}_x$ are significantly decreased by an increase in the number of layers.
Table 5. Normalized displacements and stresses of the three-layered [0°/90°/0°] square laminate

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(S)</th>
<th>(V)</th>
<th>(\varphi(0, h/2, h/2))</th>
<th>(\varphi(a/2, b/2, 0))</th>
<th>(\tau_x(a/2, b/2, h/2))</th>
<th>(\tau_{xx}(0, 0, h/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0.0095</td>
<td>−1.0124</td>
<td>−0.5383</td>
<td>0.04208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>−7.7428</td>
<td>366.6242</td>
<td>433.4841</td>
<td>−27.1126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>−15.4952</td>
<td>734.2608</td>
<td>867.5064</td>
<td>−54.2674</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>−23.2476</td>
<td>1101.897</td>
<td>1301.5288</td>
<td>−81.4221</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.0085</td>
<td>−0.6523</td>
<td>−0.4797</td>
<td>0.0375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−1.9003</td>
<td>81.1370</td>
<td>106.3755</td>
<td>−6.6224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−3.8092</td>
<td>162.9264</td>
<td>213.2367</td>
<td>−13.2823</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−5.7181</td>
<td>244.7158</td>
<td>320.0948</td>
<td>−19.9422</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>−0.0082</td>
<td>−0.5324</td>
<td>−0.4602</td>
<td>0.0359</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−0.0108</td>
<td>0.2517</td>
<td>0.6029</td>
<td>−0.0302</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−0.0298</td>
<td>1.0359</td>
<td>1.6660</td>
<td>−0.0964</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−0.0488</td>
<td>1.8201</td>
<td>2.7291</td>
<td>−0.1625</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>0</td>
<td>0.0063</td>
<td>−0.6524</td>
<td>−0.3641</td>
<td>0.0419</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−5.9044</td>
<td>243.1363</td>
<td>333.7615</td>
<td>−29.8249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−11.8152</td>
<td>486.9251</td>
<td>667.8871</td>
<td>−59.6916</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−17.7260</td>
<td>730.7138</td>
<td>1002.0127</td>
<td>−89.5584</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.005</td>
<td>−0.4290</td>
<td>−0.3252</td>
<td>0.0374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−1.4521</td>
<td>53.9368</td>
<td>82.0690</td>
<td>−7.2974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−2.9098</td>
<td>108.3027</td>
<td>164.4533</td>
<td>−14.6322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−4.3676</td>
<td>162.6685</td>
<td>246.8305</td>
<td>−21.9670</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0054</td>
<td>−0.3543</td>
<td>−0.3122</td>
<td>0.0359</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−0.0091</td>
<td>0.1672</td>
<td>0.5078</td>
<td>−0.0370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−0.0236</td>
<td>0.6889</td>
<td>1.3278</td>
<td>−0.1099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−0.0381</td>
<td>1.2106</td>
<td>2.1479</td>
<td>−0.1828</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
<td>0</td>
<td>0.0022</td>
<td>−0.2503</td>
<td>−0.1332</td>
<td>0.0241</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−3.2333</td>
<td>83.7739</td>
<td>185.0509</td>
<td>−23.3670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−6.4688</td>
<td>167.7981</td>
<td>370.2351</td>
<td>−46.7641</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−9.7043</td>
<td>251.8123</td>
<td>555.4193</td>
<td>−70.1581</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.0018</td>
<td>−0.1477</td>
<td>−0.1126</td>
<td>0.0203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−0.7961</td>
<td>17.5660</td>
<td>45.5192</td>
<td>−5.7081</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−1.5942</td>
<td>35.2797</td>
<td>91.1509</td>
<td>−11.4366</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−2.3922</td>
<td>52.9935</td>
<td>136.7827</td>
<td>−17.1650</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0017</td>
<td>−0.1132</td>
<td>−0.1056</td>
<td>0.0191</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>−0.0062</td>
<td>0.0528</td>
<td>0.3485</td>
<td>−0.0378</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>−0.0142</td>
<td>0.2189</td>
<td>0.8026</td>
<td>−0.0968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>−0.0221</td>
<td>0.3850</td>
<td>1.2566</td>
<td>−0.1516</td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions

In this study, employing the four-variable refined plate theory, an analytical solution for cross-ply laminates integrated with a PFRC actuator subjected to mechanical and electrical loadings is presented. The governing equations are obtained using the principle of minimum potential energy and, in order to solve these equations, the Naveir solution has been utilized. The accuracy of the present method has been ascertained by comparing the obtained results with already published ones. It is observed that the present formulation gives more accurate results in predicting the
Fig. 3. Effect of the thickness ratio on the normalized stress σ_x of the symmetric substrate $[0^\circ/90^\circ/0^\circ]$ considering various aspect ratios ($V = 100$)

Table 6. Normalized deflection w and stress σ_x of anti-symmetric cross-ply $[0^\circ/90^\circ/\ldots]$ square laminates ($S = 100$)

<table>
<thead>
<tr>
<th>V</th>
<th>Number of layers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$w(a/2,b/2,0)$</td>
</tr>
<tr>
<td>0</td>
<td>-0.6102</td>
</tr>
<tr>
<td>50</td>
<td>0.1950</td>
</tr>
<tr>
<td>100</td>
<td>1.0003</td>
</tr>
<tr>
<td>150</td>
<td>1.8056</td>
</tr>
</tbody>
</table>

displacements and stresses as compared to FEM-FOST and HOSNT12 formulations. It should be noted that the present theory involves only four unknown functions and, compared to HOSNT12 with 12 unknown functions, it can be concluded that this formulation is very simple and accurate.

The effects of the thickness ratio, aspect ratio, number of layers, staking sequence and amount of electrostatic loading on the displacements and stresses have been investigated and the obtained findings reported. It is observed that actuation is more effective in the case of thick laminates than in thin laminates, and the effect of actuation is decreased by increasing the aspect ratio a/b. As expected, the maximum values of normalized displacements and stresses are accrued in square laminates, and they are decreased by an increase in the number of layers.

References

Manuscript received March 10, 2014; accepted for print November 28, 2014