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The flexural vibration stability of a coupled double-walled viscoelastic carbon nanotube
conveying a fluid based on the Timoshenko beam (TB) model is investigated. The coupled
system is surrounded by an elastic medium which is simulated as Pasternak foundation. Van
der Waals (vdW) forces between the inner and outer CNTs are taken into account based
on the Lenard-Jones model. Using small scale theories, Hamilton’s principle and applying
two dimensional (2D) magnetic field higher order governing equations are derived. The
differential quadrature method (DQM) is applied to solve partial differential equations and
investigate natural frequency of the system. The effects of viscoelastic constant, magnetic
field with variable magnitudes and surface stresses on natural frequency of the structure are
demonstrated in this study.
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1. Introduction

Since Iijima (1991) discovered Carbon nanotubes (CNTs) many articles have been published in
different fields of physics and engineering, which were focused on the CNTs and their applica-
tions. For example Ke and Wang (2011) demonstrated the influence of the length scale parame-
ter of modified couple stress theory (MCST) on natural frequency of the double-walled Carbon
nanotube (DWCNT). Pradhan and Mandal (2013) investigated the effects of environmental
temperature changes on buckling, bending and vibrational stability of the CNT embedded by
pinned boundary conditions. Kong et al. (2009) illustrated the effects of strain gradient theory
(SGT) on the static, dynamic and free vibration response of a microstructure including CNTs.
Kiani (2014) presented a single-walled Carbon nanotube (SWCNT) structure introduced to a
3D magnetic field. He investigated the effects of the magnetic field on longitudinal, transverse
and lateral frequencies of the structure. According to his results, longitudinal magnetic field
was more effective than the transverse one. Lei et al. (2013) investigated vibration characteri-
stics of nonlocal viscoelastic nanobeams using the Kelvin-Voigt viscoelastic model based on TB
theory. They discussed the effects of the Kelvin-Voigt coefficient, nonlocal constant, external
damping ratio, and beam length-to-diameter ratio on natural frequencies of the carbon nano-
tubes. Ansari et al. (2014) illustrated nonlinear free vibration of a TB with different boundary
conditions. They used the Gurtin-Murdoch continuum elasticity model to obtain equilibrium
equations which were affected by surface stress layers. According to their results, the effects of
rigidity of the surface layers and surface residual stress on natural frequency were not neglegible.
Lei et al. (2012) illustrated the effects of surface elasticity modulus, residual surface stress, non-
local parameter and aspect ratio on the transverse natural frequency. Xu et al. (2010) presented
the equilibrium equations of a pipe conveying fluid with the pined-pined boundary condition in
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order to investigate the effects of the fluid flow velocity on the natural frequency. The results
were obtained using Galerkin’s method and a complex mode approach. Ghorbanpour Arani et
al. (2014) presented a mathematical model of a coupled viscoelastic CNT conveying fluid flow
based on Euler-Bernoulli beam theory affected by Visco-Pasternak foundation, nonlocal small
scale theory, surface stresses and a longitudinal magnetic field. They depicted the effects of
surface stresses, viscoelastic constant, nonlocal small scale coefficient and the magnetic field on
natural frequency of the system. Khosrozadeh and Hajabasi (2012) investigated the natural fre-
quency of a DWCNT including nonlinear vdW interaction and simply supported, fixed or free
boundary conditions. The results revealed that the influence of nonlinear components of vdW
forces on natural longitudinal frequency was neglected.
Shen and Zhang (2011) presented post-buckling, nonlinear bending and nonlinear vibration

analysis of a nanoscale structure based on nonlocal small scale theory. The system including a
thermo-elastic CNT rested on an elastic foundation. The effects of the nonlocal parameter and
temperature changes on natural frequency, static bending and buckling load were demonstra-
ted in their work. Ghorbanpour Arani and Amir (2013) investigated free vibration analysis of
a coupled-Boron nitride nanotube (BNNT) structure affected by electro-thermal fields. The di-
splacement field and strain-stress relation were based on Euler-Bernoulli beam theory and strain
gradient theory, respectively. The effects of fluid velocity, aspect ratio and temperature changes
on natural frequencies were demonstrated in their results.
In this study, a double-bonded DWCNT conveying viscous fluid flow is presented. The vi-

scoelastic structure is affected by a surface stress layer, 2D magnetic field, vdW interaction and
Pasternak foundation loads. The CNTs are based on Timoshenko beam theory, and the gover-
ning equations will be obtained using Hamilton’s principle. DQM is used to solve the partial
differential equations and investigate natural frequency of the system. Finally, the effects of vi-
scoelastic constant, small scale coefficients, surface stresses and the magnetic field on the natural
frequency of the structure are presented in this paper.

2. Governing equations

2.1. TB theory

Figure 1 demonstrates a coupled-structure made of carbon nanotubes based on TB theory
in which L is length of the tubes and R and h are outer radius and thickness of the CNTs,
respectively. The effects of zigzag graphene sheet rolling procedure are considered in this study.
In the zigzag rolling procedure, the radius of CNT is obtained by R = 0.142p

√
3/2π nm in which

P denotes the numbers of carbon atoms (Shen and Zhang, 2011). Since the displacement field is
based on Timoshenko beam theory, Eq. (2.1) demonstrates strain-displacement relation of TB
theory

εxxij =
∂Uij(x, t)

∂x
+ z

∂Ψij(x, t)
∂x

γxzij = 2εxzij =
∂Wij(x, t)

∂x
+ Ψij(x, t) (2.1)

where the subscript i = 1, 2 indicate the number of upper and lower nanotubes, respectively,
j = 1, 2 indicate the inner and outer tubes, respectively, and Ψij(x, t) is rotation of cross-section
of the nanotubes.

2.2. Surface stress effect

Influence of the surface effect on stability of nano or microstructures cannot be ignored
because in these structures the surface-to-bulk ratio will increase. An appropriate theoretical
notion is offered by Gurtin-Murdoch. It is based on the continuum mechanical model including
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Fig. 1. Schematic of a coupled CNT’s deformed element based on the TB model conveying fluid under
two dimensional magnetic field

surface stress effects which is well known as the Gurtin-Murdoch model (Ansari et al., 2014; Lu
et al., 2006). Mechanical stresses regarding the TB theory are

T sxxij = (λ
s + 2µs)εxxij + τ s T sxzij = τ

s∂Wij

∂x
(2.2)

where τ s and δnm are the residual surface stress and Kronecker tensor, respectively, and λs and
µs are surface Lame constants. In this study, we consider that the surface stresses on the layers
satisfy the equilibrium relation so T szzij cannot be neglected (Lei et al., 2012; Lu et al., 2006),
thus the components of stress tensor for the bulk of nanotube can be shown in Eq. (2.3)1 (Ansari
et al., 2014; Lu et al., 2006)

Txxij = E∗εxx +
ν

1− ν σzz = E
∗
(∂Uij
∂x
+ z

∂Ψij
∂x

)
+
2zν

h(1− ν)
(
τS
∂2Wij

∂x2
− ρS ∂

2Wij

∂t2

)

Txzij = GκSγxzij = G∗ks
(∂Wij

∂x
+ Ψij

) (2.3)

where ρs is density of the surface layers. E∗ = E(1 + g∂/∂t) and G∗ = G(1 + g∂/∂t) are
viscoelastic parameters of the CNTs based on the Kelvin-Voigt model (Lei et al., 2013). E and
G are elasticity and shear modulus of the CNTs, respectively, which are functions of temperature
according to Table 1.

2.3. Hamilton’s principle

To develop a comprehensive model for coupled DWCNT, we use extended Hamilton’s prin-
ciple which can be expressed as follows (Ghorbanpour Arani and Amir, 2013)

t1∫

t0

δΠ dt =

t1∫

t0

δ(U strain −KTotal −ΩTotal ) dt = 0 (2.4)

where Π indicates total mechanical energy of the structure which includes kinetic energy KTotal ,
external work done by external forces ΩTotal and potential energy U strain .
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2.3.1. Total kinetic energy

The total kinetic energy of the coupled system contains kinetic energies of nanotubes, surface
layer and flow fluid as follows (Ansari et al., 2014; Ghorbanpour Arani et al., 2014)

KTotal = Knanotubes +K
surface
nanotubes +Kfluid

=
1
2
ρf

l∫

0

{ ∫

Af

[(∂Ui1
∂t
+ z

∂Ψi1
∂t
+ Uf cos θ

)2
+
(∂Wi1

∂t
− Uf sin θ

)2]
dA

}
dx

+
ρS

2

l∫

0

{ ∮

Sij

[(∂Uij
∂t
+ z

∂Ψij
∂t

)2
+
(∂Wij

∂t

)2]
dS

}
dx

+
1
2

l∫

0

{ ∫

Aij

ρCNT
[(∂Uij

∂t
+ z

∂Ψij
∂t

)2
+
(∂Wij

∂t

)2]
dAij

}
dx

(2.5)

where Uf is the fluid flow velocity and ρf , ρS, ρCNT are density of the fluid, surface layer and
CNT, respectively.

2.3.2. External work

The external work that includes the elastic medium, thermal and magnetic fields, vdW
interactions, and conveying fluid forces are presented as follows (Ghorbanpour Arani et al.,
2014)

ΩTotal =
1
2

l∫

0

[ ~ML
y Ψij) + (~F

L
x Uij) + (~F

L
z Wij)] dx

︸ ︷︷ ︸
Lorentz work

+
1
2

l∫

0

(qvdWij Wij + qPasternaki2 Wi2) dx

︸ ︷︷ ︸
External work done by vdW & Pasternak

+
1
2

l∫

0

−E∗Aijα∆T
(∂Wij

∂x

)2
dx

︸ ︷︷ ︸
External work done by thermal changes

+
1
2

l∫

0

[
−ρfU2fAf

∂2Wi1

∂x2
(cos θWi1 + sin θUi1)

]
dx

︸ ︷︷ ︸
External work done by centripetal fluid force

− 1
2

l∫

0

[
µeAf

∂3Ui1
∂x2∂t

+ µeAfUf
(
− sin θ ∂

2θ

∂x2
−
(∂θ
∂x

)2
cos θ

)]
Ui1 dx

︸ ︷︷ ︸
External work done by viscous fluid

− 1
2

l∫

0

[
µeAf

∂3Wi1

∂x2∂t
+ µeAfUf

(
− cos θ ∂

2θ

∂x2
−
(∂θ
∂x

)2
sin θ

)]
Wi1 dx

︸ ︷︷ ︸
External work done by viscous fluid

(2.6)

in which the Lorentz external work is the resultant of two-dimensional (2D) magnetic fields ap-
plied along the longitudinal and transverse directions. ~H = Hx

~i+Hz
~k is considered in order to

show the effects of this type of magnetic field on stability of our structure. In order to show how
the electric and magnetic fields are generated and changed by each other, Maxwell’s equations
are presented (Ghorbanpour Arani et al., 2014; Kiani, 2014). The load inserted by Pasternak
foundation which surrounds the external CNTs and the vdW interaction forces are distributed
transverse loads, whose their external works are presented in Eq. (2.7), see Ghorbanpour Arani
and Amir (2013), Khosrozadeh and Hajabasi (2012), Shen and Zhang (2011). The structure
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is introduced to a uniform thermal field. Hence, temperature changes apply an axial compres-
sive load to the system. The external work done by the thermal load is shown in the above
equation. Finally, the external work done by the viscous fluid flow is presented in Eq. (2.6),
see Ghorbanpour Arani et al. (2014), Ghorbanpour Arani and Amir (2013), in which µe is the
effective viscosity which is modified by the Knudsen number (Ghorbanpour Arani et al., 2014).
The Knudsen number is a dimensionless ratio which is used to modify the fluid flow velocity as
follows

VCF =
Vave,slip

Vave,no−slip
= (1 + bKn)

(
1 + 4

2− σν
σν

Kn
1 + Kn

)
(2.7)

where VCF is the correction factor which will be used to modify the fluid flow velocity as
Vavg ,slip = VCF · Vavg ,no−slip and the governing equations as Uf = Vavg ,slip .

2.3.3. Strain energy based on Strain gradient theory

The strain energy of mechanical structures is related to the stress and strain tensors of each
structure. Strain gradient and modified couple stress theories are presented in this article in
order to obtain strain energy of coupled DWCNT.
In the constitutive equations of the strain gradient theory (Ghorbanpour Arani and Amir,

2013; Kong et al., 2009), for isotropic linear elastic materials there are only three independent
higher-order material length scale parameters in addition to the two classical material parame-
ters. Strain stress potential energy of the bulk and surface layer of the system is obtained by
strain gradient theory, and will be investigated as below in the general form

U =
1
2

(∫

Γ

(Tkpεpq + pkγk + τ
(1)
ptqη

(1)
ptq +mkpχkp) dV +

∮

S

(T Sxxεxx + T
S
xzγxz) dS

)
(2.8)

in which

εpq =
1
2
(Dp,q +Dq,p) γk = εmm,k χkp =

1
2
(φk,p + φp,k)

η
(1)
ptq =

1
2
(εtq,p + εqp,t + εpt,q)−

1
15
[δpt(εmm,q + 2εmq,m)]

− 1
15
[δtq(εmm,p + 2εmp,m) + δqp(εmm,t + 2εmt,m)]

(2.9)

where ε, γ, η and χ are strain, dilatation gradient, deviatoric stretch gradient and symmetric
rotation gradient tensors, respectively. Stresses and higher order stress tensors are mentioned by

Tpg =

{
E∗εpq if p ≡ q
2κSG∗εpq if p 6= q

(2.10)

and

pk = 2G∗l20γk τ
(1)
ptq = 2G

∗l21η
(1)
ptq mkp = 2G∗l22χkp (2.11)

where T, p, τ and m are stress, higher order stress and deviatoric stress tensors, respectively.
According to Eqs. (2.11), l0, l1 and l2 are parameters of small scale theory. Therefore, with respect
to Eqs. (2.5), (2.6) and using Hamilton’s principle based on strain gradient theory, equations
of motion are obtained. Using dimensionless parameters (Ghorbanpour Arani and Amir, 2013;
Kong et al., 2009), we have
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(wij , uij) =
(Wij , Uij)

Ro
ζ =

x

l
L =

L

l
(L0, L1, L2) =

(L0, L1, L2)
L

g∗ =
g

l

√
E

ρCNT
τ =

t

l

√
E

ρCNT
Iij =

Iij
Al2

uf =
√
ρf
E
Uf

H∗x =

√
ηmH2x
E

H∗z =

√
ηmH2z
E

µ =
µ

R0
√
Eρf

βij =
κsGAij
EAij

h1 =
π(R3i +R

3
o)EsTs

EAl2
h2 =

2π(Ri +Ro)EsTs
EA

h3 =
2νπIτ sRo
(1− ν)EAhl3

h4 =
2νπIEρs

(1− ν)EAhρCNT l2
h5 =

2πρs(Rin +Rout)
ρCNTA11

h6 =
π(R3in +R

3
out)ρ

s

ρCNTAinl2

(cij , c′ij) =
(c, c′)l2

EAij
Gp =

Gp
EA

Kw =
Kwl

2

EA
λ =

l

Ro

Π0 =
2π(Ri +Ro)τ s

EA
f =

Af
A

ρ =
ρf

ρCNT
∆T = α∆T

Therefore, the dimensionless equilibrium equations can be written as:
— for δuij = 0

− 1
λ

∂2uij
∂ζ2
− g∗

λ

∂3uij
∂ζ2∂τ

+
2L0βij
κsλ

∂4uij
∂ζ4
+
2L0g∗βij
κsλ

∂5uij
∂ζ4∂τ

+
20L1βij
25κsλ

∂4uij
∂ζ4

+
20L1g∗βij
25κsλ

∂5uij
∂ζ4∂τ

+
H∗xH

∗
z

λ

∂2wij
∂ζ2

− H∗z
2

λ

∂2uij
∂ζ2
− h2

λ

∂2uij
∂ζ2
+
1
λ

∂2uij
∂τ2

+
Γijfijρ

λ

∂2uij
∂τ2
− µ
√
ρ

λ

∂3uij
∂τ∂ζ2

= 0

(2.12)

— for δwij = 0

− βij
∂Ψij
∂ζ
− βijg∗

∂2Ψij
∂ζ∂τ

− βijg
∗

λ

∂3wij
∂ζ2∂τ

− βij
λ

∂2wij
∂ζ2

+
8βijL

2
1

15λκs

∂4wij
∂ζ4

+
16βijL

2
1

15κs

∂3Ψij
∂ζ3

+
8βijg∗L

2
1

15λκs

∂5wij
∂ζ4∂τ

+
16βijg∗L

2
1

15κs

∂4Ψij
∂ζ3∂τ

+
βijL

2
2

4λκs

∂4wij
∂ζ4

− βijL
2
2

4κs

∂3Ψij
∂ζ3

− βijg
∗L
2
2

4κs

∂4Ψij
∂ζ3∂τ

+
βijg

∗L
2
2

4λκs

∂5Ψij
∂ζ4∂τ

− 2Π0
λ

∂2wij
∂ζ2

+
1
λ

∂2wij
∂τ2

+
Γijρfij
λ

∂2wij
∂τ2

− H∗x
2

λ

∂2wij
∂ζ2

+
H∗xH

∗
z

λ

∂2uij
∂ζ2
− Γij

√
ρfij

∂Ψij
∂τ
+
Γiju

2
ffij

λ

∂2wij
∂ζ2

+
∆T

λ

∂2wij
∂ζ2

+
∆Tg∗

λ

∂3wij
∂ζ2∂τ

µuf
λ

∂3wij
∂ζ3

−
√
ρµ

λ

∂2wij
∂ζ2

− (1− Γij)q′i2
Pasternak − q′ij

vdW = 0

(2.13)

— for δΨij = 0

− Iij
∂2Ψij
∂ζ2
+ Iijg∗

∂3Ψij
∂ζ2∂τ

+ βijΨij +
βij
λ

∂wij
∂ζ
+ βijg∗

∂Ψij
∂ζ
+
βijg

∗

λ

∂2wij
∂ζ∂τ

+
Γijfijρuf

λ

∂wij
∂τ

− h1
∂2Ψij
∂ζ2
+
Π0
λ

∂wij
∂ζ
+ Iij

∂2Ψij
∂τ2

+ Γijfijρ
∂2Ψij
∂τ2

− IijH∗z 2
∂2Ψij
∂ζ2
+ h3

∂3wij
∂ζ3

+
h4
λ

∂3wij
∂ζ∂τ2

− 2βijL
2
o

κs

∂2Ψij
∂ζ2
− 2βijg

∗L
2
0

κs

∂3Ψij
∂ζ2∂τ

+
2I ijβijL

2
0

κs

∂4Ψij
∂ζ4
+
2βijIijg∗L

2
0

κs

∂5Ψij
∂ζ4∂τ
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+
20IijβijL

2
1

25κs

∂4Ψij
∂ζ4
+
20βijIijg∗L

2
1

25κs

∂5Ψij
∂ζ4∂τ

+
16βijL

2
1

25κsλ
∂3wij
∂ζ3

− 32βijL
2
1

25κs

∂2Ψij
∂ζ2

(2.14)

+
16βijg∗L

2
1

25κsλ
∂4wij
∂ζ3∂τ

− 32βijg
∗L
2
1

25κs

∂3Ψij
∂ζ2∂τ

+
βijL

2
2

4κsλ
∂3wij
∂ζ3

− βijL
2
2

4κs

∂2Ψij
∂ζ2

+
βijg

∗L
2
2

4κsλ
∂4wij
∂ζ3∂τ

− βijg
∗L
2
2

4κs

∂3Ψij
∂ζ2∂τ

= 0

where Γij for j = 1 (inner nanotube) equals 1 and for j = 2 (outer nanotube) equals 0. By
estimating l0 and l1, the presented theory converts into the modified couple stress theory.

3. Numerical method

DQM is a numerical method like Galerkin’s method, Finite Element, Finite Difference method
etc. This method is based on the Gaussian integral method and Lagrange polynomial, and some
of its important merits are appropriate accuracy and easy access. Partial differential equations
will be converted into algebraic equations in this method in two steps. First of all, Chebyshev
points distribute grids along the CNTs, then Lagrange polynomial constructs DQ’s weighting
coefficient matrix (Ghorbanpour Arani et al., 2014). The components of displacement field will
be divided into time dependent and time independent functions

u(ζ, τ) = u(ζ)eiωτ w(ζ, τ) = w(ζ)eiωτ Ψ(ζ, τ) = Ψ(ζ)eiωτ (3.1)

where ω = λL
√
ρCNT /E is the dimensionless natural frequency, λ is the natural frequency and

ρCNT is density of the tubes. According to Eqs. (3.1) and (3.2), the equilibrium and boundary
equations will change to algebraic equations

∂n(uij , wij , Ψij)
∂ζn

∣∣∣∣
ζ=ζr

=
N∑

k=1

Cnrk{uk(ζk), wk(ζk), Ψk(ζk)} (3.2)

By using Eqs. (3.1), (3.2) and some mathematical manipulations, the partial differential equ-
ations turn into state space algebraic equations (Ghorbanpour Arani et al., 2014) which are
shown by

([
0 I

M−1e Ke iM
−1
e De

]
− ωI

){
dd
d∗

}
= 0 (3.3)

where Ke, De, Me and I are the stiffness, damping, mass and unit matrices, respectively. Sub-
script b is the element related to the boundary points and subscript d indicates the remaining
elements. The imaginary part of the eigenvalue Im(ω)t is structural damping and the real part
Re(ω) represents the natural frequency of the structure.

4. Discussion

Some numerical examples and also validation of our results in comparison with other accepted
articles are expressed in this Section. Mechanical and geometrical properties of the CNTs are
presented in Table 1 (Shen and Zhang, 2011; Zhang and Shen, 2006).
Our purpose is to investigate the natural frequency of the coupled DWCNT. Obviously, it is

a nanoscale structure, so small scale theories must be applied in equilibrium equations to obtain
appropriate results.
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Table 1. Variety of elasticity and shear modulus of CNTs in different temperatures according
to the rolling procedure

Rolling
procedure

Type of
CNT

Inner
Thickness
[nm]

Tempera-
ture
[K]

Young’s Shear
radius modulus modulus
[nm] [TPa] [TPa]

Zigzag
(17,0) 0.6654 0.088

300 3.9 1.36
500 3.89 1.36

(21,0) 0.822 0.087
300 3.81 1.37
500 3.79 1.37

Fig. 2. Comparison of the dimensionless natural frequency with those presented by Yin et al. (2011) for
MCST, SGT and classical theories

Fig. 3. The effect of structural damping of the CNTs on natural and damping frequencies,
Hx = 0.1GA/m (zigzag inner 17.0 and outer 21.0, clamped-clamped, L0 = L1 = L2 = 0.1m, EsTs = 0,

τs = 0, Hz = 0, ∆T = 0)

Figure 2 illustrates the comparison of our results with those by Yin et al. (2011), which
is based on modified couple stress theory (MCST), strain gradient theory (SGT) and classical
theory (CT), respectively. Figures 3a and 3b present the effects of the Kelvin-Voigt coefficient
on the zigzag CNT. Before reaching the critical flow velocity, the natural frequency decreases
with an increase in the flow velocity while the damping frequency remains negative and its ma-
gnitude decreases. Also the viscoelastic constant increases the magnitude of damping frequency.
The effects of magnetic fields on stability of the elastic beam are shown in Figs. 4a and 4b.
Figure 4a illustrates that stability of the coupled DWCNT increases as the magnitude of longi-
tudinal magnetic field increases. Figure 4b indicates the effect of the transverse magnetic field
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on foundation frequency of the structure. By comparing Fig. 4a with Fig. 4b, we conclude that
the longitudinal magnetic field has a more stabilizing effect on the structure than the transverse
magnetic field.

Fig. 4. The influence of 2D-magnetic field on the natural frequency, ∆T = 200 and g∗ = 0 (zigzag CNT
inner 17.0 and outer 21.0, clamped-clamped, Hz = 0GA/m, uf = 0.01)

Fig. 5. The effect of surface layer rigidity and layer residual stress constant on the natural frequency
∆T = 200 and g∗ = 0 (zigzag CNT inner 17.0 and outer 21.0, clamped-clamped, uf = 0.01, Hx = 0,

Hz = 0)

Fig. 6. The effects of different boundary conditions on natural frequency with various temperatures
g∗ = 0 (zigzag inner 17.0 and outer 21.0, L0 = L1 = L2 = 0.1m, EsTs = 0, τs = 0, Hx = Hz = 0)

The surface stresses divide into two parameters, surface layer rigidity (ESTS) and residual
surface tension (τ s). The effects of these parameters are shown in Fig. 5a and Fig. 5b, respectively.
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It is obvious that the increasing of the rigidity modulus of the structures reinforces their stability.
Figure 5 demonstrates that the natural frequency of the coupled DWCNT increases with

an increase in the surface layer rigidity parameter (ESTS). It is also shown in Fig. 5 that
the increasing of the residual surface tension (τ s) increases the natural frequency. Figure 6
illustrates the effects of different boundary conditions and temperatures on the critical flow
velocity and natural frequencies. As it can be observed in Fig. 6, strain gradient theory increases
the vibration stability region, and the modified couple stress has a more stable region than in
the classical theory. It is also shown that the clamped condition is the most stable condition,
and the temperature changes have the least effect on the stability of the structure.

5. Conclusion

A viscoelastic couple DWCNTs structure based on the TB theory which is affected by the surface
stress layer, magnetic field and temperature changes is presented in this paper. In order to obtain
an appropriate compliance with the laboratory model, strain gradient and modified couple stress
theories are considered in this study. There is a 3% discrepancy between the stability of CT and
other theories. The results reveal that the effect of the viscoelastic coefficient on the vibration
response of the system is not negligible. The magnetic field increases the stability region by
increasing the rigidity of the system. The effect of the surface stress layer on natural frequency of
the structure shows that the surface stress layer is an inherent characteristic for nanostructures.
These results are an appropriate guide for designers and engineers to design useful mechanical
structures.
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