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This study presents an analytical solution for cross-ply composite laminates integrated with
a piezoelectric fiber-reinforced composite (PFRC) actuator subjected to electromechanical
loading using the four-variable refined plate theory. This theory predicts parabolic variation
of transverse shear stresses and satisfies the zero traction on the plate surfaces without using
the shear correction factor. Using the principle of minimum potential energy, the governing
equations for simply supported rectangular plates are extracted and the Navier method is
adopted for solution of the equations. The comparison of obtained results with other common
plate theories and the exact solution indicates that besides the simplicity of the presented
formulation, it is very accurate in analysis of laminated composite plates integrated with
PFRC. Also the effects of the thickness ratio, aspect ratio, number of layers, staking sequence
and amount of electrostatic loading on the displacements and stresses are investigated and
the obtained findings are reported.
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1. Introduction

In the recent decades, piezoelectric materials due to their intrinsic coupled electromechanical
properties have been widely used as actuators and sensors in smart structures. Advantages of
piezoelectric materials like quick response, large power generation, work at very low temperatu-
res and vacuum compatibility cause these materials are widely utilized in structural engineering,
like aerospace, naval, automobile and space structures. A number of attractive piezoelectric ma-
terials like PZT, PVDF are available, but these monolithic piezoelectric material have certain
limitations like low piezoelectric constants, shape control (due to their weight) and high spe-
cific acoustic impedance. To overcome these limitations, usage of piezoelectric fiber-reinforced
composite (PFRC) has been an obvious choice (Kumar and Chakraborty, 2009). Malik and
Ray (2003) obtained effective piezoelectric coefficients of PFRC using a micromechanical model
through the strength of material approach.
Many investigators studied various analyses of composite laminates with embedded or surface

bonded piezoelectric layers, acting as sensors and actuators. Wang and Rogers (1991) proposed
an analytical solution of simply supported plates with embedded piezoelectric layers using the
classical laminated plate theory (CLPT). Mitchell and Reddy (1995) presented a higher order
shear deformation theory (HSDT) for composite laminates with a piezoelectric laminate. Ray
et al. (1993) presented an exact solution for simply supported square composite laminate with
embedded piezoelectric layers. Exact and finite element (FE) solutions for analysis of smart
structures containing PFRC actuators were proposed by Malik and Ray (2004) and Ray and
Malik (2004), respectively. Shiyekar and Kant (2011) presented a higher order shear and normal
deformation theory (HOSNT12) for analysis of laminates with PFRC actuators.
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A very recently developed shear deformation plate theory is a two-variable refined plate
theory that contains only two unknown parameters and satisfies the condition of free stress
without using the shear correction factor. This theory was introduced by Shimpi (2002) for
isotropic plates and then extended to orthotropic plates by Shimpi and Patel (2006a) and Thai
and Kim (2012). Analysis of laminated composite plates was done by Kim et al. (2009a) and
vibration and buckling studies were performed by Shimpi and Patel (2006b) and Kim et al.
(2009b), respectively. In the two-variable refined plate theory, the plate middle surface is assumed
to be unstrained and, therefore, only the bending effects are considered. In the four-variable
refined plate theory, two other parameters regarding in-plane displacements of the plate middle
surface are added. This theory was used for free vibrations of FG plates and bending analysis
of FG sandwich plates by Benachour et al. (2011) and Hamidi et al. (2014), respectively. Using
this theory, thermal buckling analysis of FG plates was performed by Bouiadjra et al. (2012).

In this paper, the four-variable refined plate theory is utilized for analysis of a laminate
composite integrated with piezoelectric actuators. Results obtained for various electromechanical
loads are compared with already published results. It is observed that the present theory is
very simple and accurate for analysis of laminates with PFRC actuators. Also the effect of the
thickness ratio, aspect ratio, electrostatic load, and stacking sequence on displacements and
stresses are studied.

2. Theory and formulations

Consider a simply supported rectangular cross-ply laminate of length a, width b integrated with
a piezoelectric fiber-reinforced composite (PFRC) layer as shown in Fig. 1. The right-handed
Cartesian coordinate system is located at the corner of the middle plane of the plate. Thickness
of the elastic substrate is h and thickness of the actuator is tp where tp is small compared with h.

Fig. 1. Geometry of the elastic substrate simply supported along all edges attached with a PFRC
actuator at the top

The plate is subjected to electromechanical loading due to the piezoelectric actuator located
at the top side. The four-variable refined plate theory is employed for modeling of flexure of the
plate.

2.1. Displacement and strain

According to assumptions of the refined plate theory, the displacement field (u in x-direction,
v in y-direction and w in z-direction) is introduced as below (Shimpi, 2002)
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w(x, y, z) = wb(x, y) + ws(x, y)

(2.1)

where u0 and v0 are the in-plane displacements of the mid-plane in the x and y direction, and
wb and ws are the bending and shear component of the transverse displacement, respectively.
The strain-displacement relationships are given by
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2.2. Constitutive equations

Elastic and electric fields for a single piezoelectric layer are coupled by the following linear
constitutive equations

σ = Qε− eE D = eTε+ ηE (2.4)

where Q is the stress-reduced stiffness, e is the piezoelectric constants matrix, η is the dielectric
constant matrix, E is the electric field intensity vector and (σ, ε) are stress and strain tensors.
The electric field owing to the variation in stresses (the direct piezoelectric effect) is assumed
to be insignificant compared with the applied electric field. This assumption has been utilized
by several researchers in literature, see Shiyekar and Kant (2011), Kapuria et al. (1997), Reddy
(1999) and Tauchert (1992). The coefficients Qij are known as functions of the engineering
constants in the principal material directions

Q11 =
E1

1− ν12ν21
Q12 =

ν12E2
1− ν12ν21

Q22 =
E2

1− ν12ν21
Q44 = G23 Q55 = G13 Q66 = G12

(2.5)

The effective piezoelectric constant matrix e and the dielectric matrix η for the PFRC layer are
given as
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The electric field E is derivable from an electrostatic potential ψ

Ei = −ψ,i i = 1, 2, 3 (2.7)

Since the laminate is made of several orthotropic laminas whose material axes are oriented
arbitrarily respect to the laminate coordinates, the constitutive equations of each lamina must
be transformed to the laminate coordinates (x, y and z in Fig. 1)
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and the transformed piezoelectric moduli eij are
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The first set of Eqs. (2.4) can be divided into the elastic (e) and piezoelectric (p) stress component

σ = σe − σp (2.11)

2.3. Governing equation

The governing equations will be obtained using the principle of minimum potential energy

δ(U + V ) = 0 (2.12)
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where the potential energy of external loads is given by

V = −

∫

A

q(wb + ws) dx dy (2.13)

and the strain energy of the laminate is determined as
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in which the elastic stress resultants and piezoelectric stress resultants are defined in Eqs. (2.16)
and Eqs. (2.17), repectively
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Substituting Eqs. (2.8) into Eqs. (2.16) and integrating through the plate thickness, the elastic
stress resultants are given as
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The governing equations and boundary conditions can be obtained by minimizing the total
potential energy with respect to u0, v0, wb and ws
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The boundary conditions for a simply supported plate are taken as below:
— at the edges x = 0 and x = a

v0 = 0 wb = 0 ws = 0 Mx = 0 Nx = 0 ψ = 0 (2.21)

— at the edges y = 0 and y = b

u0 = 0 wb = 0 ws = 0 My = 0 Ny = 0 ψ = 0 (2.22)

The Navier method is adopted for solution of the obtained governing equations using the follo-
wing infinite Fourier series for independent variables

u0 =
∞
∑

m=1,3,5

∞
∑

n=1,3,5
u0,mn cos

mπx
a
sin nπy

b
v0 =

∞
∑

m=1,3,5

∞
∑

n=1,3,5
v0,mn sin

mπx
a
cos nπy

b

wb =
∞
∑

m=1,3,5

∞
∑

n=1,3,5
wb,mn sin

mπx
a
sin nπy

b
ws =

∞
∑

m=1,3,5

∞
∑

n=1,3,5
ws,mn sin

mπx
a
sin nπy

b

(2.23)
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It can be easily verified that these expressions for displacements automatically satisfy the bo-
undary conditions. Also the external load and the electrostatic potential can be approximated
as the following double Fourier expansions

qz =
∞
∑

m=1,3,5

∞
∑

n=1,3,5

qz,mn sin
mπx

a
sin

nπy

b

ψ(x, y, z) =
∞
∑

m=1,3,5

∞
∑

n=1,3,5

ψmn(z) sin
mπx

a
sin

nπy

b

(2.24)

The electrostatic potential in the actuator layer is assumed to be linear through thickness of the
PFRC layer (Shiyekar and Kant, 201)

ψmn(z) =
Vt
tp
z −

Vth

2tp
(2.25)

3. Numerical results and discussions

In this Section, several simply supported hybrid cross ply plates consisting of an elastic substrate
with a piezoelectric layer of PFRC bonded to its top, subjected to mechanical and electric
potential loadings are considered. The thickness of the PFRC actuator is 250µm and thickness of
each orthotropic layer is 1mm. Two different kinds of graphite/epoxy composites are considered
for the substrate whose properties are as follows:

— material 1 (Malik and Ray, 2004)

[(E1, E2, G12, G23, G13), ν12] = [(172.9, 6.916, 3.458, 1.383, 1.383)GPa, 0.25] (3.1)

— material 2 (Kapuria and Achary, 2005)

[(E1, E2, G12, G23, G13), ν12] = [(181, 10.3, 7.17, 7.17, 2.87)GPa, 0.28] (3.2)

— and the material properties for the PFRC actuator are chosen as below (Malik and Ray,
2004)

C11 = 32.6GPa C12 = C21 = 4.3GPa C13 = C31 = 4.76GPa

C22 = C33 = 7.2GPa C23 = 3.85GPa C44 = 1.05GPa

C55 = C66 = 1.29GPa e31 = −6.76C/m
2

(3.3)

Since PFRC consists of a number of piezoelectric fibers surrounded by a matrix material, the
value of the effective piezoelectric constant in the direction of fibers e31 is significantly higher
than other effective piezoelectric constants, and they can be neglected in comparison to e31
(Malik and Ray, 2004).

For convenience, the following normalized parameters are used for presenting the numerical
results

σx
(a

2
,
b

2
,±

h

2

)

=
σx
q0S2

τxy
(

0, 0,±
h

2

)

=
τxy
q0S2

u
(

0,
b

2
,±

h

2

)

=
E2

q0S3h
u w

(a

2
,
b

2
, 0
)

=
100E2
q0S4h

w S =
a

h

(3.4)
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3.1. Comparison of the results

Results of the presented formulation are compared with those of FEM (Ray and Malik,
2004), HOSNT12 (Shiyekar and Kant, 2011) and the exact solution by Malik and Ray (2004).
Three laminate configurations are taken into account: three-layered symmetric [0◦/90◦/0◦], four-
layered symmetric [0◦/90◦/90◦/0◦] and four-layered anti-symmetric [0◦/90◦/0◦/90◦]. Material
set 1, Eq. (3.1), is used for laminas in this Section. Mechanical and electric potential loadings
are considered as the following cases:

• Case 1: doubly sinusoidal mechanical load (q0 = qz,11 = 40N/m
2, downward) without

applied voltage (V = 0).

• Case 2: doubly sinusoidal mechanical load (q0 = qz,11 = 40N/m
2, downward) with doubly

sinusoidal applied voltage at the top of PFRC (V = +100V).

• Case 3: doubly sinusoidal mechanical load (q0 = qz,11 = 40N/m
2, downward) with doubly

sinusoidal applied voltage at the top of PFRC (V = −100V).

Considering various thickness ratios (S = 10, 20 and 100) and various mechanical and elec-
trical loads, normalized in-plane and transverse displacement (u,w) and the in-plane normal and
shear stresses for the hybrid laminate [0◦/90◦/0◦] are listed in Table 1 and Table 2, respectively.
It is observed that the obtained displacements and stresses are in good agreement with the exact
solution, FEM and HOSNT12 results. In comparison to the exact solution, the presented theory,
especially in the case of the thin plate (S = 100), is more accurate than FEM and HOSNT12. It
should be noted that the present theory involves only four unknown functions, and compared to
HOSNT12 with 12 unknown functions it can be concluded that this theory is very simple and
accurate. The results indicate that effect of actuation is more effective for thick laminates than
thin laminates. Also, the obtained displacements and stresses are more affected by electrical
loads than the mechanical load.

Table 1. Normalized displacements of the square substrate [0◦/90◦/0◦]

Theory
S = 10 S = 20 S = 100

V = 0 V = 100 V = −100 V = 0 V = 100 V = −100 V = 0 V = 100 V = −100

u(0, b/2, h/2)

Present
0.00671 −2.85984 2.87327 0.00635 −0.70527 0.71797 0.00623 −0.02216 0.03463

[1.67] [−8.95] [−8.90] [0.79] [−2.43] [−2.40] [0.48] [−0.63] [0.08]

HOSNT12
0.00632 −3.11842 3.13105 0.00617 −0.71474 0.72709 0.00613 −0.02191 0.03416

[−4.31] [−0.72] [−0.73] [−2.05] [−1.13] [−1.16] [−1.20] [−4.33] [−1.66]

FEM
0.00580 −2.82040 2.83190 0.00600 −0.69290 0.70490 0.00610 −0.02170 0.03390

[−12.12] [−10.21] [−10.22] [−4.76] [−4.15] [−4.17] [−1.61] [−2.69] [−2.02]

Exact 0.00660 −3.14100 3.15420 0.00630 −0.72290 0.73560 0.00620 −0.02230 0.03460

w(a/b, b/2, 0)

Present
−0.57405 128.43902 −129.5871 −0.44833 30.05247 −30.9491 −0.40794 0.78957 −1.60545

[−19.13] [−3.56] [−3.50] [−7.86] [−0.94] [−1.15] [−0.31] [0.29] [−0.03]

HOSNT12
−0.66806 129.05500 −130.3910 −0.47112 29.77240 −30.7146 −0.40432 0.77533 −1.58397

[−5.91] [−2.89] [−2.91] [−3.18] [−1.86] [−1.90] [−1.12] [−1.52] [−1.31]

FEM
−0.65110 122.46000 −124.7001 −0.45710 28.28700 −29.2010 −0.40220 0.76320 −1.57760

[−8.30] [−7.86] [−7.15] [−6.06] [−6.76] [−6.74] [−1.64] [−3.06] [−1.71]

Exact −0.71000 132.90000 −134.3000 −0.48660 30.33700 −31.3100 −0.40890 0.78730 −1.60500

HOSNT12 – Shiyekar and Kant (2011), FEM – Ray and Malik (2004), exact – Malik and Ray (2004)

In the above and in all subsequent tables, values diven in square brackets denote percentage error
calculated as follows: [% error]=(calculated – exact value)/(exact value)×100
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The results of the in-plane and transverse displacement as well as the in-plane normal and
shear stresses of the four-layered laminated composite [0◦/90◦/90◦/0◦] are shown in Table 3.
The obtained results using the presented theory are in good agreement with the exact solution
and HOSNT12 results. In some cases, the present theory gives more accurate results compared
to HOSNT12 for the laminate [0◦/90◦/90◦/0◦]; for example, for a moderately thick laminate
(S = 10) subjected to negative voltage, the maximum percent error in the present formulation
and HOSNT12 are 3.88% and 16.30%, respectively. For a thin plate, S = 100, considering various
electromechanical loads, the present results are more accurate than HOSNT12. The results of
the in-plane and transverse displacement of the four-layered anti-symmetric laminated composite
[0◦/90◦/0◦/90◦] are listed in Table 4. Again, the results obtained by the presented formulation
are in good agreement with the exact solution and FEM and HOSNT12 results.

Table 2. Normalized stresses of the square substrate [0◦/90◦/0◦]

Theory
S = 10 S = 20 S = 100

V = 0 V = 100 V = −100 V = 0 V = 100 V = −100 V = 0 V = 100 V = −100

σ(a/b, b/2,±h/2)

Present

−0.53358 226.54470 −227.6118 −0.50494 55.8653 −56.8752 −0.49573 1.75183 −2.74541

[1.04] [−8.93] [−8.89] [0.28] [−2.45] [−2.40] [0.19] [−0.17] [−0.03]

0.55950 −75.6089 76.7279 0.52945 −18.0937 19.15266 0.51978 −0.21974 1.25934

[−0.50] [5.50] [5.40] [−0.19] [1.59] [1.47] [0.09] [0.75] [0.22]

HOSNT12

−0.50746 247.54300 −248.5580 −0.49326 56.75720 −57.74370 −0.48872 1.73795 −2.71540

[−3.91] [−0.49] [−0.51] [−2.03] [−0.89] [−0.91] [−1.23] [−0.97] [−1.06]

0.55160 −70.76880 71.87200 0.52389 −17.4131 18.46090 0.51439 −0.20484 1.23362

[−1.90] [−1.25] [−1.26] [−1.25] [−2.23] [−2.19] [−0.94] [−6.08] [−1.83]

FEM

−0.49150 235.46000 −236.4000 −0.50220 57.2670 −58.27600 −0.49410 1.74830 −2.73640

[−6.93] [−5.35] [−5.37] [−0.26] [0.00] [0.00] [−0.14] [−0.38] [−0.30]

0.52150 −71.56500 72.57000 0.53040 −17.0900 18.07400 0.51210 0.21060 1.24780

[−7.26] [−0.14] [−0.30] [−0.02] [−4.04] [−4.24] [−1.39] [−196.56] [−0.70]

Exact
−0.52810 248.7600 −249.8200 −0.50350 57.26900 −58.27600 −0.49480 1.75490 −2.74450

0.56230 −71.66600 72.79000 0.53050 −17.8100 18.87500 0.51930 −0.21810 1.25660

τxy(0, 0,±h/2)

Present

0.02196 −7.35976 7.34675 0.02008 −1.79866 1.83883 0.01972 −0.05282 0.09268

[−15.86] [−4.37] [−5.18] [−6.60] [−1.28] [−1.39] [0.10] [0.14] [0.52]

−0.02196 4.62176 −4.66569 −0.02078 1.12370 −1.16527 −0.02040 0.02516 −0.06597

[−20.43] [0.06] [−0.17] [−7.23] [0.04] [−0.22] [−0.00] [0.40] [0.01]

HOSNT12

0.02473 −7.56623 7.61569 0.02084 −1.79126 1.83293 0.01942 −0.05187 0.09071

[−5.24] [−1.69] [−1.71] [−3.09] [−1.69] [−1.71] [−1.43] [−1.58] [−1.62]

−0.02643 4.52824 −4.58109 −0.02191 1.10547 −1.14928 −0.02028 0.02462 −0.06518

[−4.25] [−1.96] [−1.99] [−2.20] [−1.58] [−1.59] [−0.59] [−1.74] [−1.18]

FEM

0.02410 −7.00660 7.05470 0.02140 −1.81400 1.85650 0.01970 −0.05260 0.09150

[−7.66] [−8.96] [−8.95] [−0.47] [−0.44] [−0.45] [0.00] [−0.19] [−0.76]

−0.02510 4.24190 −4.29200 −0.02240 1.12320 −1.16790 −0.02040 0.02502 −0.06580

[−9.06] [−8.16] [−8.17] [0.00] [0.00] [0.00] [0.00] [−0.16] [−0.24]

Exact
0.02610 −7.69600 7.74800 0.02150 −1.82200 1.86480 0.01970 −0.05270 0.09220

−0.02760 4.61900 −4.67400 −0.02240 1.12320 −1.16790 −0.02040 0.02506 −0.06596
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Table 3. Normalized displacements and stresses of the four-layered [0◦/90◦/90◦/0◦] square la-
minate

Theory V S
u w σx τxy

(0, b/2,−h/2) (a/2, b/2, 0) (a/2, b/2,−h/2) (0, 0,−h/2)

Present 100 10
0.4736 95.7006 −38.4517 3.0710

[2.53] [1.91] [2.59] [4.39]

HOSNT12 100 10
0.5105 96.2234 −31.2141 3.1209

[10.52] [2.47] [−16.72] [6.09]

Exact 100 10 0.4619 93.9010 −37.4800 2.9417

Present 100 20
0.1097 22.3460 −8.9204 0.7406

[0.82] [0.92] [0.84] [1.59]

HOSNT12 100 20
0.1097 22.1061 −8.1721 0.7306

[0.83] [−0.16] [−7.62] [0.22]

Exact 100 20 0.1088 22.1410 −8.8460 0.7290

Present 100 100
−0.0020 0.4811 0.1533 0.0096

[0.75] [0.82] [−0.65] [1.05]

HOSNT12 100 100
−0.0021 0.4722 0.1609 0.0093

[4.98] [−1.06] [4.25] [−1.82]

Exact 100 100 −0.0020 0.4772 0.1543 0.0095

(0, b/2,−h/2) (a/2, b/2, 0) (a/2, b/2,−h/2) (0, 0,−h/2)

Present −100 10
−0.4879 −96.8654 39.5857 −3.1155

[2.60] [1.62] [2.64] [4.02]

HOSNT12 −100 10
−0.5241 −97.6020 32.2792 −3.1738

[10.23] [2.40] [−16.30] [5.96]

Exact −100 10 −0.4755 −95.3180 38.5670 −2.9952

Present −100 20
−0.1232 −23.2568 9.9951 −0.7827

[0.90] [0.57] [0.89] [1.15]

HOSNT12 −100 20
−0.1230 −23.0727 9.2209 −0.7749

[0.73] [−0.23] [−6.93] [0.14]

Exact −100 20 −0.1221 −23.1250 9.9071 −0.7738

Present −100 100
−0.0112 −1.3104 0.9023 −0.0509

[0.28] [0.11] [0.23] [0.00]

HOSNT12 −100 100
−0.0111 −1.2961 0.8865 −0.0505

[−0.99] [−0.98] [−1.53] [−0.77]

Exact −100 100 −0.0112 −1.3089 0.9002 −0.0509

3.2. Parametric study

In this Section, a parametric study is carried out in order to investigate the effects of the
thickness ratio, aspect ratio, number of layers, staking sequence and the amount of electrostatic
loading on the displacements and stresses. A three-layered symmetric [0◦/90◦/0◦] laminate with a
PFRC layer at the top is considered, and material set 2, Eq. (3.2), is used for laminas. Considering
various aspect ratios, thickness ratios and applied electric voltages, the normalized in-plane and
transverse displacements (u and w) as well as the in-plane normal and shear stresses (σx and τxy)
are collected in Table 5.

Figure 2 shows the effect of the aspect ratio a/b on the normalized central deflection w. It
can be seen that the maximum values of w are accrued for square laminates, and the deflections
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Table 4. Normalized displacements of the four-layered [0◦/90◦/0◦/90◦] square laminate

Theory
S = 10 S = 20 S = 100

V = 0 V = 100 V = −100 V = 0 V = 100 V = −100 V = 0 V = 100 V = −100

u(0, b/2,±h/2)

Present

0.00958 −3.37719 3.4004 0.00915 −0.83340 0.85171 0.00901 −0.02462 0.04265

[−7.88] [−33.90] [−33.72] [−2.65] [−12.27] [−12.07] [0.08] [−0.72] [−0.35]

−0.00638 0.60289 −0.6156 −0.00602 0.14208 −0.15412 −0.00590 −0.00004 −0.01178

[1.26] [−22.25] [−21.97] [0.33] [−9.73] [−9.02] [0.00] [−100.21] [−0.17]

HOSNT12

0.00971 −4.73418 4.7536 0.00910 −0.92249 0.92948 0.00890 −0.02449 0.04227

[−6.64] [−7.34] [−7.34] [−3.16] [−2.90] [−4.05] [−1.11] [−1.24] [−1.25]

−0.00614 0.83670 −0.8489 −0.00593 0.15559 −0.16124 −0.00590 −0.00010 −0.01163

[−2.60] [7.89] [7.71] [−1.14] [−1.15] [−4.82] [0.00] [−100.56] [−1.48]

FEM

0.00920 −4.53640 4.5643 0.00890 −0.85580 0.87350 0.00890 −0.02420 0.04190

[−11.54] [−11.21] [−11.03] [−5.32] [−9.92] [−9.83] [−1.11] [−2.42] [−2.10]

−0.00590 0.93350 −0.9452 −0.00590 0.16260 −0.17440 −0.00590 0.01790 −0.01150

[−6.35] [20.37] [19.92] [−1.67] [3.30] [2.95] [0.00] [−2.19] [−2.54]

Exact
0.01040 −5.10940 5.1301 0.00940 −0.95000 0.96870 0.00900 −0.02480 0.04280

−0.00630 0.77550 −0.7882 −0.00600 0.15740 −0.16940 −0.00590 −0.01180 0.01830

w(a/2, b/2, 0)

Present
−0.64860 133.12105 −134.6003 −0.51824 31.43049 −32.4669 −0.47637 0.78180 −1.73455

[−9.12] [−9.90] [−9.76] [−3.15] [−2.94] [−2.94] [0.00] [0.00] [0.00]

HOSNT12
−0.65578 149.4720 −147.7830 −0.51616 31.94070 −32.3655 −0.47082 0.77082 −1.71292

[−8.12] [−0.86] [−0.93] [−3.54] [−1.37] [−3.25] [−1.17] [−1.40] [−1.25]

FEM
−0.66430 131.9700 −131.6800 −0.51020 30.14200 −31.1630 −0.46940 0.75840 −1.69700

[−6.92] [−10.68] [−11.72] [−4.65] [−6.92] [−6.85] [−1.47] [−2.99] [−2.17]

Exact −0.71370 147.7500 −149.1700 −0.53510 32.38300 −33.4530 −0.47640 0.78180 −1.73460

are decreased by an increase in the aspect ratio. Also the effect of actuation is decreased by the
growth of the aspect ratio. The effect of the thickness ratio a/h on the normalized stress σx
with applied electric voltage V = 100 is presented in Fig. 3. It is observed that the effect of the
aspect ratio is decreased by the growing thickness ratio.

Fig. 2. Effect of the aspect ratio on the normalized deflection w of the symmetric substrate [0◦/90◦/0◦]
considering various electric voltages (S = 10)

Some anti-symmetric square laminates [0◦/90◦/ . . .] with various numbers of layers are con-
sidered and the transverse deflection w as well as the in-plane stress σx due to different amounts
of electric voltage are obtained and listed in Table 6. It is seen that the values of w and σx are
significantly decreased by an increase in the number of layers.
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Table 5. Normalized displacements and stresses of the three-layered [0◦/90◦/0◦] square laminate

a/b S V u(0, b/2, h/2) w(a/2, b/2, 0) σx(a/2, b/2, h/2) τxy(0, 0, h/2)

1 5 0 0.0095 −1.0124 −0.5383 0.04208

50 −7.7428 366.6242 433.4841 −27.1126

100 −15.4952 734.2608 867.5064 −54.2674

150 −23.2476 1101.897 1301.5288 −81.4221

10 0 0.0085 −0.6523 −0.4797 0.0375

50 −1.9003 81.1370 106.3785 −6.6224

100 −3.8092 162.9264 213.2367 −13.2823

150 −5.7181 244.7158 320.0948 −19.9422

100 0 0.0082 −0.5324 −0.4602 0.0359

50 −0.0108 0.2517 0.6029 −0.0302

100 −0.0298 1.0359 1.6660 −0.0964

150 −0.0488 1.8201 2.7291 −0.1625

1.5 5 0 0.0063 −0.6524 −0.3641 0.0419

50 −5.9044 243.1363 333.7615 −29.8249

100 −11.8152 486.9251 667.8871 −59.6916

150 −17.7260 730.7138 1002.0127 −89.5584

10 0 0.005 −0.4290 −0.3252 0.0374

50 −1.4521 53.9368 82.0600 −7.2974

100 −2.9098 108.3027 164.4453 −14.6322

150 −4.3676 162.6685 246.8305 −21.9670

100 0 0.0054 −0.3543 −0.3122 0.0359

50 −0.0091 0.1672 0.5078 −0.0370

100 −0.0236 0.6889 1.3278 −0.1099

150 −0.0381 1.2106 2.1479 −0.1828

2.5 5 0 0.0022 −0.2503 −0.1332 0.0241

50 −3.2333 83.7739 185.0509 −23.3670

100 −6.4688 167.7981 370.2351 −46.7641

150 −9.7043 251.8123 555.4193 −70.1581

10 0 0.0018 −0.1477 −0.1126 0.0203

50 −0.7961 17.5660 45.5192 −5.7081

100 −1.5942 35.2797 91.1509 −11.4366

150 −2.3922 52.9935 136.7827 −17.1650

100 0 0.0017 −0.1132 −0.1056 0.0191

50 −0.0062 0.0528 0.3485 −0.0378

100 −0.0142 0.2189 0.8026 −0.0968

150 −0.0221 0.3850 1.2566 −0.1516

4. Conclusions

In this study, employing the four-variable refined plate theory, an analytical solution for cross-ply
laminates integrated with a PFRC actuator subjected to mechanical and electrical loadings is
presented. The governing equations are obtained using the principle of minimum potential energy
and, in order to solve these equations, the Naveir solution has been utilized. The accuracy of the
present method has been ascertained by comparing the obtained results with already published
ones. It is observed that the present formulation gives more accurate results in predicting the



Analysis of cross-ply laminates with piezoelectric fiber-reinforced composite actuators... 451

Fig. 3. Effect of the thickness ratio on the normalized stress σx of the symmetric substrate [0
◦/90◦/0◦]

considering various aspect ratios (V = 100)

Table 6. Normalized deflection w and stress σx of anti-symmetric cross-ply [0
◦/90◦/ . . .] square

laminates (S = 100)

Number of layers

V 4 6 10

w(a/2, b/2, 0) σx(a/2, b/2, h/2) w(a/2, b/2, 0) σx(a/2, b/2, h/2) w(a/2, b/2, 0) σx(a/2, b/2, h/2)

0 −0.6102 −0.6461 −0.5774 −0.5782 −0.5627 −0.5380

50 0.1950 0.5759 −0.1049 0.1427 −0.3026 −0.1405

100 1.0003 1.7980 0.3677 0.8635 −0.0426 0.2571

150 1.8056 3.0202 0.8406 1.5843 0.2174 0.6546

displacements and stresses as compared to FEM-FOST and HOSNT12 formulations. It should be
noted that the present theory involves only four unknown functions and, compared to HOSNT12
with 12 unknown functions, it can be concluded that this formulation is very simple and accurate.
The effects of the thickness ratio, aspect ratio, number of layers, staking sequence and amount

of electrostatic loading on the displacements and stresses have been investigated and the obtained
findings reported. It is observed that actuation is more effective in the case of thick laminates
than in thin laminates, and the effect of actuation is decreased by increasing the aspect ratio a/b.
As expected, the maximum values of normalized displacements and stresses are accrued in square
laminates, and they are decreased by an increase in the number of layers.
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