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The paper deals with the design of optimized input shapers for non-vibrational control of
flexible mechatronic systems. The described method is based on a combination of advantages
from two approaches – precomputed control curves and on-line shapers. The strategy has two
steps. Primarily, an optimized precomputed curve is found as a solution to the point-to-point
control problem with respect to any requested optimization goals. Then it is transformed into
an on-line shaper with the re-entry property. The resulting shaper transforms any arbitrary
input signal to a non-vibrational one. In contrast to other techniques, the shaper length is
not determined from the system natural frequency. The shaper can be easily modified with
respect to position, velocity, acceleration or jerk control. The theoretical results are verified
by experiments using a laboratory crane.
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1. Introduction

The fast and precise positioning of mechatronic structures is a challenging problem when fle-
xibility has to be taken into account and residual vibrations appear. There are basically two
main control approaches – feedback and feedforward control. Application of shaped input si-
gnals belongs to the latter group. It is based on the input signal that is modified to achieve zero
residual vibrations. This principle has been effectively used in many applications such as the
robot manipulator (Chang et al., 2005), telescopic handler (Park et al., 2004), antisway crane
(Valášek, 1995) etc.

The first form of command/input shaping was the posicast control (Smith, 1957). The step
signal was broken into two smaller steps, one delayed in time with respect to the system na-
tural frequency. Superposition of the responses to these steps led to elimination of vibrations.
The method is very sensitive to modeling errors. Nevertheless, it was evolved using more step
changes (Sugiyama and Uchino, 1986) or precisely timed sine waves (Aspinwall, 1980). Other
approaches were based on an analysis using the Laplace transform (domain) synthesis (Bhat
and Miu, 1990; Singh and Vadali, 1993) or using the theory of time-delayed systems (Vyhĺıdal
et al., 2012).

Today, we can divide existing shaping techniques into two groups – precomputed curves and
on-line shapers (Singhose and Seering, 1997). The former ones solve the point-to-point control
problem when both initial and final states of the system are known in advance, but they cannot
be used in case the input is changing. Usually, they are based on a combination of precomputed
signals with a zero contribution to the system natural frequency and are used, e.g. for design
of cam profiles (Wiederrich and Roth, 1974) or in time optimal control (Lau and Pao, 2003).
Some of them are based on the differential flatness property of a nonlinear system and enable
generation of a trajectory following the control (Post et al., 2011). Shapers, on the other hand,
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act like filters of any arbitrary input signal and modify it not to excite vibration, Fig. 1. The
price for that is a delay in the settling time and/or an increase in the required power (Beneš,

Fig. 1. Comparison of the system response to the shaped and unshaped control input

2012). Shapers are capable of processing a new input signal even if the previous task has not yet
been finished. We call this behaviour re-entry property. Probably the most popular method in
this group is the patented “Input Shaping” (Singhose, 1997; Singer and Seering, 1990; Singhose
and Seering, 1991) based on the convolution of the input signal with a series of precisely timed
and scaled pulses.

The advantages and disadvantages of both existing groups are obvious. Precomputed curves
can be highly optimised but they do not have the re-entry property and, therefore, cannot be
used for on-line systems, e.g. a manually operated crane. Shapers are capable of dealing with
on-line control but usually they cannot be optimised to a greater extent because their time
length is determined as a multiple of the system natural period and the shape is usually limited
to pulses, steps and ramps.

Another problem is that the above mentioned approaches are designed and mostly applied
to linear systems. Their extension towards nonlinear systems is a great challenge. The crane
is in fact a non-linear system. Many on-line shapers assume that the influence of non-linearity
is small and they are successful (Post et al., 2011). The second approach is that non-linear
dynamics is decomposed into quasi-linear subsystems. The example is a rotary crane (der-
rick) decomposed into an equivalent portal crane tangential to the trajectory where separate
on-line shapers are used (Zavřel et al., 2004; Piazzi et al., 2002). The third approach is usage of
differential flatness that constructs the full relationship between the input and all outputs (Post
et al., 2011; Schindele et al., 2009; Zimmert and Sawodny, 2010; Osmic et al., 2014; Heyden
and Woernle, 2006). The fourth approach is the use of a non-linear quadratic regulator (NQR)
for stable solution of the trajectory (Kittnar et al., 2004). The fifth approach is control using
harmonic functions that constructs the missing control input for flexible modes (Neusser et al.,
2013). The third to fifth approaches heavily depend on the knowledge of the system model and
complete state measurement. If this is not fulfilled, the control quality is deteriorated. The first
and second approaches based on shapers show robustness to model uncertainties and are still
worth further developing.

Therefore, this paper describes a new approach to the shaper design which combines the
advantages of both groups of precomputed curves and on-line re-entry shapers. The completely
new result is an optimized on-line shaper with adjustable time length which makes it possi-
ble to minimize the required power of the used drives for the chosen reasonable positioning
time.
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2. Theoretical background

The state space representation of a system with the system matrix A, input matrix B, state
vector y and input vector u is written as

ẏ = Ay(t) +Bu(t) (2.1)

The solution to the point-to-point (PTP) control problem for (2.1) with the start time at t1,
the finish time t2 and known initial and final states y(t1), y(t2), respectively, can be derived in
the form (Lewis, 1992)

y(t2) = e
A(t2−t1)y(t1) +

t2∫

t1

eA(t2−τ)Bu(τ) dτ (2.2)

which can be transformed to

e−At2y(t2)− e
−At1y(t1) =

t2∫

t1

e−AτBu(τ) dτ (2.3)

The expression on the right side of (2.4) can be rewritten as a sum of contributions from
particular inputs

e−At2y(t2)− e
−At1y(t1) =

n∑

l=1

t2∫

t1

e−Aτul(τ) dτ bl (2.4)

where n is the total number of inputs, ul is the l-th input, bl is the corresponding column of the
B matrix.
Assuming the controllability of system (2.1), there is a unique transform to the Jordan

canonical form

ż(t) = Jz(t) +Du(t) J = P−1AP z = P−1y D = P−1B (2.5)

where J is a block diagonal matrix made of Jordan blocks, P is a regular transform matrix.
Then the solution to (2.3) can be expressed as

e−Jt2z(t2)− e
−Jt1z(t1) =

t2∫

t1

e−JτDu(τ) dτ (2.6)

with

eJt = diag{eJit} eJit = epit
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(2.7)

where pi is the pole of the Jordan block Ji with the order ri+1. Analogously to (2.4), the right
side of (2.6) can be rewritten as a sum of particular inputs ul

e−Jt2z(t2)− e
−Jt1z(t1) =

n∑

l=1

t2∫

t1

e−Jτul(τ) dτ dl (2.8)

where dl is the l-th column of D matrix corresponding to the input ul.
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Note that the convolution integral on the right side resembles the finite time Laplace trans-
form as defined by Miu (1993)

U(s) =

t2∫

t1

e−sτu(τ) dτ (2.9)

therefore, the solution to the PTP control problem can be written as

n∑

l=1

Ul(s)|s=J dl = e
−Jt2z(t2)− e

−Jt1z(t1) (2.10)

or more generally for the system not in the Jordan form

n∑

l=1

Ul(s)|s=A bl = e
−At2y(t2)− e

−At1y(t1) (2.11)

where Ul(s) is the finite time Laplace transform of the l-th input. The solution ul(t) in the time
domain is the inverse finite time Laplace transform of Ul(s).
Note that general equation (2.11) enables calculation of the control input for any arbitrary

boundary states y(t1), y(t2). The rest-to-rest positioning without vibrations in the final position
is just one special application. Another application could be, e.g. smooth acceleration to a desired
velocity or even vibration elimination from a known non-zero initial state. Moreover, conditions
(2.11) are algebraic and, therefore, there is no need to solve differential equations. Finally, note
that there is no limitation in terms of the time length. It is not necessarily defined by a multiple
of the system natural frequency or by other constraints.
Now this approach will be applied to a simple model consisting of two masses m1, m2

connected by a spring k and a viscous damper c as shown in Fig. 2.

Fig. 2. Two-mass model

This system is described by the matrix equation

Mẍ(t) +Cẋ+Kx(t) = f(x) (2.12)

where x is a vector of coordinates, M, C, K are mass, damping and stiffness matrices, and f is
a vector of input forces (see Fig. 2) defined as

x =

[

x1
x2

]

M =

[

m1 0
0 m2

]

C =

[

c −c
−c c

]

K =

[

k −k
−k k

]

f =

[

f1
0

]

. . .

(2.13)

Non-vibrational conditions in the final position Xf of the PTP task are

x(t2) =

[

Xf
Xf

]

ẋ(t2) =

[

0
0

]

(2.14)
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Differential equation of the second order (2.12) can be rewritten as a set of first order
equations transformed to the Jordan canonical form and rewritten as


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ẏ3
ẏ4
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︸︷︷︸

B

u (2.15)

where u = f1(m1 +m2)/(m1m2) and p, p
∗ are complex conjugated poles of flexible modes

p = −ξω + j
√

1− ξ2ω p∗ = −ξω − j
√

1− ξ2ω

ω =

√

k(m1 +m2)

m1m2
ξ =
c(m1 +m2)

2ωm1m2

(2.16)

Actually, the use of the Jordan form is not necessary, but here it is used for a better un-
derstating of the whole calculation process and also for the proof of the formula of Bhat and
Miu (1991).

Boundary conditions (2.14) are transformed to

y(t2) = [Xf , 0, 0, 0]
T (2.17)

The general solution to the PTP control problem is defined by equation (2.11). Assuming
that t1 = 0, t2 = T and zero initial conditions y(t1) = 0, the right side of (2.11) is

e−At2y(t2)− e
−At1y(t1) = e

−ATy(T )− e−A0y(0) = e(−AT )
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(2.18)

The expression on the left side in (2.11) can be calculated as follows. Let us assume that the
finite time Laplace transform U(s) can be written as a Taylor series

U(s) = U0 + U1s+ U2s
2 + . . . (2.19)

then

U(s)|s=A = U0
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According to (2.11) U(s) is multiplied by the input vector b1 (note that there is only one input)

U(s)|s=A[0; 1; 1; 1]
T =
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(2.21)

Using (2.18) and (2.21), the conditions for non-vibrational control input (2.11) can be for-
mulated in a component form as

dU(s)

ds

∣
∣
∣
∣
s=0
= Xf U(s)|s=0 = 0 U(s)|s=p = 0 U(s)|s=p∗ = 0 (2.22)

The simple analytical formulation of necessary conditions for non-vibrational control (2.22)
used by Bhat and Miu (1991) is the result of description of the system in a canonical form.
Other state space representations usually need a numerical solution of (2.11). According to the
authors’ best knowledge, the step-by-step derivation of these conditions presented here has not
been published before.
Note that unlike other methods (Smith, 1957; Aspinwall, 1980; Sugiyama and Uchino, 1986)

using this formulation, the time length of the input signal T is not strictly defined as a multiple
of the system natural period and can be set arbitrarily. However, the solution u(t) from (2.22)
must be precomputed before the PTP operation and during the operation cannot be modified
as it is often required (see Section 6).

3. Control input synthesis

There is an infinite number of functions u(t) which satisfy equations (2.22). An algebraic method
for the synthesis of the control input called the Laplace transform (domain) synthesis technique
(Miu, 1993) assumes the control input as a linear combination of independent basis functions
φi(t) multiplied by weighting coefficients λi

u(t) =
2q+2
∑

i=1

λiφi(t) (3.1)

where q is a number of flexible modes pairs. Then, according to (2.22)

[
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∣
s=0

, U(s)|s=0, U(s)|s=p, U(s)|s=p∗
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T
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Φ1(0) · · · Φ2q+2(0)
Φ1(p1) · · · Φ2q+2(p1)
...
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...
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∗
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

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(3.2)
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where λ = [λ1, λ2, . . . , λ2q+2]
T and Φi(s) are finite time Laplace transforms of the basis func-

tions φi.

Using (3.2)1, the weighting coefficients λ can be obtained as

λ = S−1[Xf , 0, · · · , 0]
T (3.3)

But such formulation does not take into account specific properties of the chosen basis
functions φi(t). Some choices lead to non-invertible matrix S, in some cases the solution does
not exist (Beneš, 2012).

The solution to (3.2)1 exists if the rank h of matrix S is equal to the rank of the augmented
matrix [S|y(t2)]

h = h(S) = h(S|y(t2)) (3.4)

Note that h(S) is not necessarily equal to 2q + 2 from (3.1) because the rows of S could be
linear dependent.

Therefore, instead of (3.1) the control input should be reformulated to the form

u(t) =
j
∑

i=1

λiφi(t) j ­ h (3.5)

In the case j = h, there is one and only one combination of weighting coefficients λi, in the
case j > h the infinite number of solutions exists. For j < h, the solution to (2.22) does not
exist and j must be increased.

Equation (3.2)1 ensures that no vibration appears in PTP positioning. To meet other criteria,
more constrains could be added to this synthesis technique. These constrains can be formulated
both in s-domain and time domain. The common one is e.g. the time-domain continuity con-
straint (Miu, 1993), but this could be fulfilled using a proper set of basis functions, see (4.2).
Additional constraints can be used, e.g. for specifying states between the initial and final time
(trajectory tracking) or to increase robustness of the control to modelling errors. The increasing
of the robustness is based on placing multiple zeros in the system poles or on placing new zeros
near to the system poles. This strategy is similar to the idea of ZVD or EI shapers in Singhose
(1997), but as the time length can be still set arbitrarily this does not mean prolongation of the
input signal. Instead of an increase of the necessary time, we can increase the power used for
positioning. Or, probably more often, we can find the right balance between the signal length
and the required power regardless of the system natural frequency.

4. Optimization using free weighting coefficients

The situation j > h in (3.5) means that the first h coefficients can be expressed using non-
vibrational conditions (2.22) as a function of the rest of them, λi = fi(λh+1, . . . , λj), i = 1, . . . , h.
Then the free coefficients λh+1, . . . , λj could be used to meet additional conditions or as optimi-
zation parameters. This will be demonstrated using the simple model in Fig. 2. The optimization
goal is minimization of the required maximum power of the drive. Therefore, the cost function
for minimization is defined as

fc = max |u(t)| t ∈ 〈0, t2〉 (4.1)
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Consider the control input as a linear combination of sine waves in the form

u(t) =
2q+2
∑

i=1

λiφi(t) =
4∑

i=1

λi sin(ωsit)

U(s) =
2q+2
∑

i=1

λiΦi(s) =
4∑

i=1

λi
e−st2(−s sin(ωst2)− ω cos(ωst2)) + ωs

s2 + ω2s

(4.2)

with ωs = 2π/t2, which ensures the time domain continuity requirement automatically. The
supposed system parameters are m1 = m2 = 1kg, k = 100 kg·s

−2, c = 0kg·s−1. The desired
rigid body displacement is Xf = 1m and t2 = 1 s. Then the matrix S is

S =








0.1592 0.0796 0.0531 0.0398
0 0 0 0

−0.0393 − 0.0391i −0.3001 − 0.2986i 0.1220 + 0.1214i 0.0585 + 0.0582i
−0.0393 + 0.0391i −0.3001 + 0.2986i 0.1220 − 0.1214i 0.0585 − 0.0582i








(4.3)

and it has rank h(S) = 2. Since j = 4, we have two free parameters for optimization. Using
(3.2)1, we obtain

λ1 = 6.7239 − 0.5742λ3 − 0.3719λ4 λ2 = −0.8815 + 0.4818λ3 + 0.2437λ4 (4.4)

The basic non-optimal solution is that with λ3 = λ4 = 0

λbas = [6.7239,−0.8815, 0, 0]
T (4.5)

Simple optimization of the parameters λi according to cost function (4.1) by e.g. fminsearch
in the Matlab environment results in

λopt = [5.6154, 0.0273, 1.7280, 0.3127]
T (4.6)

The plots for a standard basic solution (4.5) and optimized solution (4.6) are compared in
Fig. 3. The required power is reduced by about 25%.

Fig. 3. System response to the basic and optimized shape of the input force

There could be more than one optimization goal. Figure 4 shows a Pareto set when both the
required power and its derivative are minimized. The minimized derivative of the required power
is important for reduction of costs of power electronics. The depicted points represent various
combinations of λ3 and λ4. Other optimization criteria can be formulated, e.g. to increase the
robustness to model errors, etc.
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Fig. 4. Pareto set

5. Optimization using parametric basis functions

Besides searching for an optimal combination of weighting coefficients, different parametric basis
functions can be used. In such a case, the optimization is focused on these parameters. A control
function generated as a combination of damped sinusoids is used as an example

u(t) = λ1e
a1t sin

(2π

T
t
)

+ λ2e
a2t sin

(4π

T
t
)

+ λ3e
a3t sin

(6π

T
t
)

+ λ4e
a4t sin

(8π

T
t
)

(5.1)

where the coefficients ai < 0 are the optimization parameters. The goal of the optimization is
minimization of the required power.
The optimization leads to the following coefficients

a = [−0.0164,−37.9986,−0.0001,−42.3485]T (5.2)

with the corresponding

λopt = [5.9175,−101.8635, 1.1877, 75.6287]
T (5.3)

The results are compared in Fig. 5 with basic non-optimal solution (4.5) which corresponds
to the setting a1,2,3,4 = 0. The required power is reduced by about 28%, which is even slightly
better than that in Fig. 3.

Fig. 5. System response to the parametrically optimized shape of the input force
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6. Re-entry online shaper from a precomputed curve

An approach described in previous Sections produces control inputs in the form of precomputed
curves. But these are not applicable when the system must be controlled on-line and the final
state is not known in advance. This could be for example a crane manually controlled by a
human operator. In such a case, we need a shaper which transforms any arbitrary input signal
to a non-vibrational one (Beneš et al., 2008). These shapers are usually based on the patented
“Input Shaping” (Singhose, 1997; Singer and Seering, 1990; Singhose and Seering, 1991) series
of pulses with time length fixed to the system natural frequency or even its multiples. Now a
more general technique will be described, which transforms an optimized control curve with an
arbitrarily set time length into a dynamic shaper.

The new approach (Beneš, 2012; Beneš et al., 2008) for such cases is as follows. The general
conditions for a control signal which does not excite vibrations are formulated in Section 2. Now
the signal which fulfils these conditions should be a product of the convolution of any arbitrary
input signal with the shaper. If the input signal is a unit pulse then the product of convolution
should be of the same shape as the corresponding precomputed curve, as shown in Fig. 6. In
other words, the shaper is a dynamic representation of a non-vibrational control curve. If the
control curve transforms the system from a zero initial state to a unit final state then we obtain a
shaper with the unit gain. The signal modified by this shaper transforms the system to the same
final state as the unshaped one but with zero residual vibrations. The procedure to synthetize
such a shaper is to find a differential equation and a corresponding dynamic block the solution
to which is the non-vibrational control curve from Section 2. This is a so called re-entry shaper,
and it can be re-entered during operation.

Fig. 6. Shaper convolution with the Dirac pulse

It is difficult to find a dynamic block corresponding to a certain general curve. Consequently,
it is a great benefit that our control signal is a linear combination of the basis functions. The
dynamic representation of the basis function is actually its finite time Laplace transform. For
example, the ramp shaper used in Fig. 6 is described as a transfer function

U(s) =
q

s2
(1− e−st1 − e−st2 + e−st3 + e−st4 − e−st5) (6.1)

where q is the ramp angle, ti are the switching times. The shape of the control curve is shown
in Fig. 7.

As the positive and negative parts of the ramp must be of the same length, the t5 is defined as

t5 = t4 + t3 − t2 − t1 (6.2)
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Fig. 7. Shape of the ramp control curve

Function (6.1) can be rewritten in a more compact form as

U(s) =
q

s2

5∑

i=0

Nie
−sti (6.3)

with

N = [1,−1,−1, 1, 1,−1] t0 = 0 (6.4)

For the two-mass model in Fig. 2 with the parameters m1 = m2 = 1kg, k = 100 kg·s
−2,

c = 1kg·s−1 the non-vibrational conditions are (2.22). Applying these conditions to (6.3), we
obtain the following set of conditions

5∑

i=0

Niti = 0
5∑

i=0

Nit
2
i = 0

5∑

i=0

Nit
3
i = −

6Xf
q

5∑

i=0

Nie
ξωti cos

(√

1− ξ2ωti
)

= 0
5∑

i=0

Nie
ξωti sin

(√

1− ξ2ωti
)

= 0

(6.5)

Two of them, (6.5)1 and (6.5)2, result from U(s)|s=0 = 0. According to the definition of t5
in equation (6.2), constraint (6.5)1 is fulfilled automatically and, therefore, we have a set of four
equations (6.5)1-(6.5)5 with four unknowns t1, . . . , t4. For q = 5m·s

−3, the solution is a vector
of the switching times

t = [0, 0.2228, 0.8922, 1.5136, 1.6136, 2.0123] (6.6)

Note that due to transformation between the input u(t) and the control force f1(t),
u = f1(m1 +m2)/m1m2, the defined value of q is a ramp with the slope qF = 10N·s

−1.
Equation (6.3) can be used for the direct design of a re-entry shaper (Fig. 8). Transfer function

(6.3) is actually the description of the differential equation which reproduces the precomputed
curve. In this case, it is the ramp shown in Fig. 7.

Fig. 8. Re-entry shaper G(s), here Ti = ti
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Fig. 9. Re-entry shaper – velocity control

The shaper created in this way represents velocity control, see Fig. 9. But it can be easily
transformed to control position, acceleration or jerk. The only modification which has to be done
is the change of the power of s in (6.1). If the denominator before the bracket is s3 then it acts
like acceleration control. If it is changed to s4 then we have jerk control. Finally, if it is only s1

then it acts like direct position control.
Note that we can use all methods described in the previous Sections, especially optimizations,

to design the best precomputed curve with respect to requested criteria. For example, the ramp
control function with limited both the slope and maximum value could be prepared to avoid
actuator saturation (Beneš, 2012). Then, using the finite time Laplace transform we can change
it to the form of the re-entry shaper.
This possibility to synthetize re-entry shapers of prescribed time lengths or optimized to

chosen goals is the main contribution of this paper. It eliminates the drawbacks of both previous
approaches (Bhat and Miu, 1990; Singhose, 1997).

7. Experiment – antisway crane

An antisway crane is one of the typical benchmarks for tests of non-vibration control strategies.
The laboratory model shown in Fig. 10 is controlled by simple buttons with 2 states (on/off).
But the rectangular input that goes from the buttons excites vibrations of the load. The goal
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Fig. 10. Crane – a laboratory model and its diagram

is to design an on-line shaper which modifies the signal from the buttons to a non-vibrational
one.

According to the approach described in previous Sections primarily the optimized control
curve is calculated and then it is transformed using the finite time Laplace transform to an
on-line shaper. The shape of the control curve in parametrical form (5.1) is used. The
optimization is focused on settling time minimization with respect to the crane model
parameters.

During the tests, the model was manually controlled by a human operator who performed a
set of various manoeuvres with varied cable length as well. The results of one of them are shown
in Fig. 11 (unshaped) and in Fig. 12 (shaped). The swinging in the final position was almost
completely eliminated when the shaper was used.

Fig. 11. Experiment – the system response without the shaper

Another test was focused on the re-entry property of the shaper. The operator randomly
switched between the right and left direction of the trolley without waiting for the end of the
previous manoeuver. The results for unshaped control are given in Fig. 13a and for control
with the shaper in Fig. 13b. Again, the swinging in the final position was eliminated by the
shaper.
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Fig. 12. Experiment the system response with the shaper

Fig. 13. Experiment a re-entry test (a) without the shaper, (b) with the shaper
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8. Conclusions

The presented approach to the design of input shapers combines the advantages of optimized
precomputed control curves with the ability of on-line control and the re-entry property. It is
capable of dealing with any optimization criteria or additional conditions. The length of produced
shapers can be set arbitrarily only with respect to the limits of available power.

The synthesis of control input is based on the modified Laplace domain synthesis technique
which takes into account the specific properties of chosen basis functions and their influence on
the solution. Additional constraints and optimization criteria are dealt with using free weighting
coefficients and/or parametric basis functions. The result of this part of the synthesis is an
optimized precomputed curve. Using the finite time Laplace transform, this profile is transformed
to the form of an on-line shaper. The shaper inherits the optimized properties of the precomputed
curve and, in contrast to common shaping techniques, its length is not strictly determined as a
multiple of the system natural frequency and can be set arbitrarily. It is important that the new
result reduces the required power of the drive for the chosen positioning time. In its basic form,
the resulting shapers represent velocity control, but they can be also easily modified to position,
acceleration or jerk control. The theoretical results have been were verified by simulations and
experiments.

Moreover, a detailed derivation of the necessary conditions for non-vibrational control (2.22)
by Bhat and Miu (1991) has been was achieved. According to the best knowledge of the authors,
it is published for the first time.
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25. Vyhĺıdal T., Kučera V., Hromč́ık M., 2012, Input shapers with uniformly distributed delays, Pre-
prints of 10th IFAC Workshop on Time Delay Systems (accepted)

26. Wiederrich J.L., Roth B., 1974, Design of low vibration cam profiles, Conference on Cams and
Cam Mechanisms, Liverpool
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